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Abstract. This paper tackles the task of event detection, which involves
identifying and categorizing the events. Currently event detection remains a
challenging task due to the difficulty at encoding the event semantics in com-
plicate contexts. The core semantics of an event may derive from its trigger and
arguments. However, most of previous studies failed to capture the argument
semantics in event detection. To address this issue, this paper first provides a
rule-based method to predict candidate arguments on the event types of possi-
bilities, and then proposes a recurrent neural network model RNN-ARG with the
attention mechanism for event detection to capture meaningful semantic regu-
larities form these predicted candidate arguments. The experimental results on
the ACE 2005 English corpus show that our approach achieves competitive
results compared with previous work.
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1 Introduction

Event extraction is divided into two subtasks, event detection (or trigger extraction) and
argument extraction. The former focuses on identifying event triggers and categorizing
their event types, while the latter aims to extract various arguments of a specific event
type and assign them roles. Commonly, event triggers are single verbs or nominal-
izations that evoke some real-world events, while event arguments are composed of
entity instances and play a certain role in an event. For example, in the sentence “He
died in the wave of kidnappings in Iraq”, event detection should recognize the token
“died” as the trigger of the event type died and argument extraction should identify the
entities “He” and “Iraq” as the arguments of this died event, and assign them the roles
Victim and Place, respectively. This paper focuses on event detection because it is still
the bottleneck of event extraction for its low performance.

Pipeline models are widely used in previous studies (Liao and Grishman [1]; Hong
et al. [2]), where argument extraction is the subsequent stage of event detection.
Therefore, argument information cannot be applied to event detection directly. How-
ever, event arguments are very effective for event detection. Take the following two
sentences as examples:
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S1: Iraqis have fired sand missiles in this war.
S2: MSNBC has fired Phil Donahue.

The sentences S1 and S2 have the same trigger word “fired”. With the argument
information, it is easy to identify S1 as an Attack event due to the entity “missiles”
(Weapon) and S2 as an End-Position event due to the entity “Phil Donahue” (Person).

Unfortunately, during the stage of event detection, we do not know which entities
act as the arguments of events. Most previous methods (e.g., Ji and Grishman [3]; Liao
and Grishman [1]; Hong et al. [2]) approximatively used the either syntactically or
physically nearest entities to the trigger as argument features. However, many argu-
ments are far from their triggers in either syntactically or physically distance. Besides,
neural network models (Nguyen and Grishman [4, 5], Chen et al. [6]; Sha et al. [7])
were applied to event detection, most of them focused on sequence and chunk infor-
mation from specific contexts, ignoring the effect of argument information.

Arguments are capable of providing significant clues to event detection, how to
provide accurate argument information to event detection is vital to the performance of
event detection. To tackle this issue, we first propose a method to predict candidate
arguments on the event types of possibilities and then apply them to a recurrent neural
network to detect events. The experimental results on the ACE 20051 English dataset
show that our model outperforms the state-of-the-art baselines.

2 Related Work

Various methods have been proposed for event detection. Early research has primarily
focused on local-sentence representations, such as the lexical features (e.g., full word,
POS), syntactic features (e.g., dependency features) and external knowledge features
(WordNet) (Ahn [8]). Currently, global inference and joint model are widely used in
event detection. Ji and Grishman [3] combined global evidence from related documents
with local decisions. Gupta and Ji [9], Liao and Grishman [1] and Hong et al. [2]
proposed cross-event and cross-entity inference for the event extraction task.

Representation-based approaches have been introduced into event detection very
recently, which represent candidate event mentions by embeddings and fed them into
neural networks (Chen et al. [6]; Nguyen and Grishman [4, 5]). Furthermore, Nguyen
et al. [10] employed bidirectional RNN, which could jointly extract event trigger and
arguments. However, joint model only makes remarkable improvements to argument
extraction, but insignificant to event detection. Sha et al. [7] employed a dependency
bridge recurrent neural network (dbRNN) for event extraction, which simultaneously
applying tree structure and sequence structure in RNN to capture sequence and syntax
information from specific context. Unfortunately, it totally ignored importance of
arguments for event detection. Liu et al. [11] proposed a three-layer Artificial Neural
Networks (ANNs) model on annotated arguments and the words around them to model

1 https://catalog.ldc.upenn.edu/LDC2006T06.
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the event detection task. It exploits argument information explicitly for event detection
via supervised attention mechanisms, which construct gold attention for each trigger
candidate based on annotated arguments in the training procedure.

3 Approach

We first propose a rule-based method to predict candidate arguments and then intro-
duce RNN-ARG (Recurrent Neural Networks with Arguments) to detect events. In our
model, we incorporate a Bi-LSTM (Bi-directional Long Short-Term Memory) to model
the preceding and following information of a word and use another Bi-LSTM model
with the attention mechanism to learn the representation of trigger and arguments.

3.1 Argument Prediction

When we cannot recognize event type from the semantics of trigger directly, it is very
important to consider argument semantics. Most of previous studies adopted the syn-
tactically or physically nearest entities to the trigger to represent argument semantics.
Due to upstream errors from the syntax parsing and the diversity of sentence expres-
sion, this method always introduces many pseudo arguments to vent detection and then
harms the precision. Another method is to consider all of the entities in the event
sentence as arguments. Obviously, it will introduce more pseudo arguments to event
detection. In this paper, we propose an event arguments prediction method to predict
based on the event types of possibilities and the corresponding entity types, which can
act as event roles following the definitions of event types.

In an event, the event type dominates its argument numbers and argument types,
i.e., roles. Hence, we must detect the event type firstly and then select candidate
arguments following the definition of the event type. Unfortunately, we do not know
the event type before event detection. However, we can enumerate all possible types of
a trigger word according to the annotation training data. In particular, 85.6% of the
trigger words in the training set only refer to one event type, 11.7% of them belong to
two distinct event types, and the rest (2.7%) has three or more event types.

Firstly, we enumerate all possible types of a candidate trigger w. If w does not
appear in the training set, we first calculate the similarities between w and each
annotated trigger in training set using WordNet similarity. Then we find a trigger tri in
the training set, who has the highest similarity with w. For instance, in S3 the candidate
trigger “discussed” does not appear in the training set and its most similar trigger is
“talked”.

S3: Chretien/PER said that he/PER and Bush/PER, who/PER had not spoken since
late February/TIME, discussed issues including Iraq/GPE and aid to Africa/GPE.

Secondly, we select top two high frequency event types of the candidate trigger
w (if w does not occur in the training set, we use tri to replace it) according to the
statistics on the training set. Because “discussed” does not occur in the training set, we
use its similar trigger “talked” to find event types. The trigger word “talked” belongs to
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the event type Phone-Write (60%) and Meet (40%). Hence, we choose the top two
event types Phone-Write and Meet for the trigger “discussed”.

Finally, we extract the candidate arguments on entity type matching. For an event
type i, we first extract all entity types, who can act as a role (we do not consider the role
Place and Time because they do not have obvious event type discrimination) of this
event type following the event definition, and store them to the list EntTypei. Then from
the list of the annotated entities in the event mention, we extract the entities whose
types belong to EntTypei, as candidate arguments. For example, the event type Phone-
Write only has one role Entity, which can fill entities whose type are PER/ORG. Hence
the list of entities [Chretien, he, Bush, who] can act as candidate arguments of Phone-
Write event, due to their entity types PER or ORG.

3.2 RNN-ARG Model

The RNN-ARG model is showed in Fig. 1. The model contains two Bi-LSTM neural
networks. Specifically, we first use a Bi-LSTM to encode semantics of each word with
its preceding and following information. Then we add an attention-based Bi-LSTM
neural network to capture the semantics of trigger and arguments.
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Fig. 1. The architecture of the model RNN-ARG (here the trigger candidate is “died”)
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• Bi-LSTM

In the sentence encoding phase, we take all the words of the whole sentence as the
input and each token wi into a real-valued vector xi using the concatenation of the
following two vectors:

(1) Word Embedding Table: Word embeddings are able to capture the meaningful
semantic resularities (Bengio et al. [12]) and we train the word embeddings using
Skip-Gram2 (Mikolov et al. [13]) algorithm on the NYT corpus3.

(2) Entity Type Embedding Table: Following existing work (Li et al. [14]; Chen
et al. [6]; Nguyen and Grishman [4]), we exploit the annotated entity information
as additional features. We randomly initialize embedding vectors for each entity
type (including “None” which refers to an undefined entity type) and update it in
the training procedure.

The transformation from the token wi to the vector xi essentially converts the input
sentence W into a sequence of real-valued vectors X ¼ x1; x2; . . .; xnð Þ, to be used by
recurrent neural networks to learn a more effective representation.

At each step t, the LSTM accepts current input xt and previous hidden state ht-1 to
compute hidden state. We run LSTMF from the beginning to the end of sequence, and
run LSTMB from the end to the beginning of the sequence, while producing sequences

of vectors for forward propagation ~ht ¼ LSTMF xt;~ht�1
� �

and another for the back-

ward propagation h
 
t ¼ LSTMB xt; h

(

tþ 1

� �
respectively. Afterwards we concatenate the

vectors ht ¼ ~ht; h
 
t

h i
for each time step, and ht is reduced into a single vector as the

current state. The LSTM holds a state representative as a continuous vector passed to
the subsequent time step, and it is capable of modeling long-range dependencies due to
its gated memory. Afterwards, we concatenate of the hidden states fv of the LSTMF and
bv of the LSTMB as the final output of Bi-LSTM, instead of averaging the last hidden
vectors of the LSTMF and LSTMB.

• Bi-LSTM with Attention

Different from sentence encoding which used the entire sentence as input of Bi-
LSTM. In this encoding phase, we take the candidate trigger and its predicted arguments
as the input of an event. We use w to denote the current candidate trigger, [a1, a2,…, an]
to denote the candidate arguments/entities in the list, which is extracted by argument
prediction method, and [e1, e2, …, en] to denote the entity types of the candidate
arguments in the list. The element at position i of the input sequence is resolved by a
vector vi as follows:

vi ¼ w� ai � ei ð1Þ

2 https://code.google.com/p/word2vec/.
3 https://catalog.ldc.upenn.edu/LDC2008T19.
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where ⊕ is the concatenation operator. Note that, both w, ai and ei are originally in
symbolic representation. Before entering the recurrent neural network, we transform
them into real-valued vector by two look-up tables, Word Embedding Table and Entity
Type Embedding Table. For the recurrent setup, we use a layer of LSTM networks in a
bidirectional manner. The forward and backward LSTMs traverse the sequence vi,

producing sequences of vectors ~ht and h
 
t respectively. Then the output at time t is

ht ¼ ~ht; h
 
t

h i
. Finally, this model acquires weighted sum over ht by using attention, and

calculates the final vectors of the argument semantics. The attention mechanism lets the
model decide the importance of each predict argument by weighing them when con-
structing the representation of the sequence. The attention layer contains the trainable
vector x (of the same dimensionality as vectors ht) which is used to dynamically
produce a weight vector a over time steps t as follows.

a ¼ softmaxðxTtanh Hð ÞÞ ð2Þ

where H is a matrix consisting of vectors ht. The output layer r is the weighted sum of
vectors in H:

r ¼ HaT ð3Þ

This representation vector r obtained from the attention layer is a high-level
encoding of the trigger and arguments, which is used as input to the final softmax layer
for the classification.

• Final Classification

Finally, we concatenate the sequence feature bv and f v which are learned from the
Bi-LSTM, and argument semantic r, which is the output of attention based Bi-LSTM,
as a single vector F = [bv, fv, r]. To compute the confidence of each event type, the
feature vector F �R4d , where d is the dimension of hidden state vector, is fed into a
classifier. We exploit a softmax approach to identify trigger candidates and classify
each trigger candidate as a specific event type as follows.

O ¼ WsFþ bs ð4Þ

where Ws �R
n� 4dð Þ is the transformation matrix and O �Rn is the final output of the

network, n is equal to the number of the event type including the “None” label for the
candidate trigger which do not belong to any event type. For regularization, we also
employ dropout (Kim [15]) on the penultimate layer.

3.3 Model Training

We define all of the parameters for the stage of trigger classification to be trained as
h ¼ E;ET; lf ; lb; rf ; rb;x;Ws; bsð Þ. Specifically, E is the word embedding, ET is the
embedding of the entity type, lf and lb are parameters of forward-LSTM and
backward-LSTM, rf and rb are parameters of another forward-LSTM and
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backward-LSTM. x is parameters of attention layer,Ws and bs are all of the parameters
of the output layer.

Given an input example x, the network with parameter h outputs the vector O,
where the i-th value oi of O is the confident score for classifying x to the i-th event
type. To obtain the conditional probability p ijx; hð Þ, we apply a softmax operation over
all event types:

p ijx; hð Þ ¼ eoiPm
k¼1 eok

ð5Þ

The model can be trained in an end-to-end way by back propagation, where the
objective function (loss function) is the cross-entropy loss. Given all of our (suppose T)
training examples (xi; yi), we can then define the negative log-likelihood loss function
as follows:

J hð Þ ¼ �
XT

i¼1 log pðy
ið Þjx ið Þ; hÞ ð6Þ

To compute the network parameter h, we train the model by stochastic gradient
descent over shuffled mini-batches with Adam (Kingma and Ba [16]) rule.

4 Experiments

We first introduce the experimental setting and then report the experimental results and
analysis.

4.1 Experimental Setting

We evaluate our model on the ACE 2005 English corpus and use the same data split and
annotated entity mention as the previous work (Liao and Grishman [1]; Hong et al. [2];
Li et al. [14]; Nguyen and Grishman [4]). This data split includes 40 newswire docu-
ments for the test set, 30 other documents for the development set and remaining 529
documents as the training set. Besides, we report the micro-average Precision (P), Recall
(R) and F1-score (F1), following the standards defined in (Ji and Grishman [3]). In our
evaluation, we extract all annotated trigger words in the training set and use them to find
the candidate triggers in the test set. Finally, 85.3% of trigger mentions are selected as
candidates.

Hyper-parameters are tuned on the development set. We set 300, 50 dimensions for
the word embeddings, the entity type embeddings, respectively. The hidden layer vector
dimension of LSTM is 128. To prevent overfitting, we inherit the values for the other
parameters from (Kim [15]), the dropout rate is set to 0.5, the mini-batch size is 50.

4.2 Experiments Results

We compare our model with the following baselines: (1) CNN (Chen et al. [6]), which
exploits a dynamic multi-pooling convolutional neural network for event detection;
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(2) JointM (Nguyen et al. [10]), which employs a bi-directional RNN to jointly extract
event triggers and arguments; (3) dbRNN (Lei et al. [7]), which proposes a novel
dependency bridge recurrent neural network (dbRNN) for event extraction; (4) ANN-
ATT (Liu et al. [11]), which leverages additional arguments information for event
detection.

Table 1 shows the results of the above five models and RNN-ARG achieves the
comparably F1-score. Compared with two simple neural networks models CNN and
JointM, our model RNN-ARG significantly improves the F1-score on event detection
(trigger classification) by 2.5 and 2.3, respectively. This verifies that combined neural
networks model is an appreciate model for the task of event extraction to capture more
event semantics, and the attention layer is effective for capture more valuable infor-
mation to extract an event when using recurrent neural networks.

Compared with dbRNN, which carry syntactically related information when
modeling each word by enhancing Bi-LSTM with dependency bridges. Our model only
used two simple recurrent neural networks, but it still performs comparably with the
enhanced model. In particularly, two models have achieved the same highest recall.
This result justifies the effectiveness of the argument semantics and our RNN-ARG to
detect events. With the additional predicted argument information, our RNN-ARG can
learn more vital information from triggers, arguments and their combination.

Compared with ANN-ATT, which also introduces argument semantics to their
model, RNN-ARG has achieved a very close F1-score on event detection, with the
higher recall (+3.5%). ANN-ATT used annotated arguments to train attention mech-
anism and it only captured existed combination of trigger and arguments, ignoring
other possible combination of trigger and arguments. However, our argument predic-
tion can enumerate all possible arguments and provide more argument semantic
information. Its disadvantage is it will introduce lots of pseudo arguments to our RNN-
ARG to reduce the precision.

4.3 Analysis

To analyze the effectiveness of the argument semantics, we conduct the following
models for comparison: (1) ALLENT, which regards all entities in the event mention

Table 1. Comparison of event detection models on ACE.

Model Trigger
identification

Trigger
classification

P R F P R F

CNN 80.4 67.7 73.5 75.6 63.6 69.1
JointM 68.5 75.7 71.9 66.0 73.0 69.3
dbRNN N/A N/A N/A 74.1 69.8 71.9
ANN-ATT N/A N/A N/A 78.0 66.3 71.7
RNN-ARG 75.3 71.5 73.4 73.6 69.8 71.6
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as candidate arguments; (2) ARG-1, which predicts arguments based on only top one
high frequency event type on the training set; (3) ARG-1 w/o Att, which refers to
ARG-1 without the attention mechanism; (4) RNN-ARG, our model which predicts
arguments based on top two high frequency event types on the training set; (5) ALL-
TYP, which predicts arguments based on all possible event types on the training set.

Table 2 shows the results of the above five models and RNN-ARG achieves the
highest F1-score. In the training set, most trigger words only refer to 1–2 distinct event
types. 85.6% of the trigger words refer to one event type, 11.7% of the trigger words
belong to two distinct event types. These figures also justify that ARG-1 can achieve a
relatively high F1-score.

The statistics on the trigger words belonging to two distinct event types shows that
63.1% of the distribution on event type is larger than 3:7. This figure ensures that RNN-
ARG outperforms ARG-1 in F1-score. Besides, the F1-score of ALLTYP is smaller
than that of RNN-ARG, because it will introduce many pseudo arguments to the model.

ALLENT takes all the entities in the sentence containing the event mention as
predicted arguments, and it obviously introduces many pseudo arguments to the model
and then lead to ambiguity. Thus, its F1-score is lower than those of the other four
models. Besides, ARG-1 outperforms ARG-1 w/o Att in F1-score and this result shows
that the attention mechanism can optimize the final output vector, and mine richer
semantic information from triggers and arguments.

Moreover, we also analyze the error results in our model RNN-ARG. Table 1
shows that 21.6% of pseudo instances are identified as event mentions by mistake. The
main reason is that a trigger word may have more than one tense (especially support
verbs, such as “sent”, “go”). Annotation ambiguity is also a problem and many event
mentions are not annotated in the ACE corpus. For example, the trigger word “shot” in
the sentence “she was shot herself”, which actually contains an Attack event and a Die
event, only be assigned one event type for the annotation rule: each trigger mention
only has one event type.

16.7% of trigger mentions in the test set belong to unknown trigger words (never
appear in the training set), these mentions cannot be identified due to our candidate
selection mechanism mentioned in Subsect 4.1. Otherwise, those nominal triggers

Table 2. Experimental results of the variants of RNN-ARG on ACE.

Model Trigger
identification

Trigger
classification

P R F P R F

ALLENT 77.9 67.4 72.3 74.8 64.8 69.4
ARG-1(w/o Att) 78.5 67.6 72.6 76.2 65.3 70.3
ARG-1 75.2 71.0 73.1 72.8 68.7 70.7
RNN-ARG 75.3 71.5 73.4 73.6 69.8 71.6
ALLTYP 77.9 68.5 72.9 75.4 66.4 70.6
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(5.8%) (such as “tours” and “missions”) are hard to be recognized, because they lack
enough event arguments to indicate their event type. Finally, some trigger words may
belong to more than one event type, and they are easy to be identified wrongly.

5 Conclusion

Arguments are capable of providing significant clues to event detection. This paper
proposes a novel RNN-ARG model with the attention mechanism and predicted
arguments to detect events. The experimental results show the effectiveness of our
model. Our future work will focus on extracting accurate arguments and giving
effective representation to detect events.
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