
Complex Named Entity Recognition via
Deep Multi-task Learning from Scratch

Guangyu Chen1, Tao Liu1, Deyuan Zhang2(B), Bo Yu3, and Baoxun Wang3

1 School of Information, Renmin University of China, Beijing, China
{hcs,tliu}@ruc.edu.cn

2 School of Computer, Shenyang Aerospace University, Shenyang, China
dyzhang@sau.edu.cn

3 Tricorn (Beijing) Technology Co., Ltd, Beijing, China
{yubo,wangbaoxun}@trio.ai

Abstract. Named Entity Recognition (NER) is the preliminary task in
many basic NLP technologies and deep neural networks has shown their
promising opportunities in NER task. However, the NER tasks covered in
previous work are relatively simple, focusing on classic entity categories
(Persons, Locations, Organizations) and failing to meet the requirements
of newly-emerging application scenarios, where there exist more informal
entity categories or even hierarchical category structures. In this paper,
we propose a multi-task learning based subtask learning strategy to com-
bat the complexity of modern NER tasks. We conduct experiments on
a complex Chinese NER task, and the experimental results demonstrate
the effectiveness of our approach.
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1 Introduction

Nowadays, many basic NLP technologies have been utilized in the newly-
emerging application scenarios, among which the Named Entity Recognition
(NER) models are believed to be of paramount importance for locating the
essential information slots and predicting user intentions in the task-oriented
AI products, especially the ones with speech interface such as conversational
agents1, smart speakers2.
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Compared to traditional NER tasks focusing on the classic entity categories
involving names of persons, locations, organizations, etc. [4,11,21], the NER
modules for the task-oriented scenarios of new AI products are facing the more
complex situation with more informal entity categories or even hierarchical cat-
egory structures (Fig. 1 gives an example). The difference is basically brought by
the requirements of practical task-oriented systems which take spoken language
as the interactive interface, since it is much more difficult to parse spoken lan-
guage sentences to detect slots or predict intentions. More importantly, in the
task-oriented NER scenarios, the complex entity categories significantly increase
the difficulty of human annotation. Consequently, the amount of high-quality
annotated datasets generally can not be guaranteed, which blocks the NER
models from achieving satisfying performance with no doubt.

For the task-oriented NER models which take spoken languages as input,
the limitation of the amount of human-annotated data is a severe problem that
should be handled first. From the perspective of the principle of NER, this
task objectively keeps the correlation with the other NLP tasks such as word
segmentation, part-of-speech (POS) tagging, etc. More importantly, the NER
model is very possible to benefit from the performance improvements on such
tasks, since they are logistically the basis of the NER task. Consequently, it
is fairly reasonable to conduct the multi-task learning procedure upon a basic
shared learnable component, which can be updated in accordance with each
training iteration of each task. This architecture becomes more practicable due to
the natural characteristics of deep learning models, since the parameter sharing
and fine-tuning mechanisms are suitable for building trainable shared layers
providing implicit representations of linguistic knowledge.

In this paper, we propose a learning strategy to combat the complex NER
task by firstly dividing the NER task into fine-grained subtasks (according to
domain affiliation) then integrating these subtasks into the multi-task learning
process and finally training them from scratch. A key aspect of our idea is that
these fine-grained subtasks will get better performance without the disturbance
coming from other domains.

Fig. 1. An example of the complex NER task facing by new AI products. All the six
entity names in this figure belong to the same domain of ‘Location’ in traditional NER
tasks. It demonstrates the complex NER is a challenging learning problem. On the one
hand, the model not only needs to classify which domain (Person, Location, Organi-
zation) the named entity belongs to, but also needs to dive down and get the correct
fine-grained category. On the other hand, the boundaries between these categories may
be blurry. For example, “Lijiang” is an administrative division, but in a specific context
it may refer to the “Old Town of Lijiang” which is a scenery spot.
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The remaining part of this paper is organized as follows. Section 2 surveys the
related studies. Our proposed methodology is presented in Sect. 3. The experi-
mental results are given and analyzed in Sect. 4. Finally, we conclude our work
in Sect. 5.

2 Related Work

NER is a challenging learning problem considering the amount of supervised
training data available and the few constraints on the kinds of words that can
be names. As a result, orthographic features and language-specific knowledge
resources, such as gazetteers, are widely used to improve the NER tasks’ perfor-
mance [6,16,22]. However, this practice ruins the possibility of training the NER
task from scratch, since the language-specific resources and features are costly
to obtain when facing new language or new domains.

Multi-task learning (MTL) has led to success in many applications of lan-
guage processing [5] by sharing representations between related tasks [1,3]. Com-
pared with single-task learning, the architecture commonly used in MTL has
shared bottom layers and several individual top layers for each specific task. By
jointly (or iteratively) training on related tasks, the representation capacity of
the shared layers are enhanced. On MTL for sequence labeling tasks, Ando [1]
proposed a multi-task joint training framework that shares structural parameters
among multiple tasks, and improved the performance on various tasks includ-
ing NER. Collobert [6] presented a task independent convolutional network and
employed multi-task joint training to improve the performance of chunking. The
BiLSTM-CRFs neural architecture proposed by Lample [15] achieved state-of-
the-art results [23]. These previous works exclusively focused on the traditional
named entity recognition, however, the named entity categories are much more
complicated in practical applications nowadays. We argue that it would be ben-
eficial to take apart the original complex NER task into fine-grained subtasks.
In the training process, each subtask is trained independently, while in the test-
ing process, these subtasks will be executed simultaneously and the results of
these subtasks will be integrated to produce the final result. This perspective
also makes it easy to add these subtasks into MTL’s iterative training procedure
with an end-to-end manner. To the best of our knowledge, the work that is closet
to ours is [19], which focuses on domain adaptation with a simple NER classifi-
cation category, but their work does not explore the possibility of applying it to
the more complicated NER task.

3 Multi-task Learning Architecture for NER

In this section, we first provide a brief description of LSTMs used in our archi-
tecture, and then present a baseline model for single sequence tagging tasks
based on Bidirectional LSTM (Bi-LSTM) recurrent units. Finally we elaborate
on the iteration training procedure of MTL and the details about NER subtasks
training strategy.
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3.1 Basic Bi-LSTM Structure

Recurrent neural networks are a sort of neural networks taking the input data in
the form of vector sequence (x1, x2, . . . , xn) and generating the sequence output
(h1, h2, . . . , ht) which represents the context information encoded in every step
of the input vectors. It has been shown the traditional RNNs tend to be biased
toward the recent tokens, which caused the failure of learning long-term depen-
dencies [2]. Long Short-term Memory networks (LSTMs) [12] are put forward to
combat the above problem by applying additional gates to control the propor-
tion of input given to the memory cell, and the proportion of the previous state
to forget. There are several architectures of LSTM units. We used the following
implementations [9]:

ft = σ(Wfxt + Ufht−1 + bf ) (1)

it = σ(Wixt + Uiht−1 + bi) (2)

ot = σ(Woxt + Uoht−1 + bo) (3)

ct = ft � ct−1 + it � tanh(Wcxt + Ucht−1 + bc) (4)

ht = ot � tanh(ct) (5)

where � denotes element-wise product and σ is the sigmoid logistic function
(defined as σ = 1/(1 + e−x)).

For an input sequence (x1, x2, . . . , xn) containing n characters, the output
−→
ht

encodes the left context information of character t in the input sequence, which
means the network models the input sentence only in forward direction. It is
usually helpful by adding another LSTM reading reversely and concatenating
both outputs as the final output ht = [

−→
ht ,

←−
ht ]. This is referred as the bidirectional

LSTM [10]. It has been demonstrated that this bidirectional architecture will
improve the performance in many sequence labeling tasks, thus it has become
the common building component in such tasks and is extensively used in many
sequence tagging tasks such as Chinese word segmentation (SEG), POS tagging
and NER.

3.2 Single Task Training

We start with a basic neural network (NN) model for training single sequence
tagging task in this subsection, then move on to the structure for iterative train-
ing in Sect. 3.3.

The NN model for single sequence tagging tasks can be seen in Fig. 2. For
an input character sequence X = {w1, w2, . . . , wn}, it can be transformed to a
sequence of character vectors with length n by performing embedding lookup
operation on each character wi. Then, this vector sequence will be fed to the
Bi-LSTM layer. Finally, a fully connected layer and a softmax layer will be used
to produce the final tagging result. This structure can be easily applied to many
sequence tagging tasks in an end-to-end manner and have the capacity of being
integrated into the MTL environment.
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Fig. 2. The architecture of our Bi-LSTM recurrent network for single sequence tagging
task. Character embeddings successively pass though a bidirectional LSTM layer, a
fully connected layer and a softmax layer to generate the predicted outputs. This
architecture can be employed directly in the MTL environment by simply dividing it
into shared parts and task specific parts which marked by the red box and blue box
above. Figure 3 gives the further detail in MTL aspects.

We employ mini-batch Adam optimizer [13] to train our neural network in
an end-to-end manner with back propagation. In order to train the model with
batched inputs, input sentences will be tailed to a fixed length before the embed-
ding lookup operation, thus the lengths of input sentences for the Bi-LSTM layer
are equal. When performing evaluation for the NER task, the Viterbi algorithm
[8] is used to decode the most probable tag sequence.

3.3 Multi-Task Training Scheme

Multi-task training is desirably leveraged to boost model performance, since
different sequence tagging tasks (such as SEG, POS and NER) in the same lan-
guage share language-specific characteristics and should learn similar underlying
representation. To apply the basic NN model mentioned above to the multi-task
mechanism, we divide the parameters (Wt) of single task t into two sets (task
specific set and shared set):

Wt = Wtshare ∪ Wtspec (6)
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according to different roles of the parameters. We share all the parameters below
the fully connected layer including character embeddings to learn language-
specific characteristics for all the tasks, and the rest are regarded as task specific
parameters. These two sets are marked out in Figs. 2 and 3 respectively.

There are two patterns commonly used in MTL, one of which is training
different tasks jointly (optimize more than one loss function at a time), for
example, training the SEG task and the NER task simultaneously by maximizing
a weighted joint objective [18]:

Lossjoint = λLossSEG + LossNER (7)

where λ trades off between better segmentation or better NER. However, this
approach needs additional modifications to the model architecture and it is hard
to combine too many tasks. Thus, we adopt the iterative training mechanism of
MTL. For each iteration, all the tasks are trained sequentially. For each task t,
we first load previous trained parameters for initialization. The shared parame-
ter set is initialized with the latest Wtshare if there exists one. The task specific
parameter set is initialized with the latest Wtspec of the same task if there exists
one. Otherwise, we make a random initialization of parameters. Then, we per-
form gradient descent steps to update model parameters Wt until the model
performance tends to be stable, and then switch to training the next task. In
this way, the models for all the tasks are gradually optimized through the iter-
ative training process and the performance for each task is improved. We show
the effect of this iterative training mechanism in the experiment.

Fig. 3. The architecture used for NER subtask training. In the MTL training process,
the parts marked by blue boxes are task-specific and the parts located in the red box is
shared by all the tasks. To combat the complexity of the NER task, we divide the NER
task into three fine-grained subtasks (NERTravel, NERShopping, NEREntertainment)
according to the domain affiliation.
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3.4 NER Subtasks Training Scheme

To reduce the complexity of the complex NER task, we divided it into three fine-
grained subtasks (NERTravel, NERShopping, NEREntertainment) by splitting
the dataset according to the domain affiliation (Sect. 4 presents the detail of
data processing). Since the training data for each NER subtask is isolate, it is
possible to treat them as independent sequence tagging tasks and combine them
into the iterative training process of MTL. This design captures two intuitions.
First, each fined-grained subtask only focuses on a single domain and will get
better performance since the labels needed to predict are downsized, without
the disturbance of other domains. Second, since SEG and POS tasks may bring
fundamental and latent contributions to NER task, it could be helpful to enhance
the representation capacity of shared layers by training with SEG and POS tasks.
After adding these tasks, the final architecture is shown in Fig. 3.

During evaluation, we employ these NER models on the same test set, collect
the results and perform merging operations:

(1) Ideally, these models’ predictions will be non-intersected, for example the
named entity “Beijing Hotel” belongs to the Travel domain, thus it will only
get the named label from NERTravel. The other two subtasks will neglect
this entity, thus this merging operation can be performed by simply merging
theses models’ predictions.

(2) However, due to the complexity of our NER task, there is a possibility that
these models may given different tagging results for the same entity which
can not be merged, e.g. for named entity “Shaolin Temple”, NERTravel

marks it as SCENE (scenery spot) while NEREntertainment marks it as
FILM. And in more complex situations, these results can be overlapping. In
these cases, the tagging result with higher sentence probability (generated
by the Viterbi decoding operation) will be chosen as the final result. We find
there are rare situations (about 0.5% of total entities) that need this further
merging operation from experiments, which demonstrates theses subtasks
have the capacity of concentrating on entities of their own domains.

4 Experiments and Analysis

In this section, we first introduce the datasets used in SEG, POS and NER tasks.
Then we present the details of tagging schemes and embedding settings. Finally
we give the results and the analysis of our experiment.

4.1 Datasets

We consider three tasks: sentence segmentation, part-of-speech tagging, and com-
plex named entity recognition. All these tasks are in Chinese, and each task
corresponds to a dataset. Chinese Treebank 9.03 datasets are used for SEG and

3 https://catalog.ldc.upenn.edu/ldc2016t13.
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Table 1. The NER tags for each domain and their proportions in total named entities.

Domain Tag Entity number Percentage (%)

Travel CATER 88944 37.1

HOTEL 9186 3.8

SCENE 36641 15.3

Shopping PROD BRAND 17934 7.5

PROD TAG 44138 18.4

Entertainment TV 19052 7.9

FILM 16125 6.7

MUSIC 5032 2.1

ENT OTHER 2822 1.2

POS tagging, and each contains 13.2k training sentences. An internal dataset
crawled from Chinese forums and Chinese News websites is used for complex
NER. It is preprocessed with data cleaning, and labeled with nine entity types4

covering domains of travel, shopping and entertainment. The NER dataset con-
tains 189.7k sentences, and each sentence only belongs to one domain. Entity
distribution of this dataset is shown in Table 1. Note that the datasets for SEG
(POS) and NER are drawn from different distributions, yet share many com-
monalities and still make contributions to each task. To combat the complexity
of the complex NER task, we propose the subtask strategy. It consists of the
following steps:

(1) Hold out 10% of the NER dataset for testing. The remaining part
NERremain is used for further process.

(2) Split NERremain into three subsets according to the domain affiliation, since
each sentence belongs to one domain in our NER dataset.

(3) Balance the dataset of each subtask by equally adding sentences that drawn
from the other two datasets with the out-of-domain labels transformed to
“O”. The motivation is to prevent biased model for each subtask if the
training data is only drawn from one domain.

(4) For each subset, split the data using an 8:1 for training and validation.

Table 2 shows the tags and volumes of datasets for all subtasks after processing
with the subtask strategy.

4.2 Tagging Schemes

The goal of NER is to assign a named entity label to each character of a sentence.
In our NER task, we used a “BMESO” tagging format, where B-label and E-
label represent the beginning and ending of a named entity respectively, M-label
4 CATER,HOTEL,SCENE,PROD TAG,PROD BRAND,FILM,MUSIC,TV,

ENT OTHER.
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Table 2. Tags contained in each subtask and the sentence volume of each dataset.
Note that these three tasks share the same test set and the domain-unrelated tags will
be transformed to tag “O” (for Others) during testing.

Subtask Tag Train set Validation set Test set

NERTravel CATER HOTEL SCENE 151751 18968 18967

NERShopping PROD BRAND PROD TAG 77071 9633 18967

NEREntertainment ENT OTHER FILM MUSIC TV 61456 7681 18967

represents the remaining section of an entity except both ends, and the S-label
represents a singleton entity. For the character that do not belongs to any entity
type, we use “O” as its label. Sentences can also be tagged in a more concise
format as “BMO” if we throw away the information about singleton entity and
entity ending. However, works in [7,20] showed that using a more expressive
tagging scheme like “BMESO” improves the model performance marginally. We
employ this expressive format in our experiments.

4.3 Preprocessing and Pretrained Embeddings

In the iterative training process, to make it possible for sharing the charac-
ter embedding layer between different tasks, we use the same vocabulary of
size 10571 covering most of the Chinese characters and punctuations. During
training, the numbers and English words in the corpus will be replaced with
“ DIGIT” and “ ALPHABET”, and for the characters out of this vocabulary,
we use “ UNK” to represent them. To initialize the lookup table, we use pre-
trained character embeddings which are trained by the word2vec [17] tool. We
observe improvements using pretrained embeddings compared with randomly
initialized ones and finally set the embedding dimension to 256 for improving
the model’s learning capability.

4.4 Results and Analysis

We consider three baselines, the first baseline is a linear chain Conditional Ran-
dom Field (CRF) [14] commonly used in sequence labeling task. The second
baseline is the single NN model mentioned in Sect. 3.2. The last baseline inte-
grates the single NN model into the MTL pattern mentioned in Sect. 3.3. Com-
pared with the proposed fine-grained model, the difference is that it takes the
complex NER task as a whole. Table 3 presents the test results for complex NER
in terms of precision, recall and F1 score. Table 4 gives the details of F1 results in
each domain. Table 5 shows the F1 scores achieved by the proposed fine-grained
model in each training iteration.

As shown in Table 3, the Single Model (Method 2) gets a lower precision
but achieves a higher recall, which results in a marginal increase (+0.72) in F1
compared to the CRF model. For the MTL based models (Method 3 and 4), both
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Table 3. Statistics of NER results on test dataset. The methods 3 and 4 use the
iterative training scheme of MTL. All these models haven’t used external labeled data
such as gazetteers and knowledge bases.

Method Precision (%) Recall (%) F1 (%)

1 CRF 82.78 74.75 78.56

2 Single Model 80.59 78.00 79.28

3 Single Model with MTL 82.04 78.78 80.37

4 Fine-grained Model with MTL 83.56 81.57 82.55

Table 4. F1 results in domains of Travel, Shopping and Entertainment. The fine-
grained model (Method 4) beats all the others in all domains, and the improvements are
more than 2% compared with the integrated model (Method 3). It demonstrates that
this fine-grained training scheme eliminates the interference from the other domains
which helps the model learn better.

Method F1 (%)

NERTravel NERShopping NEREntertainment

1 CRF 81.31 79.29 68.36

2 Single Model 82.53 78.71 69.52

3 Single Model with MTL 83.53 79.77 71.17

4 Fine-grained Model with MTL 85.81 81.82 73.40

Table 5. The evaluation F1 achieved by the Fine-grained Model with MTL. The last
row displays the max improvement gained in iteration processes, which shows the MTL
scheme helps improve models’ performance.

Iteration F1 (%)

SEG POS NERTravel NERShopping NEREntertainment

1 95.44 89.86 85.87 81.89 72.12

2 95.51 90.07 85.79 82.10 72.84

3 95.66 90.10 86.17 82.17 73.42

4 95.74 90.01 86.18 82.94 73.52

Improvement 0.3 0.24 0.31 1.05 1.4

of them improve performances over the Single Model. Knowing that the SEG and
POS tasks help the model better learn effective representations, the Single Model
with MTL (Method 3) gives us an increase of +1.81 and the Fine-grained Model
gives us the biggest improvement of +3.99, in terms of F1 score. In the MTL
settings, the Fine-grained Model outperforms the Single Model with MTL, which
demonstrates that the subtask training strategy does benefit the performance
of complex NER. This can be further confirmed by the experimental results in
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Table 4, where the proposed fine-grained model beats all the other baselines in
all domains.

Considering the results in Table 5, we find that SEG, POS and NERTravel

get small improvements compared with NERShopping and NEREntertainment.
The reason is as follows. The tasks of SEG and POS are much easier than NER,
thus their top limits are easy to achieve and the room for further improvement
is also limited. For NERTravel, the data volume of this task is the largest in the
three subtasks (nearly twice the data volume of the others), which means it can
be trained more sufficiently thus leaving less room for improvement. Among these
subtasks, NEREntertainment gets the worst F1 score, which is mainly because the
film entities and TV entities have similar contexts, and it is hard to discriminate
them without the help of knowledge bases. However, NEREntertainment achieves
the highest F1 improvement in the MTL process, which verifies the efficiency of
MTL framework.

5 Conclusions

In this paper, we have proposed a learning strategy to combat the complex
NER task by first dividing the NER task into fine-grained subtasks (according
to domain affiliation), then integrate these subtasks into a multi-task learning
process and finally train from scratch. The experimental results show that these
fine-grained subtasks will get better results without the disturbance from other
domains.

In this work, we mainly focus on the complex NER tasks which only cover
three domains. In the future, we will test this strategy on NER tasks with more
domains. Furthermore, it will be interesting to apply our approach to other
languages.
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