
Multi-turn Inference Matching Network
for Natural Language Inference

Chunhua Liu1, Shan Jiang1, Hainan Yu1, and Dong Yu1,2(B)

1 Beijing Language and Culture University, Beijing, China
chunhualiu596@gmail.com, jiangshan727@gmail.com, ericeryu@gmail.com,

yudong blcu@126.com
2 Beijing Advanced Innovation for Language Resources of BLCU, Beijing, China

Abstract. Natural Language Inference (NLI) is a fundamental and chal-
lenging task in Natural Language Processing (NLP). Most existing meth-
ods only apply one-pass inference process on a mixed matching feature,
which is a concatenation of different matching features between a premise
and a hypothesis. In this paper, we propose a new model called Multi-
turn Inference Matching Network (MIMN) to perform multi-turn infer-
ence on different matching features. In each turn, the model focuses on
one particular matching feature instead of the mixed matching feature.
To enhance the interaction between different matching features, a mem-
ory component is employed to store the history inference information.
The inference of each turn is performed on the current matching fea-
ture and the memory. We conduct experiments on three different NLI
datasets. The experimental results show that our model outperforms or
achieves the state-of-the-art performance on all the three datasets.
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1 Introduction

Natural Language Inference (NLI) is a crucial subtopic in Natural Language
Processing (NLP). Most studies treat NLI as a classification problem, aiming
at recognizing the relation types of hypothesis-premise sentence pairs, usually
including “Entailment”, “Contradiction” and “Neutral”.

NLI is also called Recognizing Textual Entailment (RTE) [7] in earlier works
and a lot of statistical-based [9] and rule-based approaches [19] are proposed
to solve the problem. In 2015, Bowman released the SNLI corpus [3] that pro-
vides more than 570 K hypothesis-premise sentence pairs. The large-scale data
of SNLI allows a Neural Network (NN) based model to perform on the NLI.
Since then, a variety of NN based models have been proposed, most of which
can be divided into two kinds of frameworks. The first one is based on “Sia-
mense” network [3,22]. It first applies either Recurrent Neural Network (RNN)
or Convolutional Neural Networks (CNN) to generates sentence representations
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on both premise and hypothesis, and then concatenate them for the final clas-
sification. The second one is called “matching-aggregation” network [33,36]. It
matches two sentences at word level, and then aggregates the matching results
to generate a fixed vector for prediction. Matching is implemented by several
functions based on element-wise operations [25,34]. Studies on SNLI show that
the second one performs better.

Though the second framework has made considerable success on the NLI
task, there are still some limitations. First, the inference on the mixed matching
feature only adopts one-pass process, which means some detailed information
would not be retrieved once missing. While the multi-turn inference can overcome
this deficiency and make better use of these matching features. Second, the mixed
matching feature only concatenates different matching features as the input for
aggregation. It lacks interaction among various matching features. Furthermore,
it treats all the matching features equally and cannot assign different importance
to different matching features.

In this paper, we propose the MIMN model to tackle these limitations. Our
model uses the matching features described in [5,33]. However, we do not simply
concatenate the features but introduce a multi-turn inference mechanism to infer
different matching features with a memory component iteratively. The merits of
MIMN are as follows:

• MIMN first matches two sentences from various perspectives to generate
different matching features and then aggregates these matching features by
multi-turn inference mechanism. During the multi-turn inference, each turn
focuses on one particular matching feature, which helps the model extract
the matching information adequately.

• MIMN establishes the contact between the current and previous matching fea-
tures through memory component. The memory component store the infer-
ence message of the previous turn. In this way, the inference information
flows.

We conduct experiments on three NLI datasets: SNLI [3], SCITAIL [12] and
MPE [14]. On the SNLI dataset, our single model achieves 88.3% in accuracy
and our ensemble model achieves 89.3% in terms of accuracy, which are both
comparable with the state-of-the-art results. Furthermore, our MIMN model
outperforms all previous works on both SCITAIL and MPE dataset. Especially,
the model gains substantial (8.9%) improvement on MPE dataset which contains
multiple premises. This result shows our model is expert in aggregating the
information of multiple premises.

2 Related Work

Early work on the NLI task mainly uses conventional statistical methods on
small-scale datasets [7,20]. Recently, the neural models on NLI are based
on large-scale datasets and can be categorized into two central frameworks:
(i) Siamense-based framework which focuses on building sentence embeddings
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separately and integrates the two sentence representations to make the final
prediction [4,17,22–24,29,32]; (ii) “matching-aggregation” framework which
uses various matching methods to get the interactive space of two input sen-
tences and then aggregates the matching results to dig for deep information
[8,10,15,16,21,25,27,28,32,36,38].

Our model is directly motivated by the approaches proposed by [5,34]. [34]
introduces the “matching-aggregation” framework to compare representations
between words and then aggregate their matching results for final decision.

[5] enhances the comparing approaches by adding element-wise subtraction
and element-wise multiplication, which further improve the performance on
SNLI. The previous work shows that matching layer is an essential component of
this framework and different matching methods can affect the final classification
result.

Various attention-based memory neural networks [37] have been explored to
solve the NLI problem [6,15,23]. [15] presents a model of deep fusion LSTMs
(DF-LSTMs) (Long Short-Term Memory) which utilizes a strong interaction
between text pairs in a recursive matching memory. [6] uses a memory network
to extend the LSTM architecture. [23] employs a variable sized memory model
to enrich the LSTM-based input encoding information. However, all the above
models are not specially designed for NLI and they all focus on input sentence
encoding.

Inspired by the previous work, we propose the MIMN model. We iteratively
update memory by feeding in different sequence matching features. We are the
first to apply memory mechanism to matching component for the NLI task. Our
experiment results on several datasets show that our MIMN model is significantly
better than the previous models.

3 Model

In this section, we describe our MIMN model, which consists of the following five
major components: encoding layer, attention layer, matching layer, multi-turn
inference layer and output layer. Figure 1 shows the architecture of our MIMN
model.

We represent each example of the NLI task as a triple (p, q, y), where
p = [p1, p2, · · · , plp ] is a given premise, q = [q1, q2, · · · , qlq ] is a given hypothesis,
pi and qj ∈ R

r are word embeddings of r-dimension. The true label y ∈ Y indi-
cates the logical relationship between the premise p and the hypothesis q, where
Y = {neutral, entailment, contradiction}. Our model aims to compute the con-
ditional probability Pr(y|p, q) and predict the label for examples in testing data
set by y∗ = argmaxy∈YPr(y|p, q).

3.1 Encoding Layer

In this paper, we utilize a bidirectional LSTM (BiLSTM) [11] as our encoder to
transform the word embeddings of premise and hypothesis to context vectors.
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Fig. 1. Architecture of MIMN Model. The matching layer outputs a matching sequence
by matching the context vectors with the aligned vectors (green and blue) based on
three matching functions. The multi-turn inference layer generates inference vectors by
aggregating the matching sequence over multi-turns. (Color figure online)

The premise and the hypothesis share the same weights of BiLSTM.

p̄i = BiLSTMenc(p, i), i ∈ [1, 2, · · · , lp] (1)
q̄j = BiLSTMenc(q, j), j ∈ [1, 2, · · · , lq] (2)

where the context vectors p̄i and q̄j are the concatenation of the forward and
backward hidden outputs of BiLSTM respectively. The outputs of the encoding
layer are the context vectors p ∈ R

lp×2d and q ∈ R
lq×2d, where d is the number

of hidden units of BiLSTMenc.

3.2 Attention Layer

On the NLI task, the relevant contexts between the premise and the hypothesis
are important clues for final classification. The relevant contexts can be acquired
by a soft-attention mechanism [2,18], which has been applied to a bunch of tasks
successfully. The alignments between a premise and a hypothesis are based on
a score matrix. There are three most commonly used methods to compute the
score matrix: linear combination, bilinear combination, and dot product. For
simplicity, we choose dot product in the following computation [25]. First, each
element in the score matrix is computed based on the context vectors of p̄i and
q̄j as follows:

eij = p̄Ti q̄j , (3)
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where p̄i and q̄j are computed in Eqs. (1) and (2), and eij is a scalar which
indicates how p̄i is related to q̄j .

Then, we compute the alignment vectors for each word in the premise and
the hypothesis as follows:

p̃i =
lq∑

j=1

exp(eij)∑ lq
t=1exp(eit)

q̄j , q̃j =
lp∑

i=1

exp(eij)∑ lp
t=1exp(etj)

p̄i, (4)

where p̃i ∈ R
2d is the weighted summaries of the hypothesis in terms of each

word in the premise. The same operation is applied to q̃j ∈ R
2d. The outputs

of this layer are p̃i ∈ R
lp×2d and q̃j ∈ R

lq×2d. For the context vectors p̄, the
relevant contexts in the hypothesis q̄ are represented in p̃. The same is applied
to q̄ and q̃.

3.3 Matching Layer

The goal of the matching layer is to match the context vectors p̄ and q̄ with
the corresponding aligned vectors p̃ and q̃ from multi-perspective to generate a
matching sequence.

In this layer, we match each context vector pi against each aligned vector
p̃i to capture richer semantic information. We design three effective matching
functions: fc, fs and fm to match two vectors [5,31,33]. Each matching function
takes the context vector p̄i (q̄j) and the aligned vector p̃i (q̃j) as inputs, then
matches the inputs by an feed-forward network based on a particular match-
ing operation and finally outputs a matching vector. The formulas of the three
matching functions fc, fs and fm are described in formulas (5)–(7). To avoid
repetition, we will only describe the application of these functions to p̄ and p̃.
The readers can infer these equations for q̄ and q̃.

uc
p,i = fc(p̄i, p̃i) = ReLU(W c([p̄i ; p̃i]) + bc), (5)

us
p,i = fs(p̄i, p̃i) = ReLU(W s(p̄i − p̃i]) + bs), (6)

um
p,i = fm(p̄i, p̃i) = ReLU(Wm(p̄i � p̃i]) + bm), (7)

where ; , −, and � represent concatenation, subtraction, and multiplication
respectively, W c ∈ R

4d×d, W s ∈ R
2d×d and Wm ∈ R

2d×d are weight param-
eters to be learned, and bc, bs, bm ∈ R

d are bias parameters to be learned. The
outputs of each matching function are uc

p,i, u
s
p,i, u

m
p,i ∈ R

d, which represent the
matching result from three perspectives respectively. After matching the context
vectors p̄ and the aligned vectors p̃ by fc, fs and fm, we can get three matching
features uc

p = {uc
p,i}lp1 , us

p = {us
p,i}lp1 and um

p = {um
p,i}lp1 .

The uc
p can be considered as a joint-feature of combing the context vectors

p̄ with aligned vectors p̃, which preserves all the information. And the us
p can

be seen as a diff-feature of the p̄ and p̃, which preserves the different parts and
removes the similar parts. And the um

p can be regarded as a sim-feature of p and
p̄, which emphasizes on the similar parts and neglects the different parts between
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p̄ and p̃. Each feature helps us focus on particular parts between the context vec-
tors and the aligned vectors. These matching features are vector representations
with low dimension, but containing high-order semantic information. To make
further use of these matching features, we collect them to generate a matching
sequence up.

up = [u1
p, u

2
p, u

3
p] = [uc

p, u
s
p, u

m
p ], (8)

where u1
p, u

2
p, u

3
p ∈ R

lp×d.
The output of this layer is the matching sequence up, which stores three

kinds of matching features. The order of the matching features in up is inspired
by the attention trajectory of human beings making inference on premise and
hypothesis. We process the matching sequence in turn in the multi-turn inference
layer. Intuitively, given a premise and a hypothesis, we will first read the original
sentences to find the relevant information. Next, it’s natural for us to combine
all the parts of the original information and the relevant information. Then we
move the attention to the different parts. Finally, we pay attention to the similar
parts.

3.4 Multi-turn Inference Layer

In this layer, we aim to acquire inference outputs by aggregating the informa-
tion in the matching sequence by multi-turn inference mechanism. We regard
the inference on the matching sequence as the multi-turn interaction among var-
ious matching features. In each turn, we process one matching feature instead of
all the matching features [5,8]. To enhance the information interaction between
matching features, a memory component is employed to store the inference infor-
mation of the previous turns. Then, the inference of each turn is based on the
current matching feature and the memory. Here, we utilize another BiLSTM for
the inference.

ckp,i = BiLSTMinf (Winf [uk
p,i;m

(k−1)
p,i ]), (9)

where ckp,i ∈ R
2d is an inference vector in the current turn, k = [1, 2, 3] is the

index current turn, i = [1, 2, 3, · · · , lp], m
(k−1)
p,i ∈ R

2d is a memory vector stores
the historical inference information, and Winf ∈ R

3d×d is used for dimension
reduction.

Then we update the memory by combining the current inference vector ckp,i

with the memory vector of last turn m
(k−1)i
p . An update gate is used to control

the ratio of current information and history information adaptively [35]. The
initial values of all the memory vectors are all zeros.

mk
p,i = g � ckp,i + (1 − g) � m

(k−1)
p,i ,

g = σ(Wg[ckp,i;m
(k−1)
p,i ] + bg), (10)
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where Wg ∈ R
4d×2d and bg ∈ R

2d are parameters to be learned, and σ is a sigmoid
function to compress the ratio between 0–1. Finally, we use the latest memory
matrix {m3i

p }lp1 as the inference output of premise minf
p . Then we calculate minf

q

in a similar way. The final outputs of this layer are minf
p and minf

q .

3.5 Output Layer

The final relationship judgment depends on the sentence embeddings of premise
and hypothesis. We convert minf

p and minf
q to sentence embeddings of premise

and hypothesis by max pooling and average pooling. Next, we concatenate the
two sentence embeddings to a fixed-length output vector. Then we feed the
output vector to a multilayer perceptron (MLP) classifier that includes a hidden
layer with tanh activation and a softmax layer to get the final prediction. The
model is trained end-to-end. We employ multi-class cross-entropy as the cost
function when training the model.

4 Experiment

4.1 Data

To verify the effectiveness of our model, we conduct experiments on three NLI
datasets. The basic information about the three datasets is shown in Table 1.

The large SNLI [3] corpus is served as a major benchmark for the NLI task.
The MPE corpus [14] is a newly released textual entailment dataset. Each pair in
MPE consists of four premises, one hypothesis, and one label, which is different
from the standard NLI datasets. Entailment relationship holds if the hypoth-
esis comes from the same image as the four premises. The SCITAIL [12] is a
dataset about science question answering. The premises are created from rele-
vant web sentences, while hypotheses are created from science questions and the
corresponding answer candidates.

Table 1. Basic information about the three NLI datasets. Sentence pairs is the total
examples of each dataset. N, E, and C indicate Neutral, Entailment, and Contradiction,
respectively.

Dataset Sentence pairs Train Valid Test Labels

SNLI 570k 549,367 9,842 9,824 N, E, C

MPE 10k 8,000 1,000 1,000 N, E, C

SCITAIL 24k 23,596 1,304 2,126 N, E

4.2 Models for Comparison

We compare our model with “matching-aggregation” related and attention-
based memory related models. In addition, to verify the effectiveness of these
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major components in our model, we design the following model variations for
comparison:

• ESIM: We choose the ESIM model as our baseline. It mixes all the matching
feature together in the matching layer and then infers the matching result in
a single-turn with a BiLSTM.

• 600D MIMN: This is our main model described in Sect. 3.
• 600D MIMN-memory: This model removes the memory component. The

motivation of this experiment is to verify whether the multiple turns infer-
ence can acquire more sufficient information than one-pass inference. In this
model, we process one matching feature in one iteration. The three matching
features are encoded by BiLSTMinf in multi-turns iteratively without previ-
ous memory information. The output of each iteration is concatenated to be
the final output of the multi-turn inference layer:

ckp,i = BiLSTMinf (Winf [uk
p,i]), (11)

minf
p = [{c1p,i}lp1 ; {c2p,i}lp1 ; {c3p,i}lp1 ]. (12)

• 600D MIMN-gate+ReLU: This model replaces the update gate in the
memory component with a ReLU layer. The motivation of this model is to
verify the effectiveness of update gate for combining current inference result
and previous memory. Then the Eq. (10) is changed into Eq. (13).

mk
p,i = ReLU(Wm[ckp,i;m

(k−1)
p,i ]). (13)

4.3 Experimental Settings

We implement our model with Tensorflow [1]. We initialize the word embed-
dings by the pre-trained embeddings of 300D GloVe 840B vectors [26]. The
word embeddings of the out-of-vocabulary words are randomly initialized. The
hidden units of BiLSTMenc and BiLSTMinf are 300 dimensions. All weights
are constrained by L2 regularization with the weight decay coefficient of 0.0003.
We also apply dropout [30] to all the layers with a dropout rate of 0.2. Batch
size is set to 32. The model is optimized with Adam [13] with an initial learn-
ing rate of 0.0005, the first momentum of 0.9 and the second of 0.999. The
word embeddings are fixed during all the training time. We use early-stopping
(patience = 10) based on the validation set accuracy. We use three turns on all
the datasets. The evaluation metric is the classification accuracy. To help dupli-
cate our results, we will release our source code at https://github.com/blcunlp/
RTE/tree/master/MIMN.

4.4 Experiments on SNLI

Experimental results of the current state-of-the-art models and three variants
of our model are listed in Table 2. The first group of models (1)–(3) are the
attention-based memory models on the NLI task. [15] uses external memory

https://github.com/blcunlp/RTE/tree/master/MIMN
https://github.com/blcunlp/RTE/tree/master/MIMN
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Table 2. Performance on SNLI

Model (memory related) Parameters Train(% acc) Test(% acc)

(1) 100D DF-LSTM [15] 320k 85.2 84.6

(2) 300D MMA-NSE with attention [23] 3.2m 86.9 85.4

(3) 450D LSTMN with deep attention fusion [6] 3.4m 88.5 86.3

Model (bidirectional inter-attention) Parameters Train (% acc) Test (% acc)

(4) 200D decomposable attention [25] 380k 89.5 86.3

(5) “compare-aggregate” [33] – 89.4 86.8

(6) BiMPM [36] 1.6m 90.9 87.5

(7) 600D ESIM [5] 4.3M 92.6 88.0

(8) 300D CAFE [32] 4.7m 89.8 88.5

(9) 450D DR-BiLSTM [8] 7.5m 94.1 88.5

(10) BiMPM (Ensemble) [36] 6.4m 93.2 88.8

(11) 450D DR-BiLSTM (Ensemble) [8] 45m 94.8 89.3

(12) 300D CAFE (Ensemble) [32] 17.5m 92.5 89.3

Human Performance (Estimated) – – 87.7

Model (this paper) Parameters Train (%acc) Test (%acc)

(13) 600D MIMN 5.3m 92.2 88.3

(14) 600D MIMN-memory 5.8m 87.5 87.5

(15) 600D MIMN-gate+ReLU 5.3m 90.7 88.2

(16) 600D MIMN (Ensemble ) – 92.5 89.3

to increase the capacity of LSTMs. [23] utilizes an encoding memory matrix
to maintain the input information. [6] extends the LSTM architecture with a
memory network to enhance the interaction between the current input and all
previous inputs.

The next group of models (4)–(12) belong to the “matching-aggregation”
framework with bidirectional inter-attention. Decomposable attention [25] first
applies the “matching-aggregation” on SNLI dataset explicitly. [33] enriches the
framework with several comparison functions. BiMPM [36] employs a multi-
perspective matching function to match the two sentences. ESIM [5] further
sublimates the framework by enhancing the matching tuples with element-wise
subtraction and element-wise multiplication. ESIM achieves 88.0% in accuracy
on the SNLI test set, which exceeds the human performance (87.7%) for the first
time. [9,32] both further improve the performance by taking the ESIM model
as a baseline model. The studies related to “matching-aggregation” but without
bidirectional interaction are not listed [27,34].

Motivated by the attention-based memory models and the bidirectional inter-
attention models, we propose the MIMN model. The last group of models (13)–
(16) are models described in this paper. Our single MIMN model obtains an
accuracy of 88.3% on SNLI test set, which is comparable with the current state-
of-the-art single models. The single MIMN model improves 0.3% on the test
set compared with ESIM, which shows that multi-turn inference based on the
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matching features and memory achieves better performance. From model (14),
we also observe that memory is generally beneficial, and the accuracy drops 0.8%
when the memory is removed. This finding proves that the interaction between
matching features is significantly important for the final classification. To explore
the way of updating memory, we replace the update gate in MIMN with a ReLU
layer to update the memory, which drops 0.1%.

To further improve the performance, an ensemble model MIMN is built for
comparison. We design the ensemble model by simply averaging the probabil-
ity distributions [36] of four MIMN models. Each of the models has the same
architecture but initialized by different seeds. Our ensemble model achieves the
state-of-the-art performance by obtains an accuracy of 89.3% on SNLI test set.

4.5 Experiments on MPE

The MPE dataset is a brand-new dataset for NLI with four premises, one hypoth-
esis, and one label. In order to maintain the same data format as other textual
entailment datasets (one premise, one hypothesis, and one label), we concatenate
the four premises as one premise.

Table 3 shows the results of our models along with the published models on
this dataset. LSTM is a conditional LSTM model used in [27]. WbW-Attention
aligns each word in the hypothesis with the premise. The state-of-the-art model
on MPE dataset is SE model proposed by [14], which makes four independent
predictions for each sentence pairs, and the final prediction is the summation
of four predictions. Compared with SE, our MIMN model obtains a dramatic
improvement (9.7%) on MPE dataset by achieving 66.0% in accuracy.

To compare with the bidirectional inter-attention model, we re-implement
the ESIM, which obtains 59.0% in accuracy. We observe that MIMN-memory
model achieves 61.6% in accuracy. This finding implies that inferring the match-
ing features by multi-turns works better than single turn. Compared with the
ESIM, our MIMN model increases 7.0% in accuracy. We further find that the
performance of MIMN achieves 77.9% and 73.1% in accuracy of entailment and
contradiction respectively, outperforming all previous models. From the accu-
racy distributions on N, E, and C in Table 3, we can see that the MIMN model
is good at dealing with entailment and contradiction while achieves only average
performance on neural.

Consequently, the experiment results show that our MIMN model achieves a
new state-of-the-art performance on MPE test set. All of our models perform well
on the entailment label, which reveals that our models can aggregate information
from multiple sentences for entailment judgment.

4.6 Experiments on SCITAIL

In this section, we study the effectiveness of our model on the SCITAIL dataset.
Table 4 presents the results of our models and the previous models on this
dataset. Apart from the results reported in the original paper [12]: Majority



Multi-turn Inference Matching Network for Natural Language Inference 141

Table 3. Performance on MPE. Models
with # are reported from [14].

Models Test

(%acc)

N E C

LSTM# 53.5 39.2 63.1 53.5

WbW-Attention# 53.9 30.2 61.3 66.5

SE# 56.3 30.6 48.3 71.2

ESIM (our imp) 59.0 34.1 68.3 65.1

MIMN 66.0 35.3 77.9 73.1

MIMN-memory 61.6 28.4 72.7 70.8

MIMN-gate+ReLU 64.8 37.5 77.9 69.1

Table 4. Performance on SCITAIL.
Models with � are reported from [12].

Models Valid

(%acc)

Test

(%acc)

Majority class� 63.3 60.3

decomposable attention� 75.4 72.3

ESIM� 70.5 70.6

Ngram� 65.0 70.6

DGEM� 79.6 77.3

CAFE [32] – 83.3

MIMN 84.7 84.0

MIMN-memory 81.3 82.2

MIMN-gate+ReLU 83.4 83.5

class, ngram, decomposable attention, ESIM and DGEM, we compare further
with the current state-of-the-art model CAFE [32].

We can see that the MIMN model achieves 84.0% in accuracy on SCI-
TAIL test set, which outperforms the CAFE by a margin of 0.5%. Moreover,
the MIMN-gate+ReLU model exceeds the CAFE slightly. The MIMN model
increases 13.3% in test accuracy compared with the ESIM, which again proves
that multi-turn inference is better than one-pass inference.

5 Conclusion

In this paper, we propose the MIMN model for NLI task. Our model intro-
duces a multi-turns inference mechanism to process multi-perspective matching
features. Furthermore, the model employs the memory mechanism to carry pro-
ceeding inference information. In each turn, the inference is based on the current
matching feature and previous memory. Experimental results on SNLI dataset
show that the MIMN model is on par with the state-of-the-art models. Moreover,
our model achieves new state-of-the-art results on the MPE and the SCITAL
datasets. Experimental results prove that the MIMN model can extract impor-
tant information from multiple premises for the final judgment. And the model
is good at handling the relationships of entailment and contradiction.
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MLCW 2005. LNCS (LNAI), vol. 3944, pp. 177–190. Springer, Heidelberg (2006).
https://doi.org/10.1007/11736790 9

8. Ghaeini, R., et al.: DR-BiLSTM: dependent reading bidirectional LSTM for natural
language inference. arXiv preprint arXiv:1802.05577 (2018)

9. Glickman, O., Dagan, I.: A probabilistic setting and lexical cooccurrence model for
textual entailment. In: Proceedings of the ACL Workshop on Empirical Modeling
of Semantic Equivalence and Entailment, EMSEE 2005 (2005)

10. Gong, Y., Luo, H., Zhang, J.: Natural language inference over interaction space.
In: ICLR (2018)

11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9,
1735–1780 (1997)

12. Khot, T., Sabharwal, A., Clark, P.: SciTail: a textual entailment dataset from
science question answering. In: AAAI (2018)

13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization.
CoRR,abs/1412.6980 (2014)

14. Lai, A., Bisk, Y., Hockenmaier, J.: Natural language inference from multiple
premises. In: IJCNLP, pp. 100–109 (2017)

15. Liu, P., Qiu, X., Chen, J., Huang, X.: Deep fusion LSTMs for text semantic match-
ing. In: ACL, pp. 1034–1043 (2016)

16. Liu, P., Qiu, X., Zhou, Y., Chen, J., Huang, X.: Modelling interaction of sentence
pair with coupled-LSTMs. In: EMNLP (2016)

17. Liu, Y., Sun, C., Lin, L., Wang, X.: Learning natural language inference using
bidirectional LSTM model and inner-attention. CoRR,abs/1605.09090 (2016)

18. Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neu-
ral machine translation. In: EMNLP, pp. 1412–1421 (2015)

19. MacCartney, B., Galley, M., Manning, C.D.: A phrase-based alignment model for
natural language inference. In: EMNLP 2008 (2008)

20. Marelli, M., Menini, S., Baroni, M., Bentivogli, L., Bernardi, R., Zamparelli, R.:
A sick cure for the evaluation of compositional distributional semantic models. In:
LREC (2014)

21. McCann, B., Bradbury, J., Xiong, C., Socher, R.: Learned in translation: contex-
tualized word vectors. arXiv preprint arXiv:1708.00107 (2017)

22. Mou, L., et al.: Natural language inference by tree-based convolution and heuristic
matching. In: ACL (2016)

23. Munkhdalai, T., Yu, H.: Neural semantic encoders. In: EACL, pp. 397–407 (2016)
24. Nie, Y., Bansal, M.: Shortcut-stacked sentence encoders for multi-domain inference.

In: RepEval@EMNLP (2017)
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