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Abstract. Knowledge graph completion aims to find new true links
between entities. In this paper, we consider an approach to embed a
knowledge graph into a continuous vector space. Embedding methods,
such as TransE, TransR and ProjE, are proposed in recent years and
have achieved promising predictive performance. We discuss that a lot
of substructures related with different relation properties in knowledge
graph should be considered during embedding. We list 8 kinds of sub-
structures and find that none of the existing embedding methods could
encode all the substructures at the same time. Considering the struc-
ture diversity, we propose that a knowledge graph embedding method
should have diverse representations for entities in different relation con-
texts and different entity positions. And we propose a new embedding
method ProjR which combines TransR and ProjE together to achieve
diverse representations by defining a unique combination operator for
each relation. In ProjR, the input head entity-relation pairs with differ-
ent relations will go through a different combination process. We con-
duct experiments with link prediction task on benchmark datasets for
knowledge graph completion and the experiment results show that, with
diverse representations, ProjR performs better compared with TransR
and ProjE. We also analyze the performance of ProjR in the 8 differ-
ent substructures listed in this paper and the results show that ProjR
achieves better performance in most of the substructures.
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1 Introduction

Knowledge graphs (KGs) are built to represent knowledge and facts in the world
and have become useful resources for many artificial intelligence tasks such as
web search and question answering. A knowledge graph could be regarded as a
multi-relational directed graph with entities as nodes and relations as labeled
edges. An instance of an edge is a fact triple in the form of (h, r, t) and h, r, t
denote the head entity, relation, and tail entity respectively. For example, (Steve
Jobs, isFounderOf , Apple Inc.) represents the fact that Steve Jobs is the
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founder of company Apple. Many huge knowledge graphs have been built auto-
matically or semi-automatically in recent years, such as Yago [19], WordNet [13]
and Google Knowledge Graph1. Though typical knowledge graphs may contain
more than millions of entities and billions of facts, they still suffer from incom-
pleteness.

Much work has focused on knowledge graph completion. Some tried to extract
more triples through large text corpora, such as OpenIE [1] and DeepDive [26].
Others tried to get new triples by reasoning based on the existing knowledge
graph. Traditional reasoning methods including ontology inference machine, such
as Pellet2, which relies on a well-defined ontology. Knowledge graph embedding
is another way to complete knowledge graphs. It tries to embed all the elements
in a knowledge graph, including entities and relations, into a continuous vector
space while preserving certain properties of the original KG. KG embedding
makes it possible to complete the knowledge graph through implicit inference by
calculations between the vector representations.

We regard the basic process of most knowledge graph embedding methods
as two steps: (1) get combined representation of the given head entity-relation
pair through a combination operator C(h, r) and then (2) compare the simi-
larity between candidate tail entities and the combined representation through
a similarity operator S(C(h, r), t). The goal is to make the similarity between
true candidate entities and combined representation as large as possible and the
similarity for false candidate entities as small as possible.

There are a lot of knowledge graph embedding methods proposed in the last
few years. One of the simple but effective method is TransE [4] which represents
each entity and relation as a vector. The combination operator is defined as an
addition and the similarity operator is defined based on distance. ProjE [16]
is another knowledge graph embedding method whose basic idea is almost the
same with TransE. ProjE also assigns each entity and relation with one vector.
The combination operator of ProjE is a global linear layer and the similarity
operator is defined as a dot product between the candidate vector and com-
bined representation. ProjE performs better than TransE in link prediction task
because of the different definition of the final loss function.

Considering the different properties of relations, improved methods, such as
TransH [21], TransR [12] and TransD [9], are proposed based on TransE. Those
methods inspired us to consider the structure diversity of knowledge graph as
relations of different properties always correspond to different graph structures.
We list 8 kinds of graph structures in this paper and find that none of the previous
embedding methods can properly encode all of these structures at the same time.
Some methods such as TransR can encode N-1, N-N, 1-N-1 structures but not
one-relation-circle structures. Some methods, such as ProjE, could encode one-
relation-circle structures but not N-1, N-N, 1-N-1 structures.

1 https://www.google.com/intl/en-419/insidesearch/features/search/knowledge.
html.

2 http://pellet.owldl.com/.

https://www.google.com/intl/en-419/insidesearch/features/search/knowledge.html
https://www.google.com/intl/en-419/insidesearch/features/search/knowledge.html
http://pellet.owldl.com/
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The reason why TransR can encode 1-N, N-N, and 1-N-1 structures is that
before calculating the similarity, TransR uses a relation specific matrix to project
entity vector to relation space and get a new entity representation. In other
words, every entity in TransR has one vector representation under each different
relation context. The reason why ProjE can encode one-relation-circle structures
is that the vector representation for one entity under different entity position (as
a head entity or as a tail entity) is different. So the key point to enable embedding
methods to encode the diversity of knowledge graph is that every entity should
have diverse representations in different relation contexts and entity positions.

In this paper, we propose a new embedding method ProjR which combines
TransR and ProjE together. To achieve diverse representation for entities in
different relation contexts, we define a unique combination operator for each
relation in ProjR. To achieve diverse representations for entities under different
entity position, we follow the process of ProjE to project head entity vector
through a matrix during combination process and not project tail entity dur-
ing similarity operator. We conduct link prediction experiments on knowledge
graph completion benchmark datasets and evaluate the results in the same way
as previous work. The evaluation results show that ProjR achieves better predic-
tive performance compared with both TransR and ProjE, and also some other
embedding methods. We also analyze the performance of ProjR with the 8 dif-
ferent substructures listed in Table 6 and the results show that ProjR achieves
better performance in most of the substructures compared with ProjE.

The contributions of this paper are as follows:

– We list 8 kinds of graph structures to analyze the structure diversity of knowl-
edge graph and also find examples from real knowledge graph Freebase for
each structure.

– We analyze the ability of most related embedding models to encode the struc-
ture diversity and find that diverse representations for entities in different
relation contexts and entity positions are helpful for encoding the structure
diversity in knowledge graph.

– We propose a new knowledge graph embedding method ProjR based on the
idea of diverse representations for entities. The experiment results on link
prediction tasks show that ProjR achieves better performance than TransR
and ProjE. The experiment results of the performance of ProjR on different
structures also prove that with diverse representations for entities ProjR could
handle the structure diversity of knowledge graph more properly.

2 Related Work

We summarize the related methods in Table 1 with information of the score
function and the number of parameters to learn during training. The work most
related to ours are TransR [12] and ProjE [16].

TransR: TransR [12] is an extended method of TransE [4]. We call them
translation-based methods because their basic assumption is that the relation r
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Table 1. A summary for the most related methods. The bold lower letter denotes
vector representation and the bold upper letter denotes the matric representation. I
denotes identity matrix. ne and nr are the number of entities and relations in knowledge
base, respectively. d denotes the embedding dimension.

Model Sore function S(h, r, t) #Parameters

C(h, r) S(h, r, t)

TransE h + r ‖C(h, r) − t‖l1/2 (ne + nr)d

TransH (h − w�
r hwr + r) ‖C(h, r) − (t − w�

r twr)‖2
2 (ne + 2nr)d

TransR Mrh + r ‖C(h, r) − Mrt‖2
2 (ne + nr)d + nrd

2

TransD (rph
�
p + Ik×k)h + r ‖C(h, r) − (rpt

�
p + Id×d)t‖2

2 2(ne + nr)d

ProjE tanh(D1h + D2r + b1) σ(C(h, r) · t + b2) (ne + nr + 5)d

in triple (h, r, t) could be regarded as a translation from the head entity h to the
tail entity t. TransE represents each entity and relation with one vector and make
the constraint for a true triple (h, r, t) as h+ r ≈ t. Unstructured [3] is a special
case of TransE which sets all relation vectors as zero vectors. Considering the dif-
ferent properties of relations, TransH [21] defines a hyperplane for each relation
and projects head and tail entities onto the current relation hyperplane before
the calculation of distance. Different from TransE and TransH which represent
all elements in the same vector space, TransR represents entities in entity space
and represents relations in relation space. And entities h and t should be pro-
jected into the current relation space through the relation projection matrix Mr.
TransD [9] is an extended method of TransR which defines dynamic projection
matrices related with both relations and entities. TransH, TransR and TransD
all achieve diverse representations for entities in different relation contexts by
different projection strategies but unable to encode one-relation-circle because
there is only one representation for one entity with same relation context.

ProjE: ProjE [16] is another knowledge graph embedding method which gets
the combined representation of an input head entity-relation pair through a
global linear layer. Then projecting all the candidate entity vectors onto the
combined vector result which could be regarded as a similarity computation.
But different from translation-based methods which optimize a margin-based
pairwise ranking loss, ProjE optimizes a cross entropy based ranking loss of a list
of candidate entities collectively which makes ProjE more flexible with negative
candidate sampling and enhance the ability to handle very large datasets. ProjE
also points out that the number of negative samples will affect the embedding
results obviously. ProjE is able to encode the one-relation-circle structures.

Other Methods: RESCAL [15] regards the whole knowledge graph as a multi-
hot tensor and embeds the knowledge graph based on tensor factorization. NTN
[17] is a neural tensor network which represents each relation as a tensor. HOLE
[14] employs correlation between different dimensions of entity vectors dur-
ing training of the vector representations. Some methods also combine other
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information together with fact triples. RTransE [6] and PTransE [11] employ the
path information of 2–3 length over knowledge graph. Jointly [20], DKRL [24],
TEKE [22] and SSP [23] combine unstructured entity description texts together
with the structured triples during training. The external text information makes
those methods more likely to cover the out-of-knowledge-graph entities. TKRL
[25] considers the information of entity class. But in this paper, we only focus
on the methods that only use triples’ information.

3 Our Method

In this section, we first introduce 8 kinds of structures to prove the structure
diversity of knowledge graph and analyze the ability of the most related embed-
ding methods to encode these 8 kinds of structures. Then we introduce the new
method ProjR.

3.1 Structure Diversity of Knowledge Graph

The complex connections between entity nodes cause the structure diversity
of knowledge graph. Relations with different properties are always related to
different graph structures. We introduce 8 kinds of substructures in this section.

1-1 relation structure means that one entity links to at most one entity
through this relation. 1-N relation structure means that one entity links to more
than one entities through this relation. N-1 relation structure means that there
are more than one entities linking to the same entity through this relation. N-N
relation structure means that one entity link to more than one entities through
this relation and one entity also could be linked to more than one entities through
this relation. Those four kinds relation properties are first proposed in [21].
1-N-1 structure means that there are more than one relation that link one same
entity to another same entity. C1, C2, C3 are special case of one-relation-
circle (ORC) substructures which is first proposed in [27]. C1 means that one

Table 2. This table lists the ability of five most related KG embedding methods to
encode the substructures and the number of vector representations for every entity
and relation. nr denotes the number of relations in knowledge graph. In the column of
“types of structure”, “

√
” means model in current row can encode the substructure in

current column and “×” means can’t.

Method # representations Types of substructure

Entity Relation 1-1 1-N N-1 N-N 1-N-1 C1 C2 C3

TransE [4] 1 1
√ × × × × × × ×

TransH [21] nr 1
√ √ √ √ √ × × ×

TransR [12] nr 1
√ √ √ √ √ × × ×

TransD [9] nr 1
√ √ √ √ √ × × ×

ProjE [16] 2 2
√ × × × × √ √ √
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entity connects to itself by one relation. C2 means that two entity connects to
each other by the same relation. C3 means that three entities connect to each
other through the same relation and the connections form a circle if ignoring the
direction of relations.

In Table 2, we analyze the ability of related embedding models to encode
these 8 kinds of structures. We regard one method could encode one kind struc-
ture if and only if it is possible to let the similarity score of all the true triple
participating in the current structure to be nearly the maximum value. We cal-
culate the vector representation of entities and relations following this rule: we
regard any projection operation result of one entity as a representation for it.
For example, with triple (h, r, t) in TransH, the head entity h and the tail entity
t will be projected onto the relation r specific hyperplane before calculating the
distance, which means each entity has a vector representation on every relation
hyperplane. So there are nr representations for each entity in TransH.

Although none of them could encode all the structures, we also could conclude
that diverse representations for entities will improve the capability of encoding
structure diversity. TransH, TransR and TransD are able to encode 1-N, N-1 and
N-N relation structures because they separate the representations for entities in
different relation contexts and have nr kinds of representations for every entity.
ProjE is able to encode C1, C2 and C3 because the different representations
for one entity in different entity positions enable ProjE to decompose the one-
relation-circle structures.

To make embedding model more powerful to encode the structure diver-
sity, we combine TransR and ProjE and propose ProjR based on the key idea
of diverse representations for entities in different relation contexts and entity
positions.

3.2 ProjR

In ProjR, we define a score function to calculate the probability of an input
triple (h, r, t) to be true. And we regard the probability score function as two
parts: a combination operator and a similarity operator.

Combination Operator: The input of combination operator is head entity-
relation pair (h, r). The head entity embedding is set as h ∈ R

d and the relation
embedding is set as r ∈ R

d. d is the dimension of embedding vectors.
To achieve diverse representations for entities in different relation contexts,

ProjR defines a combination operator Cr(h) for each relation r:

Cr(h) = chr = tanh(De
rh + Dr

rr + bc)

De
r ∈ R

d×d is a diagonal matrix defined for linear transformation of head entity
related with relation r. Dr

r ∈ R
d×d is a diagonal matrix defined for linear trans-

formation of relation r. We choose the diagonal matrix instead of normal matrix
in consideration of the balance between diverse representation ability and the
number of parameters. bc ∈ R

d is a global bias vector. tanh(z) = ez−e−z

ez+e−z is
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a nonlinear activate function in which the output value will be constrained to
(−1, 1). Each combination operator will project entity with a different diagonal
matric and generate a specific representation for each entity.

Similarity Operator: After getting the vector result chr from combination
operator for (h, r), ProjR calculates the similarity between the chr and the tail
entity vector t as the final probability score for triple (h, r, t) to be true. To
achieve the diverse representations for entities in different entity positions, we
use the tail entity vector directly without any projection. Although defining
another projection matrix for the tail entity related with relation r will further
improve the ability of ProjR to encode diversity of structures in knowledge graph,
it will also increase a lot of parameters.

Considering the convenience for computation, we define the similarity oper-
ator as follows:

S(h, r, t) = σ(t · chr)
t ∈ R

d. We use dot product to simulate the similarity between chr and t. And
σ(z) = 1

1+e−z is used to constrain the final output to (0, 1) as a probability score.

Loss Function: During training, we define the following learning objective:

L = −
∑

(h,r,t)∈�
log(S(h, r, t))

−
∑

(h′,r,t′)∈�′
log(1 − S(h′, r, t′)) + λ

∑

p∈P

‖p‖

� is the set of positive triples in training data. And �′ is the set of false
triples generated for each training triple. The negative triple generation will be
introduced in next section. P is the set of parameters to be learned in ProjR.
λ

∑
p∈P ‖p‖ is a regularization term with the summation of L1 norm of all

elements in P . λ is the regularization parameter. The training goal is to minimize
loss function L.

4 Experiments

In this paper, we conduct the experiment of link prediction and evaluate the
embedding results with the benchmark knowledge graphs WN18 and FB15k
which are subsets of WordNet [13] and Freebase [2] respectively (Table 3).

Table 3. Statistic of experiment dataset

Dataset # Rel # Ent # Train # Valid # Test

WN18 18 40943 141442 5000 5000

FB15k 1345 14951 483142 50000 59071
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4.1 Link Prediction

Link prediction aims to predict the missing entity given one entity and relation
such as (h, r, ?) and (?, r, t). (h, r, ?) is tail entity prediction given head entity
and relation. (?, r, t) is head entity prediction given tail entity and relation.

Data Prepare: As ProjR always predicts tail entities given head entity-relation
pair, we regard head entity prediction (?, r, t) as a tail entity prediction (t, r−1, ?).
r−1 denotes the reverse relation of r. To get the embedding of r−1, for each triple
(h, r, t), we add reverse relation triple (t, r−1, h) into training dataset.

To generate negative triples (h′, r′, t′), we follow the process of ProjE and ran-
domly select m percent of entities in dataset to replace the tail entity t of (h, r, t)
which means there will be m × ne negative triples for every training triple. ne is
the number of entities in experiment dataset. m ∈ (0, 1) is a hyperparameter.

Table 4. Results on WN18 and FB15k for link prediction. The result numbers under-
lined are the best results among TransR, ProjE, and ProjR. The bold result numbers
are the best results among all the methods.

Method WN18 FB15k

Mean Rank Hit@10(%) Mean Rank Hit@10(%)

Raw Filter Raw Filter Raw Filter Raw Filter

Unstructured [3] 315 304 35.3 38.2 1074 979 4.5 6.3

RESCAL [15] 1180 1163 37.2 52.8 828 689 28.4 44.1

SE [5] 1011 985 68.5 80.5 273 162 28.8 39.8

SME(linear) [3] 545 533 65.1 74.1 274 154 30.7 40.8

SME(Bilinear) [3] 526 509 54.7 61.3 284 158 31.3 41.3

LFM [8] 469 456 71.4 81.6 283 164 26.0 33.1

TransE [4] 263 251 75.4 89.2 243 125 34.9 47.1

TransH(unif) [21] 318 303 75.4 86.7 211 84 42.5 58.5

TransH(bern) [21] 401 388 73.0 82.3 212 87 45.7 64.4

CTransR(unif) [12] 243 230 78.9 92.3 233 82 44 66.3

CTransR(bern) [12] 231 218 79.4 92.3 199 75 48.4 70.2

TransD(unif) [9] 242 229 79.2 92.5 211 67 49.4 74.2

TransD(bern) [9] 224 212 79.6 92.2 194 91 53.4 77.3

TransR(unif) [12] 232 219 78.3 91.7 226 78 43.8 65.5

TransR(bern) [12] 238 225 79.8 92.0 198 77 48.2 68.7

ProjE listwise [16]a – – – – 214 60 48.1 78.8

ProjR(this paper) 356 345 82.6 95.0 195 41 52.3 83.3
aThe link prediction result of ProjE on FB15k is the latest result provided by
author after fixing a bug in the original code. The corresponding parameter setting
of the results are: embedding dimension d = 200, batchsize b = 512, learning rate
r = 0.0005, negative candidate sampling proportion m = 0.1 and max iteration
number iter = 50.
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Training: We use Adaptive Moment Estimation (Adam) [10] as the optimizer
during training with the default parameter setting: β1 = 0.9, β2 = 0.999,
ε = 1e−8. We also apply a dropout [18] layer on the top of combination opera-
tion to prevent overfitting and the hyperparameter of dropout rate is set to 0.5.
Before training, we randomly initialize all the entity and relation vectors from a
uniform distribution U [− 6√

k
, 6√

k
] as suggested in [7]. The diagonal matrices are

initialized with identity diagonal matrix. The bias vector is initialized as zero
vector. For both datasets, we set the max training iterations to 100.

Evaluation: We evaluate link prediction following the same protocol of previous
work: for every testing triple (h, r, t), we first predict t with input (h, r), then
predict h with input (t, r−1). To predict t, we replace t with each entity e in
experiment dataset and calculate the similarity score through S(h, r, e). Then
rank the scores in ascending order and get the rank of the original right tail entity.
The processing of head prediction is the same as tail prediction. Aggregating
all the ranks of testing triples, we follow the two metrics used in previous work:
Mean Rank and Hit@10. Mean Rank is the averaged rank of all the testing triples.
Hit@10 is the proportion of ranking score of testing triple that is not larger than
10. A good link predictor should achieve lower mean rank and higher hit@10. We
also follow the Filter and Raw settings as previous work. Filter setting means
filtering the triples in training data when generating negative triples to prevent
false negative ones. Raw setting means without filtering.

Table 5. Experimental results on FB15k by mapping different patterns (%)

Method Predict Head(Hit@10) Predict Tail(Hit@10)

1-1 1-N N-1 N-N 1-1 1-N N-1 N-N

Unstructured [3] 34.5 2.5 6.1 6.6 34.3 4.2 1.9 6.6

SE [5] 35.6 62.6 17.2 37.5 34.9 14.6 68.3 41.3

SME(linear) [3] 35.1 53.7 19.0 40.3 32.7 14.9 61.6 43.3

SME(Bilinear) [3] 30.9 69.6 19.9 38.6 28.2 13.1 76.0 41.8

TransE [4] 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0

TransH(unif) [21] 66.7 81.7 30.2 57.4 63.7 30.1 83.2 60.8

TransH(bern) [21] 66.8 87.6 28.7 64.5 65.5 39.8 83.3 67.2

CTransR(unif) [12] 78.6 77.8 36.4 68.0 77.4 37.8 78.0 70.3

CTransR(bern) [12] 81.5 89.0 34.7 71.2 80.8 38.6 90.1 73.8

TransD(unif) [9] 80.7 85.8 47.1 75.6 80.0 54.5 80.7 77.9

TransD(bern) [9] 86.1 95.5 39.8 78.5 85.4 50.6 94.4 81.2

TransR(unif) [12] 76.9 77.9 38.1 66.9 76.2 38.4 76.2 69.1

TransR(bern) [12] 78.8 89.2 34.1 69.2 79.2 37.4 90.4 72.1

ProjE listwise [16] 61.4 90.1 53.2 83.3 61.3 63.5 89.4 85.5

ProjR(this paper) 90.3 93.3 64.5 81.0 90.7 78.3 96.6 85.0
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Result: The result of link prediction is in Table 4. We directly copy the results of
previous methods from their original paper as WN18 and FB15k are two bench-
mark datasets. The parameter settings for ProjR’s results on WN18 in Table 4
are: embedding dimension d = 100, learning rate r = 0.01, batchsize b = 2000,
negative candidate sampling proportion m = 0.001. The parameter settings on
FB15k are: d = 200, r = 0.01, b = 4000,m = 0.005. From Table 4, we could con-
clude that: (1) As a combination method of TransR and ProjE, ProjR achieves
better performance on FB15k than ProjE and TransR. And on WN18, ProjR
performs better than TransR on Hit@10. (2) Though on some tasks TransD per-
forms better than ProjR, ProjR has less parameters than TransD. The number
of parameters in ProjR is (ne +4nr +1)k while that in TransD is 2(ne +nr) and
ne � nr.

To analyze how diverse representations improve the link prediction results of
different types of relations. We also conduct the experiment of link prediction

Table 6. Hit@10 of ProjE and ProjR on some examples of 8 kinds of substructures.
The results are in the form of x/y in which x is the result of ProjE and y is the result
of ProjR. The third column is the number of testing triples related with current row
relation in testing data.

Type Example relations # Hit@10 (%)

Head Tail

1-1 /influence/peer relationship/peers 21 66.7/90.5 66.7/85.7

/business/employment tenure/person 43 72.1/79.1 67.4/72.1

/tv/tv program/program creator 23 95.6/95.6 95.7/95.7

1-N /film/writer/film 105 92.4/93.3 86.7/87.6

/location/country/second level divisions 68 100.0/100.0 28.4/77.6

/people/cause of death/people 98 87.8/83.7 77.6/79.6

N-1 /music/group member/membership 22 50.0/59.1 68.2/77.3

/people/person/nationality 508 2.2/13.2 87.4/93.1

/people/person/education/institution 358 52.2/73.2 69.3/79.1

N-N /award/award winner/awards won 1045 90.4/93.8 90.4/93.0

/tv/tv genre/programs 105 96.2/95.2 87.6/90.5

/music/genre/parent genre 100 75.0/83.0 86.0/90.0

1-N-1 /award/award winner/award 655 63.8/64.7 94.4/94.7

/award/award nominee/award nominations 1555 83.0/82.7 94.0/96.4

C1 /education/educational institution/campuses 60 78.3/100.0 80.0/100.0

/education/educational institution campus 68 80.9/100.0 80.9/100.0

/location/hud county place/place 48 20.8/100.0 22.9/100.0

C2 /people/person/spouse s 54 33.3/40.7 27.8/35.2

/influence/influence node/influenced 235 71.5/63.4 68.5/55.7

/location/location/adjoin s 284 77.8/88.7 75.0/83.4

C3 /location/location/contains 608 92.6/97.2 85.7/84.0

/location/adjoining relationship/adjoins 284 77.8/88.7 75.0/83.5
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mapping different structures. In this experiment, we only consider 1-1, 1-N, N-1
and N-N as the other four relation properties could be included in this four
types. We choose FB15k as the dataset of this experiment because it contains
more relations than WN18. The Hit@10 result of filter setting on FB15k mapping
different substructures are showed in Table 5.

The results in Table 5 show that ProjR improves the ability to encode 1-1,
1-N, N-1 and N-N relations with diverse representations for entities. Among
all structures, the head prediction of N-1 relations and tail prediction of 1-N
relations are the most difficult tasks. And ProjR achieves good improvement on
these two tasks. Compared with the second best result listed in Table 5, ProjR
achieves 11.3% improvement for head prediction of 1-N relations and 14.8%
improvement of tail prediction for N-1 relations.

To understand the ability of ProjR to encode the diversity of knowledge
graph more deeply. We select two or three relations for each type of structure. We
select relations with the principle that the number of testing triples related to the
relation should be larger than 20. We compare the filter Hit@10 result of ProjE
and ProjR on FB15k for each selected relation. The results are listed in Table 6.
The parameter settings for ProjE and ProjR are same as the parameter settings
of the results in Table 4. The results show that ProjR achieves better results
in the majority of the relations for each substructure. A huge improvement is
achieved on C1 structure.

5 Conclusion and Future Work

In this paper, we list 8 kinds of graph substructures to explore the structure
diversity of knowledge graph and propose a new embedding method ProjR to
encode structure diversity more properly based on the idea of diverse represen-
tations for entities in different relation contexts and different entity positions.
In link prediction experiments, ProjR achieves better results compared with the
two most related methods, TransR and ProjE. We explore the results from coarse
to fine to illustrate how ProjR improves the ability to encode the diversity of
structures.

There are some interesting topics that we want to explore in the future: (1) as
shown in Table 6, the prediction results for different relations range hugely, which
means there are still different structures between those relations. (2) Knowledge
graphs are dynamic in the real world and new triples are always added to them.
But existing knowledge graph embedding methods can not handle the dynamic
property of KG.
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