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Abstract. Multi-label topic classification aims to assign one or more
relevant topic labels to a text. This paper presents the WiseTag system,
which performs multi-label topic classification based on an ensemble of
four single models, namely a KNN-based model, an Information Gain-
based model, a Keyword Matching-based model and a Deep Learning-
based model. These single models are carefully designed so that they are
diverse enough to improve the performance of the ensemble model. In the
NLPCC 2018 shared task 6 “Automatic Tagging of Zhihu Questions”,
the proposed WiseTag system achieves an F1 score of 0.4863 on the test
set, and ranks no. 4 among all the teams.
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1 Introduction

Multi-label topic classification aims to assign one or more relevant topic labels
to a text. It can contribute to many downstream natural language processing
applications including recommendation, user profiling and information retrieval.
In the NLPCC 2018 shared task 6 “Automatic Tagging of Zhihu Questions task”,
participants are required to build a multi-label model that assigns relevant tags
to a question from a set of predefined topic tags. Specifically, participants are
given a training dataset of questions collected from Zhihu, a Chinese community
question answering website, where each question in the dataset contains a title,
an unique id and an additional description. The predefined tag set contains over
25,000 topic tags, and the task is to assign at most 5 topic tags to each question.

There are two major challenges in this task. First, the high dimensionality
and sparsity of the output space increases the difficulty of model training. Sec-
ond, the quality of the training data is inconsistent, since the questions are tagged
collaboratively by users from the Zhihu community. Only the development and
testing datasets are relabeled manually for the shared task.

To address the above challenges, we propose an ensemble model combining
four single models that are trained based on different features and algorithms.
Experimental results on the test set show that the ensemble model is more
accurate and robust than the individual models, and ranks no. 4 among all
participating teams with a F1 score of 0.4863.
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The remainder of the paper is as follows. Section 2 reviews related work on
multi-label topic classification. Section 3 details our WiseTag system including its
overall architecture, data pre-processing steps, design of each single model and
the ensemble model. Section 4 describes the evaluation setup and experimental
results, and finally Sect. 5 concludes the paper.

2 Related Work

Generally, multi-label classification algorithms [12] can be classified into two
categories, namely problem transformation methods and algorithm adaptation
methods.

Problem Transformation Methods. These methods focus on transforming the
multi-label classification problem into other existing well-studied problems.
Widely used algorithms include Binary Relevance [13] which transforms the
multi-label classification problem into a set of binary classification problems;
Calibrated Label Ranking [14] which transforms multi-label classification into
label ranking, and Random k-labelsets [15] which transforms the multi-label
classification problem into the multi-class classification problem. However, the
computation costs of these methods will be very high since there are over 25,000
labels to predict in the task at hand. We therefore do not consider these methods.

Algorithm Adaptation Methods. These methods aim to adapt existing single-label
learning algorithms to the multi-label setting. For example, K-Nearest-Neighbors
(kNN) has been extended to ML-kNN [16] for multi-label classification, Decision
Tree has been extended to ML-DT [17], Support Vector Machine (SVM) has been
extended to Rank-SVM [18], etc. After the consideration of the computational
cost of the model, we only choose kNN model for further experiments.

More recently, researchers turn to use deep learning-based models for multi-
label classification. In the recent Zhihu Machine Learning Challenge [19], all
the wining solutions adopt Convolutional Neural Network (CNN) or Recurrent
Neural Networks (RNN) models. The evaluation results show that deep learning
models achieve the state-of-the-art solution for multi-label classification problem.
Therefore, we will consider CNN and RNN model in this paper.

3 System Description

3.1 Overview

Figure 1 depicts the overall architecture of the WiseTag system. The system
takes both title and description of a question as input, and generates the top-5
topic tags along with their predicted scores as output. First, the system performs
data pre-processing including data cleaning and word segmentation. Second, the
pre-processed data are fed into four different topic tagging models, namely the
KNN model, the Information Gain (IG) model, the Keyword Matching (KM)
model, and the Deep Learning (DL) model respectively. Finally, an ensemble
model combines the four prediction results to output the top-5 predicted topic
tags and their scores.
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Fig. 1. Overview of the WiseTag system

Table 1. Samples of duplicated data

Table 2. Samples of question detail irrelevant to question titles and topic tags

3.2 Data Pre-processing

The following pre-processing steps are performed on each input question:

1. Deduplicate the training data to remove instances having the same question
title, descriptions, tag names and tag ids. Table 1 shows a duplicated data
example.

2. Remove question descriptions (question detail) that are redundant or irrele-
vant to the question titles or topic tags. Table 2 shows some samples of such
question detail which we identified based on data analysis.

3. Convert all characters to half-width and convert all characters to lowercase.
4. Perform word segmentation on question title and description using the Lan-

guage Technology Platform (LTP) [5] engine.
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5. Revise LTP’s word segmentation results based on common phrases in the
training set identified by the Pointwise Mutual Information (PMI) [8]
algorithm.

3.3 KNN Model

KNN [10] is a simple and widely used model for classification, and often proven
to be effective for text classification problems. For a given question, we first
identify its top 10 (k = 10) similar questions and their assigned tags from the
training set based on cosine similarity of TF-IDF [11] features. Then, we take
the normalized frequencies of these tags as their predicted scores for the given
question.

We observe that the KNN model performs well on short questions, but more
frequent tags tend to dominate the predictions for new questions.

3.4 Information Gain (IG) Model

Information Gain (IG) is used to measure how much information a word con-
tained in a question provides about the tag of the question. In the training phase,
the IG of each word v is first computed for each tag t, denoted as IG(v, t). It
is then normalized such that

∑
t∈T IG(v, t) = 1, where T denotes the set of all

predefined tags. In the prediction phase, the normalized IGs of all words in a
given question are summed with respect to each tag separately. The summations
are then normalized to obtain the predicted scores of the tags. The IG model
has built-in feature selection property, therefore, we consider it to be one of our
single models.

This model might suffer from over-fitting but has high interpretability
because the tags are inferred based on the occurrence of the high-IG words.
We observe that it outperforms the other single models except for the Deep
Learning model.

3.5 Keyword Matching (KM) Model

We implement a rule-based classifier based on keyword matching. This model
is motivated by our observation that some questions are simply labeled using
keywords they contained. The KM model counts the predefined tags a given
question contains, and takes the normalized tag frequencies as their predicted
scores for the question. Table 3 shows some sample questions with their matched
keywords (highlighted in red) and predicted tags.

In general, the KM model is able to identify some very specific topics, such
as human and school names, thus serves as a good single model candidate for
our ensemble model.
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Table 3. Samples of keyword matching model prediction

3.6 Deep Learning (DL) Model

Deep learning models often report the state-of-the-art performance in text clas-
sification tasks, so it is necessary to include one in our ensemble model. During
the initial investigation, several DL models including CNN [3], RNN [23] and
fastText [2] have been attempted on the given dataset. However, preliminary
experimental results showed that RNN and fastText model are difficult to con-
verge, which we attribute to the high dimensionality of the output layer. Thus,
we choose CNN as our deep learning model for further experiments.

Figure 2 depicts the architecture of our CNN model, inspired by the 1st
Place Solution for Zhihu Machine Learning Challenge [9]. The first layer is an
embedding layer with dimension (150 * 50), which allows a maximum of 150
words as input and the embedding size is set to 50. Note that 150 words are
able to capture enough information, since the average lengths of question title
and description are 13.17 and 70.84 words respectively. On top of the embedding
layer, there are five parallel convolution layers with kernel sizes ranging from 1
to 5. The output of the convolution layers are concatenated and fed into a dense
layer. A dropout layer with rate 0.5 is added after the dense layer to avoid over-
fitting. The dense layer is fully connected with the output layer with sigmoid
as the activation function. The embedding layer adopts a word2vec embedding
pre-trained using the given training set with Gensim [6]. The CNN model is
implemented in the Keras framework [7].

3.7 Ensemble Model

To improve classification accuracy, WiseTag uses an ensemble model to combine
the four aforementioned models M = {KNN, IG,KM,DL} as follows:

ensemble model =
∑

m∈M

wm ∗ m (1)

where wm is the weight assigned to model m.
The final evaluation only accepts up to 5 predicted labels per question. Hence,

we output a tag only if it is ranked among the top-5 by our system with a pre-
dicted score above a decision threshold. In order to obtain the optimized weights
of the different models and the decision threshold, we use the tool Hyperopt [1]
for parameter tuning. The Hyperopt supports Tree-structured Parzen Estima-
tors (TPE) algorithm, which is better than random search and grid search [20].
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Fig. 2. CNN architecture

4 Experiments

4.1 Dataset

The original training set contains 721,608 instances, which are questions col-
lected from Zhihu. Each question contains a title, an unique id and an additional
description; and is tagged collaboratively by users from the Zhihu community.
The average lengths of question title and description are 22.23 and 116.29 char-
acters respectively, or 13.17 and 70.84 words respectively after performing word
segmentation. There are 3.13 tags per question on average. After deduplication,
only 721,531 instances are left for further training. The development and test
sets contain 8,946 and 20,596 questions respectively, with their labels manually
relabeled for the evaluation task at hand.

4.2 Evaluation Metrics

Each question in the test set will be assigned at most 5 predicted topic tags,
sorted by their predicted relevant scores (or probabilities). Performance is
evaluated based on the F1 measure with positional weighted precision. Let
correct numPi denote the number of correctly predicted tags at position i, and
predict numPi denote the number of predicted tags at position i. The precision,
recall and F1 measure are computed as follows:

F1 =
2 ∗ P ∗ R

P + R
(2)

P =
∑5

i=1 correct numPi/log(i + 2)
∑5

i=1 predict numPi/log(i + 2)
(3)

R =
∑5

i=1 correct numPi

ground truth num
(4)
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4.3 Experimental Results

In order to understand the effectiveness of different modules and parameters, we
carry out an extensive series of experiments.

We first study the impact of different pre-processing tasks on classification
performance based on the validation set, where the training data is split into two
parts, with 90% for training, and the remaining 10% for validation. Specifically,
three pre-processing settings are evaluated:

– raw ltp: which uses the LTP engine for word segmentation.
– character conversion + raw ltp: which performs character conversion (half-

width and lowercase normalization) and uses the LTP engine for word seg-
mentation.

– character conversion + raw ltp + PMI : which performs character conversion,
uses the LTP engine for word segmentation, and then performs the proposed
word segmentation revision based on common words identified by the PMI
algorithm.

Table 4 presents the results, which show that the proposed revised word seg-
mentation with character conversion + raw ltp + PMI settings achieves con-
sistent improvement over the raw ltp method under different neural network
architectures (Table 5).

Table 4. Impact of pre-processing tasks on classification performance

Pre-processing tasks Dense layer dimension Validation score

raw ltp 1024 0.4015

character conversion + raw ltp 1024 0.4031

character conversion + raw ltp + PMI
(proposed)

1024 0.4044

raw ltp 2048 0.3751

character conversion + raw ltp 2048 0.3758

character conversion + raw ltp + PMI
(proposed)

2048 0.3779

Next, we empirically evaluate the impact of different parameters on the CNN-
based DL model. The results with IDs (2, 3, 4) in Table 4 show the effects
of varying the filter number, which produces the best performance when set
to 512. The results with IDs (1, 4) show that with the same filter number, a
larger kernel size increases classification performance. According to [22], Adam
optimizer performs better than Stochastic Gradient Descent (SGD), so we only
evaluate Adam with different numbers of the restarts. The results with IDs (4,
5) show that Adam [21] with 2 restarts achieves better validation score than
Adam optimizer under the same parameter settings.
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Table 5. Impact of different parameters on the DL model

ID Filter kernel size Filter number Optimizer Validation score

1 2, 3, 4 512 Adam 0.4067

2 1, 2, 3, 4, 5 1024 Adam 0.4066

3 1, 2, 3, 4, 5 256 Adam 0.4045

4 1, 2, 3, 4, 5 512 Adam 0.4083

5 1, 2, 3, 4, 5 512 Adam (with 2 restarts) 0.4157

Table 6. Comparison of different single models

Data set Model Precision Recall F1

Validation KM 0.1846 0.2005 0.1922

KNN 0.3949 0.3141 0.3499

IG 0.3931 0.3784 0.3856

DL 0.4373 0.3985 0.4170

Dev KM 0.2395 0.2618 0.2501

KNN 0.4327 0.3317 0.3755

IG 0.4141 0.3999 0.4069

DL 0.4681 0.4218 0.4437

This finding is consistent with that in [4], which reveals that Adam with 2
restarts and learning rate annealing is faster and performs better than SGD with
annealing. In particular, we set the learning rate to 0.001 and train the model
until convergence. We then halve the learning rate and restart by loading the
previous best model.

The optimal parameters of the CNN model we adopted are {‘batch size’:
128, ‘Filter number’: 512, ‘Kernel size’: (1, 2, 3, 4, 5),‘Dense layer size’: 512,
‘Threshold’: 0.15 }.

Table 7. Evaluation on dev and test set

Data set Model Precision Recall F1

Test Ensemble Model (1) 0.5048 0.4692 0.4863

Ensemble Model (2) 0.4878 0.4839 0.4858

Best single model (DL) 0.4715 0.4258 0.4475

Dev Ensemble Model (1) 0.5041 0.4646 0.4835

Ensemble Model (2) 0.4870 0.4800 0.4835

Best single model (DL) 0.4681 0.4218 0.4437
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Table 8. Model weights in ensemble model

Model/weight KNN IG KM DL Threshold

Ensemble (1) 0.28 0.29 0.15 0.28 0.0759

Ensemble (2) 0.3445 0.2803 0.1432 0.2318 0.07812

Table 9. Evaluation results of the task 6 (Top-10 teams)

Rank Team Score

1 Tomwindows 0.6271

2 YiWise-QT 0.5840

3 NEUTag 0.5194

4 WILWAL 0.4863

5 Team Wang 0.4840

6 Dream driver 0.4536

7 iipnku 0.3981

8 HCY FANS 0.3756

9 scau AT 0.3404

10 CQUT 301 1 0.3383

... ... ...

In Table 6, we give the comparisons of different single models. The CNN-
based DL model outperforms other models on both validation and dev datasets,
while KNN and IG achieve comparable results.

Finally, we compare the performance of the ensemble models and the single
models as shown in Table 7. Clearly, the ensemble models achieve significantly
better results than the best single model on both dev and test datasets. Note
that the difference between Ensemble Model (1) and Ensemble Model (2) is that
the former use the weights optimized by the Hyperopt tool, while the later uses
the weights designed based on rule of thumb that the weight is in proportion
to the model’s validation score. The weights of ensemble model are shown in
Table 8. The final evaluation results of task 6 are presented in Table 9. Our team
WILWAL ranks no. 4 with an F1 score of 0.4863 (evaluated on Ensemble Model
(1)) on the test set.

5 Conclusion

This paper describes the proposed WiseTag system which performs multi-label
topic classification based on an ensemble model. This ensemble model is built
upon four diversified models, including: a KNN-based model, an Information
Gain-based model, a Keyword Matching-based model and a Deep Learning-
based model. Experimental results on the NLPCC-2018 shared task 6 show that



488 G. Liang et al.

the proposed model is effective, and ranks no. 4 with an F1 score of 0.4863.
In our future work, we plan to investigate into semi-supervised approaches to
multi-label topic classification.
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