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Abstract. Machine reading comprehension is a task to model relation-
ship between passage and query. In terms of deep learning framework,
most of state-of-the-art models simply concatenate word and charac-
ter level representations, which has been shown suboptimal for the con-
cerned task. In this paper, we empirically explore different integration
strategies of word and character embeddings and propose a character-
augmented reader which attends character-level representation to aug-
ment word embedding with a short list to improve word representations,
especially for rare words. Experimental results show that the proposed
approach helps the baseline model significantly outperform state-of-the-
art baselines on various public benchmarks.
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1 Introduction

Machine reading comprehension (MRC) is a challenging task which requires com-
puters to read and understand documents to answer corresponding questions,
it is indispensable for advanced context-sensitive dialogue and interactive sys-
tems [12,34,36]. There are two main kinds of MRC, user-query types [13,24] and
cloze-style [7,10,11]. The major difference lies in that the answers for the former
are usually a span of texts while the answers for the latter are words or phrases.
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Most of recent proposed deep learning models focus on sentence or paragraph
level attention mechanism [5,8,14,25,30] instead of word representations. As
the fundamental part in natural language processing tasks, word representation
could seriously influence downstream MRC models (readers). Words could be
represented as vectors using word-level or character-level embedding. For word
embeddings, each word is mapped into low dimensional dense vectors directly
from a lookup table. Character embeddings are usually obtained by applying
neural networks on the character sequence of each word and the hidden states
are used to form the representation. Intuitively, word-level representation is good
at capturing wider context and dependencies between words but it could be hard
to represent rare words or unknown words. In contrast, character embedding is
more expressive to model sub-word morphologies, which facilitates dealing with
rare words.

Table 1. A cloze-style reading comprehension example.
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As shown in Table 1, the passages in MRC are quite long and diverse which
makes it hard to record all the words in the model vocabulary. As a result, read-
ing comprehension systems suffer from out-of-vocabulary (OOV) word issues,
especially when the ground-truth answers tend to include rare words or named
entities (NE) in cloze-style MRC tasks.

To form a fine-grained embedding, there have been a few hybrid methods that
jointly learn the word and character representations [15,19,32]. However, the
passages in machine reading dataset are content-rich and contain massive words
and characters, using fine-grained features, such as named entity recognition
and part-of-speech (POS) tags will need too high computational cost in return,
meanwhile the efficiency of readers is crucial in practice.

In this paper, we verify the effectiveness of various simple yet effec-
tive character-augmented word embedding (CAW) strategies and propose a
CAW Reader. We survey different CAW strategies to integrate word-level and
character-level embedding for a fine-grained word representation. To ensure ade-
quate training of OOV and low-frequency words, we employ a short list mecha-
nism. Our evaluation will be performed on three public Chinese reading compre-
hension datasets and one English benchmark dataset for showing our method is
effective in multi-lingual case.

2 Related Work

Machine reading comprehension has been witnessed rapid progress in recent
years [8,22,26–29,31,33,35]. Thanks to various released MRC datasets, we can
evaluate MRC models in different languages. This work focuses on cloze-style
ones since the answers are single words or phrases instead of text spans, which
could be error-prone when they turn out to be rare or OOV words that are not
recorded in the model vocabulary.

Recent advances for MRC could be mainly attributed to attention mecha-
nisms, including query-to-passage attention [7,14], attention-over-attention [5]
and self attention [30]. Different varieties and combinations have been proposed
for further improvements [8,25]. However, the fundamental part, word repre-
sentation, which proves to be quite important in this paper, has not aroused
much interest. To integrate the advantages of both word-level and character-
level embeddings, some researchers studied joint models for richer representation
learning where the common combination method is the concatenation. Seo et al.
[25] concatenated the character and word embedding and then fed the joint repre-
sentation to a two-layer Highway Network. FG reader in [32] used a fine-grained
gating mechanism to dynamically combine word-level and character-level rep-
resentations based on word property. However, this method is computationally
complex and requires extra labels such as NE and POS tags.

Not only for machine reading comprehension tasks, character embedding has
also benefited other natural language process tasks, such as word segmenta-
tion [2,3], machine translation [18,19], tagging [1,9,17] and language modeling
[21,23]. Notablely, Cai et al. [3] presented a greedy neural word segmenter where
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high-frequency word embeddings are attached to character embedding via aver-
age pooling while low-frequency words are represented as character embedding.
Experiments show this mechanism helps achieve state-of-the-art word segmen-
tation performance, which partially inspires our reader design.

3 Model

In this section, we will introduce our model architecture, which is consisted of a
fundamental word representation module and a gated attention learning module.

Fig. 1. Overview of the word representation module.

3.1 Word Representation Module

Figure 1 illustrates our word representation module. The input token sequence
is first encoded into embeddings. In the context of machine reading comprehen-
sion tasks, word only representation generalizes poorly due to the severe word
sparsity, especially for rare words. We adopt two methods to augment word
representations, namely, a short list filtering and character enhancement.

Actually, if all the words in the dataset are used to build the vocabulary,
the OOV words from the test set will not be well dealt with for inadequate
training. To handle this issue, we keep a short list L for specific words. If word
w is in L, the immediate word embedding ew is indexed from word lookup table
Mw ∈ R

d×s where s denotes the size (recorded words) of lookup table and
d denotes the embedding dimension. Otherwise, it will be represented as the
randomly initialized default word (denoted by a specific mark UNK). Note that
only the word embedding of the OOV words will be replaced by the vectors of
UNK (denoted by eu) while their character embedding ec will still be processed
using the original word. In this way, the OOV words could be tuned sufficiently
with expressive meaning after training.

In our experiments, the short list is determined according to the word fre-
quency. Concretely, we sort the vocabulary according to the word frequency
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from high to low. A frequency filter ratio γ is set to filter out the low-frequency
words (rare words) from the lookup table. For example, γ = 0.9 means the least
frequent 10% words are replaced with the default UNK notation.

Character-level embeddings have been widely used in lots of natural lan-
guage processing tasks and verified for the OOV and rare word representations.
Thus, we consider employing neural networks to compose word representations
from smaller units, i.e., character embedding [15,21], which results in a hybrid
mechanism for word representation with a better fine-grained consideration. For
a given word w, a joint embedding (JE) is to straightforwardly integrate word
embedding ew and character embedding ec.

JE(w) = ew ◦ ec

where ◦ denotes the joint operation. Specifically, we investigate concatenation
(concat), element-wise summation (sum) and element-wise multiplication (mul).
Thus, each passage P and query Q is represented as Rd×k matrix where d denotes
the dimension of word embedding and k is the number of words in the input.

Finally by combining the short list mechanism and character enhancement,
JE(w) can be rewritten as

JE(w) =
{
ew ◦ ec if w ∈ L
eu ◦ ec otherwise

The character embedding ec can be learned by two kinds of networks, recur-
rent neural network (RNN) or convolutional neural network (CNN)1.

RNN Based Embedding. The character embedding ec is generated by tak-
ing the final outputs of a bidirectional gated recurrent unit (GRU) [4] applied
to the vectors from a lookup table of characters in both forward and back-
ward directions. Characters w = {x1, x2, . . . , xl} of each word are vectorized
and successively fed to forward GRU and backward GRU to obtain the internal
features. The output for each input is the concatenation of the two vectors from
both directions:

←→
ht =

−→
ht ‖ ←−

ht where ht denotes the hidden states.
Then, the output of BiGRUs is passed to a fully connected layer to obtain

the a fixed-size vector for each word and we have ec = W
←→
ht + b.

CNN Based Embedding character sequence w = {x1, x2, . . . , xl} is embedded
into vectors M using a lookup table, which is taken as the inputs to the CNN, and
whose size is the input channel size of the CNN. Let Wj denote the Filter matrices
of width l, the substring vectors will be transformed to sequences cj(j ∈ [1, l]):

cj = [. . . ; tanh(Wj · M[i:i+l−1] + bj); . . .]

1 Empirical study shows the character embeddings obtained from these two networks
perform comparatively. To focus on the performance of character embedding, we
introduce the networks only for reproduction. Our reported results are based on
RNN based character embeddings.
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where [i : i+l−1] indexes the convolution window. A one-max-pooling operation
is adopted after convolution sj = max(cj). The character embedding is obtained
through concatenating all the mappings for those l filters.

ec = [s1 ⊕ · · · ⊕ sj ⊕ · · · ⊕ sl]

3.2 Attention Learning Module

To obtain the predicted answer, we first apply recurrent neural networks to
encode the passage and query. Concretely, we use BiGRUs to get contextual
representations of forward and backward directions for each word in the passage
and query and we have Gp and Gq, respectively.

Then we calculate the gated attention following [8] to obtain the probability
distribution of each word in the passage. For each word pi in Gp, we apply soft
attention to form a word-specific representation of the query qi ∈ Gq, and then
multiply the query representation with the passage word representation.

αi = softmax(G�
q pi)

βi = Gqαi

xi = pi � βi

where � denotes the element-wise product to model the interactions between pi
and qi. The passage contextual representation G̃p = {x1, x2, . . . , xk} is weighted
by query representation.

Inspired by [8], multi-layered attentive network tends to focus on different
aspects in the query and could help combine distinct pieces of information to
answer the query, we use K intermediate layers which stacks end to end to learn
the attentive representations. At each layer, the passage contextual represen-
tation G̃p is updated through above attention learning. Let qk denote the k-th
intermediate output of query contextual representation and GP represent the full
output of passage contextual representation G̃p. The probability of each word
w ∈ C in the passage as being the answer is predicted using a softmax layer over
the inner-product between qk and GP .

r = softmax((qk)�GP )

where vector p denotes the probability distribution over all the words in the
passage. Note that each word may occur several times in the passage. Thus,
the probabilities of each candidate word occurring in different positions of the
passage are added together for final prediction.

P (w|p, q) ∝
∑

i∈I(w,p)

ri

where I(w, p) denotes the set of positions that a particular word w occurs in the
passage p. The training objective is to maximize log P (A|p, q) where A is the
correct answer.
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Finally, the candidate word with the highest probability will be chosen as the
predicted answer. Unlike recent work employing complex attention mechanisms,
our attention mechanism is much more simple with comparable performance so
that we can focus on the effectiveness of our embedding strategies.

Table 2. Data statistics of PD, CFT and CMRC-2017.

PD CFT CMRC-2017

Train Valid Test Human Train Valid Test

# Query 870,710 3,000 3,000 1,953 354,295 2,000 3,000

Avg # words in docs 379 425 410 153 324 321 307

Avg # words in query 38 38 41 20 27 19 23

# Vocabulary 248,160 94,352

4 Evaluation

4.1 Dataset and Settings

Based on three Chinese MRC datasets, namely People’s Daily (PD), Children
Fairy Tales (CFT) [7] and CMRC-2017 [6], we verify the effectiveness of our
model through a series of experiments2. Every dataset contains three parts, Pas-
sage, Query and Answer. The Passage is a story formed by multiple sentences,
and the Query is one sentence selected by human or machine, of which one
word is replaced by a placeholder, and the Answer is exactly the original word
to be filled in. The data statistics is shown in Table 2. The difference between
the three Chinese datasets and the current cloze-style English MRC datasets
including Daily Mail, CBT and CNN [10] is that the former does not provide
candidate answers. For the sake of simplicity, words from the whole passage are
considered as candidates.

Besides, for the test of generalization ability in multi-lingual case, we use
the Children’s Book Test (CBT) dataset [11]. We only consider cases of which
the answer is either a NE or common noun (CN). These two subsets are more
challenging because the answers may be rare words.

For fare comparisons, we use the same model setting in this paper. We ran-
domly initialize the 100d character embeddings with the uniformed distribution
in the interval [−0:05, 0:05]. We use word2vec [20] toolkit to pre-train 200d word
embeddings on Wikipedia corpus3, and randomly initialize the OOV words. For
both the word and character representation, the GRU hidden units are 128. For
2 In the test set of CMRC-2017 and human evaluation test set (Test-human) of CFT,

questions are further processed by human and the pattern of them may not be in
accordance with the auto-generated questions, so it may be harder for machine to
answer.

3 https://dumps.wikimedia.org/.

https://dumps.wikimedia.org/
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optimization, we use stochastic gradient descent with ADAM updates [16]. The
initial learning rate is 0.001, and after the second epoch, it is halved every epoch.
The batch size is 64. To stabilize GRU training, we use gradient clipping with a
threshold of 10. Throughout all experiments, we use three attention layers.

Table 3. Accuracy on PD and CFT datasets. All the results except ours are from [7].

Model Strategy PD CFT

Valid Test Test-human

AS Reader - 64.1 67.2 33.1

GA Reader - 64.1 65.2 35.7

CAS Reader - 65.2 68.1 35.0

CAW Reader concat 64.2 65.3 37.2

sum 65.0 68.1 38.7

mul 69.4 70.5 39.7

4.2 Results

PD & CFT. Table 3 shows the results on PD and CFT datasets. With improve-
ments of 2.4% on PD and 4.7% on CFT datasets respectively, our CAW Reader
model significantly outperforms the CAS Reader in all types of testing. Since
the CFT dataset contains no training set, we use PD training set to train the
corresponding model. It is harder for machine to answer because the test set
of CFT dataset is further processed by human experts, and the pattern quite
differs from PD dataset. We can learn from the results that our model works
effectively for out-of-domain learning, although PD and CFT datasets belong to
quite different domains.

CMRC-2017. Table 4 shows the results4. Our CAW Reader (mul) not only
obtains 7.27% improvements compared with the baseline Attention Sum Reader
(AS Reader) on the test set, but also outperforms all other single models. The
best result on the valid set is from WHU, but their result on test set is lower than
ours by 1.97%, indicating our model has a satisfactory generalization ability.

We also compare different CAW strategies for word and character embed-
dings. We can see from the results that the CAW Reader (mul) significantly
outperforms all the other three cases, word embedding only, concatenation and
summation, and especially obtains 8.37% gains over the first one. This reveals

4 Note that the test set of CMRC-2017 and human evaluation test set (Test-human)
of CFT are harder for the machine to answer because the questions are further
processed manually and may not be in accordance with the pattern of auto-generated
questions.
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Table 4. Accuracy on CMRC-2017 dataset. Results marked with † are from the
latest official CMRC Leaderboard (http://www.hfl-tek.com/cmrc2017/leaderboard.
html). The best results are in bold face. WE is short for word embedding.

Model CMRC-2017

Valid Test

Random Guess † 1.65 1.67

Top Frequency † 14.85 14.07

AS Reader † 69.75 71.23

GA Reader 72.90 74.10

SJTU BCMI-NLP † 76.15 77.73

6ESTATES PTE LTD † 75.85 74.73

Xinktech † 77.15 77.53

Ludong University † 74.75 75.07

ECNU † 77.95 77.40

WHU † 78.20 76.53

CAW Reader (WE only) 69.70 70.13

CAW Reader (concat) 71.55 72.03

CAW Reader (sum) 72.90 74.07

CAW Reader (mul) 77.95 78.50

that compared with concatenation and sum operation, the element-wise multi-
plication might be more informative, because it introduces a similar mechanism
to endow character-aware attention over the word embedding. On the other
hand, too high dimension caused by concatenation operation may lead to seri-
ous over-fitting issues5, and sum operation is too simple to prevent from detailed
information losing.

CBT. The results on CBT are shown in Table 5. Our model outperforms most of
the previous public works. Compared with GA Reader with word and character
embedding concatenation, i.e., the original model of our CAW Reader, our model
with the character augmented word embedding has 2.4% gains on the CBT-NE
test set. FG Reader adopts neural gates to combine word-level and character-level
representations and adds extra features including NE, POS and word frequency,
but our model also achieves comparable performance with it. This results on both
languages show that our CAW Reader is not limited to dealing with Chinese but
also for other languages.

5 For the best concat and mul model, the training/validation accuracies are
97.66%/71.55, 96.88%/77.95%, respectively.

http://www.hfl-tek.com/cmrc2017/leaderboard.html
http://www.hfl-tek.com/cmrc2017/leaderboard.html
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Table 5. Accuracy on CBT dataset. Results marked with ‡ are of previously published
works [7,8,32].

Model CBT-NE CBT-CN

Valid Test Valid Test

Human ‡ - 81.6 - 81.6

LSTMs ‡ 51.2 41.8 62.6 56.0

MemNets ‡ 70.4 66.6 64.2 63.0

AS Reader ‡ 73.8 68.6 68.8 63.4

Iterative Attentive Reader ‡ 75.2 68.2 72.1 69.2

EpiReader ‡ 75.3 69.7 71.5 67.4

AoA Reader ‡ 77.8 72.0 72.2 69.4

NSE ‡ 78.2 73.2 74.3 71.9

GA Reader ‡ 74.9 69.0 69.0 63.9

GA word char concat ‡ 76.8 72.5 73.1 69.6

GA scalar gate ‡ 78.1 72.6 72.4 69.1

GA fine-grained gate ‡ 78.9 74.6 72.3 70.8

FG Reader ‡ 79.1 75.0 75.3 72.0

CAW Reader 78.4 74.9 74.8 71.5

5 Analysis

We conduct quantitative study to investigate how the short list influence the
model performance on the filter ratio from [0.1, 0.2, . . . , 1]. Figure 2 shows the
results on the CMRC-2017 dataset. Our CAW reader achieves the best accuracy
when γ = 0.9. It indicates that it is not optimal to build the vocabulary among
the whole training set, and we can reduce the frequency filter ratio properly to

Fig. 2. Quantitative study on the influence of the short list.
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promote the accuracy. In fact, training the model on the whole vocabulary may
lead to over-fitting problems. Besides, improper initialization of the rare words
may also bias the whole word representations. As a result, without a proper
OOV representation mechanism, it is hard for a model to deal with OOV words
from test sets precisely.

6 Conclusion

This paper surveys multiple embedding enhancement strategies and proposes
an effective embedding architecture by attending character representations to
word embedding with a short list to enhance the simple baseline for the read-
ing comprehension task. Our evaluations show that the intensified embeddings
can help our model achieve state-of-the-art performance on multiple large-scale
benchmark datasets. Different from most existing works that focus on either
complex attention architectures or manual features, our model is more simple
but effective. Though this paper is limited to the empirical verification on MRC
tasks, we believe that the improved word representation may also benefit other
tasks as well.
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