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Abstract. Event coreference resolution is a challenging NLP task due to this
task needs to understand the semantics of events. Different with most previous
studies used probability-based or graph-based models, this paper introduces a
novel neural network, MDAN (Multiple Decomposable Attention Networks), to
resolve document-level event coreference from different views, i.e., event
mention, event arguments and trigger context. Moreover, it applies a document-
level global inference mechanism to further resolve the coreference chains. The
experimental results on two popular datasets ACE and TAC-KBP illustrate that
our model outperforms the two state-of-the-art baselines.
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1 Introduction

Event coreference resolution is vital for many NLP applications, such as topic detection
(Allan et al. [1]), information Extraction (Li et al. [2]) and question answering (Nar-
ayanan and Harabagiu [3]). It is to determine which event mentions in texts refer to the
same real-world event and then cluster them to a unique coreferential event chain. Take
the following two event mentions as samples:

S1: A Cuban patrol boat with four heavily armed men landed on American shores.
S2: These bozos let four armed Cubans land on our shores.

The event mention in S1, whose event trigger is “landed”, and the mention in S2
with trigger “land” refer to the same real-world Movement event, and are coreferential
event mentions.

This paper focuses on document-level event coreference resolution. Document-
level event coreference chains are challenging to resolve. Sometimes, coreferential
event mentions in the same document can look very dissimilar (“killed/VB” and
“murder/NN”), have event arguments partially or entirely omitted, or appear in distinct
contexts compared to their antecedent event mentions, partially to avoid repetitions.

To capture the semantic information hiding in event trigger, event argument and the
structure among the trigger and its arguments, this paper introduces a novel neural
network, MDAN (Multiple Decomposable Attention Network) (Parikh et al. [4]), to
resolve document-level event coreference from different views, i.e., event mention,
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event arguments and trigger context. This model can capture the different features from
different views to better represent the event semantics. To resolve conflicts between
different event mention pairs, this paper applies a document-level global inference
mechanism to further resolve the coreference chains. The experimental results illustrate
that our model outperforms the two state-of-the-art baselines on two popular datasets,
the ACE 2005 corpus and the TAC KBP 2015 corpus. The contributions of this paper
are as follows:

It constructs a novel neural network model MDAN for document-level event
coreference resolution to capture different event semantics from multiple views.

It introduces event arguments to MDAN to better represent event semantics.
It applies a document-level global inference mechanism to further resolve the

coreference chains.
The rest of this paper is organized as follows. Section 2 overviews the related work.

Section 3 describes our MDAN model for event coreference resolution. Section 4
evaluates our approach and shows its effectiveness over two baselines. Section 5
concludes the paper with future work.

2 Related Work

Event coreference is much less studied in comparison to the large number of work on
entity coreference. The studies on event coreference resolution are usually divided into
within-document level and cross-document level.

Early work on document-level event coreference resolution mostly built on insights
gained from the entity coreference literature (Cybulska and Vossen [5], Bejan and
Harabagiu [6], Ng and Cardie [7]). Recent approaches focused on exploiting event
specific structure and resolution model. Chen and Ji [8] modeled event coreference
resolution as a spectral graph clustering problem that optimizes the normalized-cut
criterion. Liu et al. [9] introduced a rich-features method with a large amount of
features for propagating information between events and their arguments. Lu et al. [10]
proposed a joint inference model based Markov logic networks to correct the mistakes
from the pairwise event coreference resolver. Currently, neural networks are widely
used in many NLP applications. To our knowledge, there is only one study employed
neural networks for document-level event coreference. Krause et al. [11] introduced the
Convolutional Neural Network (CNN) to event coreference. It is divided into two parts.
The first part gives a representation for a single event mention and the second part is
fed with two such event mention representations plus a number of pairwise features for
the input event-mention pair, and calculates a coreference score.

3 MDAN for Event Coreference Resolution

The architecture of the model MDAN for event coreference resolution is shown in
Fig. 1 and our model MDAN contains four parts, i.e., multi-similarity module, pairwise
module, classifier module and global inference module.

Employing Multiple Decomposable Attention Networks 247



Two event mentions are coreferential when they are similar in tokens, event
structures, triggers, arguments, context of trigger, etc. The multi-similarity module first
compute the similarity vectors of two event mentions from multiple views (i.e., event
mention view, argument view and trigger context view), and then concatenate them
into a vector to represent their final similarity. The advantage of multi-similarity
module is that it can capture different semantic information from different views to
represent different similarities of an event pair. The details of a single similarity module
are shown in Fig. 2. Inspired by Parikh et al. [4], we introduce Decomposable
Attention Network (DAN) as our similarity module. DAN outperforms several simi-
larity models in our experiments, such as Siamese CNN Network, etc. Its advantage is
that the soft attention in DAN can capture important hiding features and avoid noise.
This similarity module containing the soft attention is suitable to learn the similarity of
two event mentions in our experiments.

The pairwise module fed with pairwise features between two event mentions and
maps them to a vector. Pairwise features reveal the similarities on various kind attri-
butes (e.g., trigger and event type) of event mentions. These attributes can be regarded
as the auxiliary of the multi-similarity module. Both the multi-similarity module and
the pairwise module are the kernel components of MDAN, and we use them to capture
the hidden features inside event mention.

The classifier module is to classify an event mention pair to coreference or not. The
input of this module is the combination of the event similarity vector from the multi-
similarity module and the pairwise vector from the pairwise module.

The global inference module is to optimize the results from the classifier module to
form a more complete event chain, based on the merging and cutting rules.

In our model MDAN, the inputs of the multi-similarity module and the pairwise
module are the extracted features from an event mention pair, while the output of the
classifier module is the confidence score that two event mentions are coreferential. The
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input of the global inference module are all the confidence scores of two event men-
tions in a document and its output is the optimized results of event chains.

3.1 Input

Following Krause et al. [11], the input of the model MDAN is two event mentions e1
and e2 with annotated trigger, event type/subtype, event arguments, and event attri-
butes (e.g., modality), etc. We extract the features from these two event mentions and
the features used in Krause et al. [11] are employed in our model as follows.

Event features: (Multi-similarity module)

• Sentential features: words in sentences (event mentions) (F1); relative positions of
words based on triggers (e.g., that of the word “shores” in S1 is 3) (F2)

• Context features: context around trigger (the windows size is set to 5, e.g., “with
four heavily armed men landed on American shores” in S1) (F3).

Pairwise features: (Pairwise module)

• Event type and subtype is the same or not (F4)
• Distance between event mentions (numeric values) (F5)
• Event modality is the same or not (F6)
• Overlap in arguments or not (F7).

To further capture the semantic information in sentence structures and arguments
(Haghighi and Klein [12]), we provide the additional features as follows:

Event features: (Multi-similarity module)

• Sentential features: POS of words in sentences (event mentions) tagged by NLTK
tools (F8)

• Argument features: arguments in sentences (F9) and their entity types (F10).

For each event mention, we first embed the features (F1–F3 and F8–F10) in the sets
of the sentential features, context features and argument features to six vectors, where
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the features F1, F3 and F9 are embedded by word2vec and the others are embedded
randomly. Then we concatenate the vectors from F1, F2 and F8 into the vector Sen, the
vectors from F9 and F10 into the vector Arg. Besides, the vector Cont is the vector
from F3. In Fig. 1, Sen1, Cont1 and Arg1 are the vectors of the sentential features,
context features and argument features for event mention e1, while Sen2, Cont2 and
Arg2 are the vectors for event mention e2.

3.2 Multi-similarity Module

Multi-similarity module contains three DAN-based similarity models showed in Fig. 2.
Each DAN-based similarity model compute the similarity between two event mentions
e1 and e2 on three different views, i.e., sentence, context and argument views, by using
pairwise vector Sen1-Sen2, Cont1-Con2 and Arg1-Arg2 as input, respectively.

In each similarity model, we first employ the attention mechanism to calculate the
weights of input vectors X1 and X2 (i.e., Sen1-Sen2, or Cont1-Con2, or Arg1-Arg2),
for extracting important information from two given event mentions. Our soft align-
ment layer computes the attention weights wij as the similarity of words in the
tuple <X1, X2> as Eq. (1) where function F is a feed-forward neural network, and X1i
is the vector of ith word in the vector X1:

wij ¼ F X1ið ÞT �F X2j
� � ð1Þ

Then we use softmax to compute the weight of vectors. Vectors X1 and X2 are
normalized as V1 and V2 as follows, where ‘X1 and ‘X2 is the length of X1 and X2, V1i
is ith word of X after adding attention weight values:

V1i ¼
X‘X1

j¼1

exp wij
� �

P‘X1
k¼1 exp wikð ÞX1j 8i 2 1; . . .; ‘X1½ �

V2i ¼
X‘X2

j¼1

exp wij
� �

P‘X2
k¼1 exp wikð ÞX2j 8i 2 1; . . .; ‘X2½ �

ð2Þ

Equation (3), which can be viewed as a noisy channel, is to compute the cosine
distance of two vectors, so we can get the similarity scores of two vectors S1 and S2 as
follows:

S1 ¼ sim X2;V1ð Þ ¼ X2T � V1; S2 ¼ sim X1;V2ð Þ ¼ X1T � V2 ð3Þ

Then we concatenate X2, V1 and S1 into a comparison vector CV1, and the same
for comparison vector CV2:

CV1 ¼ X2;V1; S1½ �; CV2 ¼ X1;V2; S2½ � ð4Þ

Next, we use pooling to reduce the complexity of representation. Maximum
Pooling (MaxPool) and Averaging Pooling (AvgPool) are two main approaches of
pooling. However, AvgPool may weaken strong activation values, and MaxPool may
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lead to overfitting. So we compute both average pooling (i.e., PV1avg and PV2avg) and
max pooling (i.e., PV1max and PV2max), and concatenate all of them to produce the
vector Ve:

PV1avg ¼
X‘CV1

i¼1

CV1i
‘CV1

; PV1max ¼ max‘CV1i¼1 CV1i ð5Þ

PV2avg ¼
X‘CV2

j¼1

CV2j
‘CV2

; PV2max ¼ max‘CV2j¼1 CV2j ð6Þ

Ve ¼ PV1avg;PV1max;PV2avg;PV2max
� � ð7Þ

3.3 Pairwise Module

The pairwise module is to judge the similarity between two event mentions on the
pairwise features. This model is very simple. We first transfer the numeric values of to
the vector X3, and then feed them into a feed-forward network to get the vector Vp for
extracting features hiding in pairwise features.

3.4 Classifier Module

We first concatenate Ve from the multi-similarity module and Vp from the pairwise
model into the vector Vf to represent the final semantic relation between two event
mentions.

V f ¼ Ve;Vp
� � ð8Þ

The final vector Vf is fed into a final multilayer perceptron (MLP) classifier, which
has three hidden layers with RELU activation, as following:

Vh ¼ a Wh � V f þ b
� � ð9Þ

where a is the activation function, Wh and b are parameters. Finally, we can get the
coreference score with the output of sigmoid layer:

Score ¼ sigmoid Wout � Vh þ boutð Þ ð10Þ

The objective function of model is set as following:

ð11Þ

where h ¼ fWX1; WX2; WV1; WV2; WCV1; WCV2; We; Wp; W f ; Wh;Wout; boutg: To
prevent overfitting, we utilize dropout and batch normalization.
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3.5 Global Inference Module

To ensure consistent outputs on a document, we propose a document-level global
inference module to solve the conflicting decisions in MDAN. We transfer the pairwise
results to form coreference chains. The coreferential events are characterized as
reflexive, symmetric and transitive. We utilize the transitive property in coreferential
events following the merging and cutting rules.

Merging: if both event mention pairs (ei, ek) and (ek, ej) are coreferential, coreferential
relation must hold between ei and ej, with event mention ek as a bridge to link ei and ej.

Cutting: if event mention pairs (ei, ek) are coreferential and (ek, ej) are not corefer-
ential, the pair (ek, ej) are not coreferential. If this constraint is in conflict with the
merging rule, the merging rule is prior to this cutting rule.

To avoid the conflicts of the above four rules, we count the numbers of coreference
and not coreference judgements, respectively, and make final decisions with Eq. (12)
as follows.

argmaxx x � CR ei; ej
� �þ 1� xð Þ � CUR ei; ej

� �� � ð12Þ

where x is a binary indicator. If x equals to 1, the event mention pair (ei, ej) is
coreferential; otherwise, they are not coreferential. CR(ei, ej) and CUR(ei, ej) are the
count of the results Coref(ei, ej) and Uncoref(ei, ej) infer by above four rules.

4 Experiments

In this section, we first introduce the experimental setting and then evaluate our model
MDAN on two corpora to justify its effectiveness and report the experimental results.
Finally, we give the analysis on the experimental results.

4.1 Experimental Setting

In our experiments, we mainly evaluate our MDAN model on the ACE 2005 English
corpus, following most previous studies on document-level event coreference resolu-
tion. This corpus contains 599 documents in six genres. This corpus annotated events
with 8 event types and 33 event subtypes. In our evaluation, we use the same training
and test set as Krause et al. [11]1. Every event mention is paired with every event
mention in the text. Besides, we also report the results of our MDAN on another widely
used corpus, the TAC KBP 2015 English corpus which is annotated with event nuggets
that fall into 38 types and coreference relations between event mentions. Table 1 shows
the statistics on the above two corpora.

In the evaluation, we set the dimensions of the POS, entity type, and relative
position embeddings as 50 and k = 10−4, which parameters of embedding matrix are
randomly initialized. We initialize word embeddings via pre-trained embeddings of

1 https://git.io/vwEEP.
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GloVe and set the dimensions as d0 = 50. Besides, we employ mini-batch SGD
algorithm to optimize our models and the model training is run for 15 epochs, after
which the best model on the valid dataset is selected.

We compare all systems using four standard F1 metrics in previous work: a link-
level metric MUC, a mention-level metric B3, an entity-level metric CEAFe and an
average pairwise-positive and pairwise-negative F1-score metric BLANC. (Vilain et al.
[13]) We also use the average scores (AVG) of the above metrics as comparison metric.

4.2 Experimental Results

To evaluate the performance of our MDAN model on document-level event corefer-
ence resolution, we compare it with two strong baselines: a state-of-the-art classifier
model (Liu et al. [9]) with more than 100 features and a state-of-the-art neural network
model (Krause et al. [11]). Table 2 illustrates the performance comparison on three
models based on annotated event mentions.

The results in Table 2 show that our model MDAN outperforms two baselines on
all three metrics and their averages, with an average gain of 9.32 and 8.36 in F1-scores,
respectively. Compared to baseline Krause, our MDAN improves the F1-scores on
three metrics BLANC, B3 and MUC by 9.98, 1.76 and 13.36, respectively. These
results confirm that our decomposable attention network and the global inference
mechanism are better than their CNN model and rules on transitive closure.

We also evaluate our MDAN model on another popular event coreference corpus,
the TAC KBP 2015 English corpus. Table 3 shows the F1-scores of our MDAN and
the top system (TAC-TOP) [12] in the 2015 TAC KBP Event Nugget Evaluation Task.
Due to this corpus did not annotate argument tags, we use PractNLPTools2 to extract
event arguments automatically.

Table 1. Statistics on the ACE and TAC KBP corpora.

Corpus #Documents #Sentences #Event mentions # Event chains

ACE 2005 599 15494 5268 4046
TACKBP 2015 360 15824 12976 7415

Table 2. Performance of the model MDAN & competitors on ACE corpus.

System BLANC B3 MUC AVG
P R F1 P R F1 P R F1 F1

Liu 70.01 70.88 70.43 88.86 89.90 89.38 48.75 53.42 50.98 70.26
Krause 71.80 75.16 73.31 86.12 90.52 88.26 45.16 61.54 52.09 71.22
MDAN 80.87 86.28 83.29 89.34 90.71 90.02 65.69 65.21 65.45 79.58

2 https://github.com/biplab-iitb/practNLPTools.

Employing Multiple Decomposable Attention Networks 253

https://github.com/biplab-iitb/practNLPTools


Table 3 shows that our model MDAN outperforms TAC-TOP in all metrics and
this result further ensures the effectiveness of our MDAN. Compared with the work of
TAC-TOP (Mitamura et al. [14]), which used additional semantic resources and
additional annotated datasets, we did not use any external resources.

4.3 Analysis

Compared to the baselines, our improvements mainly derive from three aspects:
(1) argument information, (2) MDAN model and its attention mechanism, and
(3) global inference mechanism. Table 4 shows the performance when we remove the
argument information, or the attention mechanism, or the global inference mechanism
from MDAN, respectively.

If we remove the argument information from MDAN, Table 4 shows that the F1-
scores on the metrics BLANC, B3 and MUC are reduced −7.93, −1.43 and −4.36,
respectively. These results prove that argument information is helpful to identify event
mentions and their coreference, because event semantics not only derives from trigger
semantics, but entity semantics.

Table 4 also shows that the attention mechanism is helpful to prevent the inter-
ference from the uncorrelated features and improves the F1-scores on the metrics
BLANC, B3, and MUC significantly. The principle of our attention mechanism is to
weight different input information. Compared with MDAN w/o Opt, We found our
MDAN’s recall decreased, because the vectors with low attention weight values will be
ignored.

We also use the Krause’s rules to replace our global inference mechanism, and the
results are shown in Table 4 (MDAN w/o Opt). The results show that our global
inference mechanism outperforms Krause’s rules on all metrics. The reason is that our

Table 3. F1-scores of MDAN and top system (TAC-TOP) on the 2015 TAC-KBP event nugget
evaluation task. (Lu and Ng [15])

System BLANC B3 MUC CEAFe AVG

TAC-TOP 76.91 82.29 68.08 74.12 75.35
MDAN 76.97 82.36 69.88 76.65 76.46

Table 4. Performance of our MDAN without argument information (Arg)/attention mechanism
(Att)/global optimization method (Opt).

System BLANC B3 MUC AVG
P R F1 P R F1 P R F1 F1

MDAN 80.87 86.28 83.29 89.34 90.71 90.02 65.69 65.21 65.45 79.58
w/o Arg 73.66 77.44 75.36 88.2 88.98 88.59 61.31 60.86 61.09 75.01
w/o Att 64.61 80.51 67.91 73.12 92.76 81.78 45.37 74.63 56.43 68.7
w/o Opt 68.76 79.5 72.37 77.81 91.61 84.15 49.5 71.73 58.57 71.69
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global inference mechanism applies both merging and cutting rules to optimize the
results of the neural network model and then can balance the output results.

5 Conclusion

This paper introduces a novel neural network MDAN to resolve document-level event
coreference from different views. Moreover, it applies a document-level global infer-
ence mechanism to further resolve the coreference chains. The experimental results
illustrate that our model outperforms the two state-of-the-art baselines on two popular
datasets ACE and TAC-KBP. Our future work is to expand our model to cross-
document and multi-language event coreference resolution.
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