
NEUTag’s Classification System for Zhihu
Questions Tagging Task

Yuejia Xiang1(&), HuiZheng Wang1, Duo Ji2, Zheyang Zhang1,
and Jingbo Zhu1

1 Natural Language Processing Laboratory,
Northeastern University, Shenyang, China

xiangyuejia@qq.com,

{wanghuizhen,zhujingbo}@mail.neu.edu.cn,

hldnpqzzy@sina.com
2 Criminal Investigation Police University of China, Shenyang, China

18640037173@168.com

Abstract. In the multi-label classification task (Automatic Tagging of Zhihu
Questions), we present a classification system which includes five processes.
Firstly, we use a preprocessing step to solve the problem that there is too much
noise in the training dataset. Secondly, we choose several neural network
models which proved effective in text classification task. Then we introduce k-
max pooling structure to these models to fit this task. Thirdly, in order to obtain
a better performance in ensemble process, we use an experiment-designing
process to obtain classification results that are not similar to each other and all
achieve relatively high scores. Fourthly, we use an ensemble process. Finally,
we propose a method to estimate how many labels should be chosen. With these
processes, our F1 score achieves 0.5194, which ranked No. 3.

Keywords: Multi-label classification � Question tagging � Ensemble learning

1 Introduction

In the automatic tagging task of Zhihu questions, we need to pick out at most 5 labels
out of a set which contains more than 25000 labels. Tagging a label of one question
means the question belongs to a class which is corresponding with this label. So, we
use term ‘label’ as a synonym for term ‘class’ in this paper. And main difficulties of this
task are shown as follows.

• Zhihu question texts which contain a large number of non-subject-related terms and
other noise are too informal to be analysis.

• There are too many classes and the semantic gaps between some classes are so
narrow, which observably increase the difficulty of classification.

• As numbers of labels of different questions are frequently different, it is difficult to
estimate how many labels should be chosen for a certain question in order to reach a
better performance.

© Springer Nature Switzerland AG 2018
M. Zhang et al. (Eds.): NLPCC 2018, LNAI 11108, pp. 279–288, 2018.
https://doi.org/10.1007/978-3-319-99495-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99495-6_24&domain=pdf

We use a preprocessing process to reduce the adverse effect of noise. This process
includes three parts: word segmentation, data cleaning and long-text truncation.
Because the neural networks based classification model have been corroborated
superior to some traditional classification models [1], notably superior when facing
tasks with lots of categories [1–4], we select several neural network based models:
RNNText [5], CNNText [6], RCNNText [7], and fastText [8]. What’s more, in order to
make these neural network-based models more suitable for our task, we introduce k-
max pooling structure to them to build a baseline.

In order to obtain better classification results, we use an ensemble process. As we
all know, an outstanding ensemble effect requires many classification results that not
similar to each other and all achieve relatively high scores [9]. So we use some methods
to design experiments, in order to find some results that meet our needs. Moreover, we
propose a method to measure the differences between classification results, which can
be used to guide the design of experiments.

Finally, we propose a method to estimate how many labels should be chosen. Our
method is a post-processing process, as the method forecast the number via the analysis
of relations between statistical characteristics of classification results and the number of
labels.

The paper is organized as follows. Section 2 introduces details of our system.
Section 3 contains our experimental results and analysis. Section 4 includes summa-
rization and future works. Finally, we express our thanks and appreciations.

2 Our System

2.1 Preprocessing

Our preprocessing process includes word segmentation, data cleansing and long-text
truncation. Moreover, we divide data cleansing into two parts: a stopword process that
is used to filter useless words and a rule-based matching process which is designed to
clean up rubbish information such as web sites, page formats, etc. What’s more,
because neural network models do not perform well in the classification of text which
is very long [10], we introduce long-text truncation to suffer this disadvantage [7],
while some texts in our training dataset reach tens of times the length of average
(Fig. 1).

2.2 Baseline

In order to build our baseline, we choose four models: RNNText [5], CNNText [6],
RCNNText [7] and fastText [8], which have been proved effective in text classification
tasks. And then make a small change to their structures. The change is using k-max
pooling structures to replace max pooling structures [11], in order to get better adap-
tation to milt-label classification task.

All models we used could be unified with one process: after using embedding
layers, they extract context information by CNN-based, RNN-based or NN-based
structures, and then they use fully connected layers, named as classifiers to produce
classification results. The general structures of these models are shown in Fig. 2.

280 Y. Xiang et al.

2.3 Design Experiments

In order to find out some classification results that perform well in the following
ensemble process, we propose the experiment designing process. In the process, we
design lots of experiments by methods listed as follows.

• Use different models in our baseline: RNNText, CNNText, RCNNText or fastText.
• Use different input forms: char-level or word-level. (Different from a char-level

method that directly splits original text into character [2], our char-level method
splits the text which underwent the word segmentation process and the prepro-
cessing process).

• Use different parameters of model structures: the number of hidden layers, the size
of hidden layer units and the batch size.

• Use different training dataset: using additional data or not, a random proportion of
data will not be used.

Fig. 1. This is a flow chart of our system, where the solid arrows represent the training process,
while the dotted arrows represent the testing process.

Fig. 2. General structures of models in our baseline

NEUTag’s Classification System for Zhihu Questions Tagging Task 281

And then we choose classification results that not similar to each other and all
achieve relatively high scores, for obtain an outstanding ensemble effect [9]. Moreover,
we propose a method to evaluate the differences between classification results, which
can be used to guide the designing of experiments. This method evaluates the differ-
ences by the difference of normalized accuracy rate distribution on each label
(DoNARD), and the algorithm is shown in Algorithm 1.

Algorithm 1
Input: A: experiment result A’s accuracy rate on all labels, B: experiment result B’s
accuracy rate on all labels, T: the number of labels, w: 100000
Output: DoNARD: a number denote the difference between experiment results
begin
for: i = 1, 2, …, T do:
xi = Ai

∑ AtT
t=1

, yi = Bi
∑ BtT
t=1

DoNARD = w × ∑ (xi − yi)2T
t=1

end.

We believe that the larger the DoNARD, the larger the difference. By comparing
the DoNARD values with scores, we analyze the influence of each method that has
been listed. Therefore we use DoNARD to guide the experiments designing process.

2.4 Ensemble

In the ensemble process, the input data is the classification result of our experiment.
Firstly, we will assign a weight to each result. Then, we consider the weighted sum of
these results as the outcome of our ensemble process. Finally, we use a program to
choose these weights’ value, in order to get the highest score.

2.5 Estimate Number of Labels

To estimate how many labels should be chosen for each problem is quite difficult in
multi-label classification task. Firstly, because probabilities of each label in different
questions are tremendous difference, we failed to find out a threshold to judge whether
a label should be chosen or not. Secondly, we do not simply estimate the number of
labels appeared in the standard answer, but also need to consider the performance of the
classification result. For example, top 5 labels of a question are shown in Table 1, and
standard labels are ‘Healthy’, ‘Life’ and ‘Bodybuilding’. The scores for selecting k-top
labels are shown in Table 2.

Table 1. Top five labels of the question

Label Healthy Bodybuilding Motion Travel Life

Probability 1.841 1.648 1.520 0.9165 0.8426

282 Y. Xiang et al.

In this case, when selecting top five or top two labels, we can get higher scores than
select top three labels.

In our method, we need to calculate that how many labels are predicted for each
question can help us get the highest score in training dataset. After analysis the rela-
tionship between statistics of classification results and the optimal number of labels, we
find that the sum of probability of top five labels is positive correlation to the optimal
number. So we propose a method based on the top five label-probabilities’ sum
(T5LPS) to estimate the number of labels.

3 Results

3.1 Dataset Sources

Our training dataset includes 721,608 questions from official training dataset and
350,000 additional questions from Zhihu website. Each question includes a title, a
description and some labels. There are 25,551 different labels in our dataset.

3.2 Performance Evaluation Indicators

This task uses the positional weighted precision to evaluate performance. Let
correct numpi denotes the count of predicted tags which are correct at position i,
predict numpi denotes the count of predicted tags at position i and ground truth num
denotes the count of correct tags.

P ¼
P5

i¼1 correct numpi=log iþ 2ð Þ
P5

i¼1 predict numpi=log iþ 2ð Þ

R ¼
P5

i¼1 correct numpi

ground truth num

F1 ¼ 2� P� R
PþR

3.3 Preprocessing

In this part, we compare the effect of each preprocessing method. Firstly, we show the
effect of word segmentation which is based on jieba segmentation tool in Table 3.
Secondly, we show more experiment results in Table 4.

Table 2. Scores for selecting k-top labels

K-top 1 2 3 4 5

Score 0.6206 0.8000 0.6942 0.6206 0.7843

NEUTag’s Classification System for Zhihu Questions Tagging Task 283

We can see that, after segmentation the system score (the highest score of models in
our baseline) increases 0.0063. And we find that fastText is more sensitive to seg-
mentation than either RNNText or CNNText, while RCNNText’s sensitivity is the
least.

The reason is that, as we analysis, single character carries little information which
benefits classification, while the fastText’s structure do not have Excellent abstract
ability provided by deep networks, fastText is more sensitive. [12] Another reason is
that the char-level text’s length is much bigger than word-level text’s. Thus, char-level
is more difficult to be learnt [13].

In Table 4, we only show the best result of each method in preprocessing, for
example, in stopword method we use a manually selected stopword dictionary with the
help of TF/IDF and in the long-text truncation method we use a value which is three
times the value of question texts’ average length as a truncation threshold. From the
experiment results, we get some conclusions that are shown as follows.

• Replacing numbers with uniform expression would lower score, via some labels are
sensitive to the value of numbers.

• The method which cleans all punctuations promotes the score, because punctuations
do not contribute to classification in this task and there are a lot of useless punc-
tuations which are used as emoticons in the text.

• As long-text truncation brings an improvement, we consider that words in the tail of
a long text have little contribution to classification and bring adverse effect to our
system because they are so long [13].

• The combination of various preprocessing methods brings an additional score of
0.0030.

Table 3. Effect of word segmentation

Model Score before seg Score after seg Score improving

RCNNText 0.3413 0.3455 0.0042
RNNText 0.3598 0.3661 0.0063
fastText 0.2775 0.3583 0.0808
CNNText 0.3213 0.3337 0.0124

Table 4. More experiment results in preprocessing

Experiment Score change Score

baseline 0.4070
baseline + word-level 0.0063 0.4133
baseline + word-level + unified expression of all number –0.0012 0.4121
baseline + word-level + clean all punctuation 0.0054 0.4187
baseline + word-level + stopword 0.0035 0.4168
baseline + word-level + rule-based matching 0.0021 0.4154
baseline + word-level + simplify traditional forms of characters 0.0029 0.4162
baseline + word-level + long-text truncation 0.0011 0.4144
baseline + preprocessing 0.0243 0.4313

284 Y. Xiang et al.

3.4 Baseline

We try to apply k-max pooling structure to RNNText, CNNText, RCNNText and
fastText models. And experiments are shown in Table 5 that used same preprocessing,
based on whole training dataset and additional dataset.

We find that Max Pooling structure performance best in RCNNText and fastText,
while 2-max Pooling structure performance best in RNNText and CNNText. But 3-
max Pooling structure performance worst. So we introduce 2-max Pooling structure to
RNNText and CNNText models. The reason of this phenomenon needs further study
whether k-max pooling structure benefit from an better expression ability in multi-label
classification task [5].

We can see that 2-max pooling structure is effective in some models,

3.5 Design Experiments

With methods listed in Sect. 2.3, we design hundreds of experiments. Firstly, we check
the effectiveness of our char-level method in Table 6. Then with the help of DoNARD
method, we analyze the influence on classification results of each method in Table 7.
Finally, we show several models in Table 8, with which we obtaining an optimal
ensemble effect.

Table 5. Scores of experiments

RNNText CNNText RCNNText fastText

Max pooling 0.4623 0.4174 0.4557 0.3251
2-max pooling 0.4632 0.4349 0.4425 0.2682
3-max pooling 0.4584 0.4197 0.4441 0.2682

Table 6. Effect of our char-level method

Experiments Score

RNNText + char-level [2] 33.02
RNNText + our char-level method 35.95

Table 7. The analysis of various changes on RNNText

Change of original model DoNARD Ensemble’s effect

Using word-level 1.585 0.0107
Double hidden layer size 6.395 0.0082
Adding a hidden layer 0.716 0.0055
Using additional data 2.402 0.0236
30% random data will not be use 1.535 0.0076

NEUTag’s Classification System for Zhihu Questions Tagging Task 285

Our char-level method is effective, because it removes the noise in original texts,
that achieves a better result.

We find that, when the DoNARD is in the range of about (1, 3), the effect of
ensemble is better. We consider that if the DoNARD is too large, it means one result is
much worse than another, so the effect of ensemble is poor. And if the DoNARD is too
small, this indicates that these two results are too similar, so the ensemble not works
well. When we use changes such as word-level, size of hidden layer and external
dataset, we achieve better performance of ensemble process, so we designed more
experiments with these changes.

After our analysis, there are two conclusions which are shown as follows. Firstly,
compared ‘RNNText + word-level’ with ‘RNNText + word-level + additional data’,
we find that using additional data is effective. It can improve about 0.0396 score.
Secondly, as fastText achieves the best performance in our experiments, we guess that
the hierarchical softmax structure in word2vet benefits most in fastText model and this
still needs further works [12].

3.6 Ensemble

Different from translation task, where an ensemble method based on checkpoints of one
experiment can yield a boost of performance [14], in this task the ensemble method is
useless, as shown in Table 9.

So, we use an ensemble method based on results (best checkpoints) of several
experiments. After searching the best weights of classification results in the range of
[0.2, 5], we get the highest score which reaches 0.4954. And we show the weights of all
classification results in Table 10 with the progressive ensemble performance after
ensemble each classification result.

Table 8. Several models which are used in our ensemble process

Experiment Shortened form Score

fastText + word-level + batch size*0.25 + additional data FW1 0.4763
RNNText + word-level + hidden size*2 + additional data LW1 0.4704
RNNText + word-level + additional data LW2 0.4701
RNNText + char-level + additional data LW3 0.4561
RNNText + word-level LW4 0.4352
RCNNText + word-level + randomly not use 30% data RW1 0.4350
RNNText + char-level + dim*2 LC1 0.4302

Table 9. Ensemble method based on checkpoints of one experiment

Checkpoint Checkpoint-1 Checkpoint-2 Checkpoint-3 Checkpoint-4 Ensemble

Score 0.4208 0.4356 0.4267 4229 0.4354

286 Y. Xiang et al.

We find that the optimal weights that we searched in the range of [0.2, 5] are all
close to 1, and the highest score only has 0.0003 higher than using weights that all
equal 1. Therefore, it suggests that we should focus on the process of designing
experiments instead of focus on searching optimal weights.

3.7 Estimate Number of Labels

With the help of our method, we estimate the number of labels based on T5LPS values,
the score improves about 0.0240. Details are shown in Table 11, in which we use T to
denote T5LPS value.

We expect that the performance can still be improved if we find out better statistics
than T5LPS. However, this statistical requires manual screening which is expensive.
And we found that the parameters in Table 11 need to be re-tuned manually on training
datasets to achieve the best performance for different ensemble results.

4 Conclusions

In our experiments, the effect of all processes evaluated by F1 score is show as follows.
0.0139 from using 2-maxPool structure, 0.0243 from using preprocessing, 0.0450 from
designing experiment (including 0.0396 from using additional data), 0.0191 from using
ensemble process and 0.0240 from estimating the number of labels. And our conclu-
sions are listed as follows.

• The preprocessing has a significant effect, because reducing noises in texts and
shortening the length of texts are beneficial for classification.

• The 2-max pooling structure is effective in multi-label classification tasks.
• The method we proposed to measure the differences between models is useful to

guide the designing of experiments.
• The method we proposed to estimate the number of labels is important, as it can

promote the performance of the system effectively.
• Using additional training data can improve the performance of classification

remarkably.

Table 10. Weight of each classification result

Experiment FW1 LW3 LW1 LW4 LW2 RW1 LC1

Weight 1.12 1.08 1.06 1.06 1.00 1.00 0.96
Ensemble’s effect
of each step

0.009961 0.005085 0.001124 0.001067 0.001038 0.0008841

Table 11. Details of T5LPS method

Conditions T > 13 13 > T > 10 10 > T > 6 6 > T > 3 3 > T

Number of Labels 5 4 3 2 1

NEUTag’s Classification System for Zhihu Questions Tagging Task 287

Acknowledgements. This work was supported in part by the National Project
(2016YFB0801306) and the open source project (PyTorchText in GitHub). The authors would
like to thank anonymous reviewers, Le Bo, Jiqiang Liu, Qiang Wang, YinQiao Li, YuXuan Rong
and Chunliang Zhang for their comments.

References

1. Saha, A.K., Saha, R.K., Schneider., K.A.: A discriminative model approach for suggesting
tags automatically for stack overflow questions. In: 10th IEEE Working Conference on
Mining Software Repositories, San Francisco, pp. 73–76 (2013)

2. Yang, Z., Yang, D., Dyer, C., He, X., Smola A., Hovy, E.: Hierarchical attention networks
for document classification. In: Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, New Orleans,
pp. 1480–1489 (2017)

3. Conneau, A., Schwenk, H., Cun, Y.L.: Very Deep Convolutional Networks for Text
Classification. arXiv preprint arXiv:1606.01781 (2017)

4. Johnson, R., Zhang, T.: Semi-supervised convolutional neural networks for text categoriza-
tion via region embedding. Adv. Neural. Inf. Process. Syst. 28, 919–927 (2015)

5. Zhou, Y., Xu, B., Xu, J., Yang, L., Li, C., Xu, B.: Compositional recurrent neural networks
for Chinese short text classification. In: 2016 IEEE, Omaha, pp. 137–144 (2016)

6. Kim, Y.: Convolutional Neural Networks for Sentence Classification. Eprint Arxiv (2014)
7. Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text

classification. In: AAAI Conference on Artificial Intelligence, Austin, pp. 2267–2273 (2015)
8. Jouling, A., Grave, E., Bojanowshi, P., Mikolov, T.: Bag of Tricks for Efficient Text

Classification. arXiv preprint arXiv:1607.01759 (2016)
9. Zhou, Z.H.: Machine Learning. Tsinghua University Press, Beijing (2016)
10. Sundermeyer, M., SchlÜter, R., Ney, H.: LSTM neural networks for language modeling.

Interspeech 31(43), 601–608 (2012)
11. Li, W., Wu, Y.: Multi-level gated recurrent neural network for dialog act classification. In:

COLING 2016, Osaka, pp. 1970–1979 (2016)
12. Peng, H., Li, J.X., Song, Y.Q., Liu, Y.P.: Incrementally learning the hierarchical softmax

function for neural language models. In: 2016, AAAI, Feinikesi (2016)
13. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A Convolutional Neural Network for

Modelling Sentences. arXiv preprint arXiv:1404.2188 (2014)
14. Sennrich, R., Haddow, B., Birch, A.: Edinburgh neural machine translation systems for

WMT 16. WMT16 Shared Task System Description (2016)

288 Y. Xiang et al.

http://arxiv.org/abs/1606.01781
http://arxiv.org/abs/1607.01759
http://arxiv.org/abs/1404.2188

	NEUTag’s Classification System for Zhihu Questions Tagging Task
	Abstract
	1 Introduction
	2 Our System
	2.1 Preprocessing
	2.2 Baseline
	2.3 Design Experiments
	2.4 Ensemble
	2.5 Estimate Number of Labels

	3 Results
	3.1 Dataset Sources
	3.2 Performance Evaluation Indicators
	3.3 Preprocessing
	3.4 Baseline
	3.5 Design Experiments
	3.6 Ensemble
	3.7 Estimate Number of Labels

	4 Conclusions
	Acknowledgements
	References

