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Abstract. This paper describes the system we submitted to Task 5 in
NLPCC 2018, i.e., Multi-Turn Dialogue System in Open-Domain. This
work focuses on the second subtask: Retrieval Dialogue System. Given
conversation sessions and 10 candidates for each dialogue session, this
task is to select the most appropriate response from candidates. We
design a memory-based matching network integrating sequential match-
ing network and several NLP features together to address this task. Our
system finally achieves the precision of 62.61% on test set of NLPCC
2018 subtask 2 and officially released results show that our system ranks
1st among all the participants.
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1 Introduction

Recently, more and more attention is paying to building open domain chat-
bots that can naturally converse with humans on vary topics. Existing work on
building chatbots includes generation-based methods [1–3] and retrieval-based
methods [4–7]. Compared to generation-based chatbots, retrieval-based chatbots
enjoy the advantages of informative and fluent responses, because they select a
proper response for the current conversation from a repository.

Different from the single-turn conversation, multi-turn conversation needs to
consider not only the matching between the response and the input query but
also matching between the response and context in previous turns. The chal-
lenges of the task are how to identify important information in previous utter-
ances and properly model the utterances relationships to ensure the consistency
of conversation.

There have been many attempts to address these challenges where the state-
of-the-art methods include dual LSTM [4], Multi-View LSTM [6], Sequential
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Matching Network (SMN) [7] and so on. Among them, SMN improves the lever-
aging of contextual information by matching a response with each utterance in
the context on multiple levels of granularity with a convolutional neural network,
and then accumulates the matching vectors into a chronological order through
a recurrent neural network to model sequential relationships among utterances.
Although SMN model has achieved remarkable results, there are still problems
of inconsistency between response and context. On the one hand, the context
of the dialogue may sometimes be complex. For example, some utterances are
interrelated and some are even reversed. On the other hand, important context
cues require global information to be captured.

In this work, based on SMN, we develop a novel way of applying multiple-
attention mechanism, which is proven to be effective in multiple tasks such as
sentiment analysis [8,9], dependency parsing [10] and coherence modeling [11].
Different from the SMN that only considers the sequential relationships of the
context, our method also synthesizes important features in complex context.
Besides, considering the effectiveness of NLP features in some retrieval tasks
[12], we also design several effective NLP features. Specifically, our framework
first adopts matching vectors to produce the memory. After that, we pay multiple
attentions on the memory and nonlinearly combine the attention results with a
recurrent network, i.e. Long Short-term Memory (LSTM) [13] networks. Finally,
we combine the output of the LSTM network with the output of SMN and NLP
features to calculate the final matching score. Our system finally achieves the
precision of 62.61% on the test set of NLPCC 2018 Task 51 and ranks 1st among
all the participants.

The rest of this paper is structured as follows: we describe the system archi-
tecture and detailed modules in Sect. 2, and present the experimental results in
Sect. 3. Finally, Sect. 4 presents our conclusion and future work.

2 The Approach

2.1 Model Overview

The architecture of our model is shown in Fig. 1, which consists of three main
modules, i.e., SMN, MBMN and NLP. The left red wire frame is sequential
matching network (SMN) module, which is based on [7]. It is designed to identify
important information in previous utterances and model the sequential relation-
ships in context. Considering that SMN may not capture implied and complex
contextual features, we design the memory-based matching network (MBMN)
module, i.e., the middle green wire frame. As shown in the right blue wire frame,
we also design several effective NLP features in NLP features module since it is
proved to be effective in some retrieval tasks. Finally, we concatenate the out-
puts of these three modules in the matching prediction layer to calculate the
final matching score. Next we give detailed description.

1 http://tcci.ccf.org.cn/conference/2018/dldoc/taskgline05.pdf
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Fig. 1. System architecture of our approach. The dotted lines on MBMN module indi-
cate the memory building is alternative.

2.2 Sequential Matching Network (SMN)

We follow [7] and design the SMN module. The source code2 of SMN is released
by [7]. This module has two advantages: (1) identify and extract semantic struc-
tures that are useful for response selection in each utterance and (2) model
chronological relationships of the context. As shown on the left of Fig. 1, this
module is divided into two layers: utterance-response matching layer (first layer)
and matching accumulation layer (second layer). The two layers reflect the above
two advantages respectively and their implementations are shown as follows:

• Utterance-Response Matching Layer: This layer matches a response candidate
with each utterance in the context on a word level and a segment level,
and the important matching information from the two levels is distilled by
convolution, pooling and then encoded into a matching vector.

• Matching Accumulation Layer: We feed the matching vectors into the match-
ing accumulation layer where they are accumulated in the hidden states of a
recurrent neural network with gated recurrent units (GRU) [14] following the
chronological order of the utterances in the context.

2 https://github.com/MarkWuNLP/MultiTurnResponseSelection.
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2.3 Memory-Based Matching Network (MBMN)

The SMN model only considers semantic structures and chronological relation-
ships in utterances, ignoring the important features in complex context. Herein,
we design MBMN module to distill cue information that should be captured by
global context information and some important contextual information that have
long-distance dependence on the query. These cue and important information are
captured and retained by memory.

2.3.1 Memory Building
In order to explore the effectiveness of memory, we use two different ways to
build memory: matching vectors memory (MVM) and sequence matching vectors
memory (SMVM). We define the representation of memory as [c1, . . . , cn] and
their implementation are shown as follows:

• Matching Vectors Memory (MVM): Suppose that matching vectors
[v1, . . . , vn] is the output of the first layer in SMN module, we directly use
the matching vectors as memory vectors, i.e., [c1, . . . , cn] = [v1, . . . , vn].

• Sequence Matching Vectors Memory (SMVM): MVM simply uses the match-
ing vectors as memory, which ignores the sequential features in the context.
Considering the sequential features dominate in dialogue utterances, we use
the hidden states of final GRU in second layer and utterance GRU in first
layer of SMN module to build the memory. Then, [c1, . . . , cn] is defined as

ci = tanh(W1,1hui,nu
+ W1,2hi + bi) (1)

where W1,1 ∈ R
q×p, W1,2 ∈ R

q×q and b1 ∈ R
q are parameters, p is the hidden

size of utterance GRU, q is the hidden size of final GRU, hi and hui,nu
are

the i-th hidden states of final GRU and the final hidden state of the i-th
utterance GRU respectively.

2.3.2 Multiple Attentions on Memory
To accurately select the candidate response, it is essential to: (1) correctly distill
the related context information from its utterance-response matching memory;
and (2) appropriately manufacture such information as the input of the matching
prediction. We employ multiple attentions to fulfil the first aspect, and a recur-
rent network for the second aspect which nonlinearly combines the attention
results with LSTMs.

Particularly, we employ a LSTM to update the episode e (i.e., hidden state
of LSTM) after each attention. Let et−1 denote the episode at the previous time
and st is the current information attended from the memory C, and the process
of updating et is as follows:

it = σ(Wist + Uiet−1) (2)

ft = σ(Wfst + Ufet−1) (3)
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ot = σ(Wost + Uoet−1) (4)

g = tanh(Wcst + Ucet−1) (5)

Ct = f � Ct−1 + i � g (6)

ht = ot � tanh(Ct) (7)

where Wi,Wf ,Wo,Wc ∈ R
h×c, Ui, Uf , Uo, Uc ∈ R

h×h are parameters, h is the
hidden size of LSTM and c is the size of memory vector ci, a zero vector is
denoted as e0.

For calculating the attended information st at time t, the input of an atten-
tion layer includes the memory slices ci(1 ≤ i ≤ N), N is the number of utter-
ances, the previous episode et−1 and hr,n, which is the final hidden state of the
response GRU in the first layer of SMN module. We first calculate the attention
score of each memory slice ci as follows:

gti = vT tanh(Wcci + Weet−1 + Wrhr,n + battn) (8)

where Wc, We, Wr and battn are parameters.
Then we calculate the normalized attention score of each memory slice as:

αti =
exp(gti)

∑T
j=1 exp(gtj)

(9)

Finally, the inputs to a LSTM at time t are the episode et−1 at time t − 1 and
the content st, which is read from the memory as:

st =
N∑

i=1

αtici (10)

2.4 NLP Features

This task provides 10 candidate responses corresponding to the context in test
dataset and participants are required to rerank the candidates and return the
top one as a proper response to the context. We connect all utterances as a
post and measure the matching level of the post and its candidate response.
We design several traditional NLP features to capture the relevance between
the post context and their candidate response. The details of these features are
shown as follows:

• Word Matching Feature: Word is the basic unit of sentence and the matching
of word level benefits the matching of sentence level. Given the post and
response as A and B, we record the matching information using the following
ten measure functions: |A|, |B|, |A∩B|, |A∩B|/|A|, |A∩B|/|B|, |A−B|/|A|,
|A − B|/|B|, |A ∩ B|/|A ∪ B|, |A ∪ B| − |A ∩ B|/|A ∪ B|, ||A| − |B||, where
|A| stands for the number of non-repeated words in A, |A − B| means the
number of non-repeated words found in A but not in B, |A ∩ B| stands for
the set size of non-repeated words found in both A and B, and |A∪B| means
the set size of shared words found in either A or B.
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• Character Matching Feature: Similar to word matching, all sentences are
treated as the set of single-character representations, then we use above ten
measure functions to represent character matching.

• Unigram Feature: We extract unigram to represent each sentence, and each
vector stores the corresponding TF-IDF of the words in the sentence. We
adopt kernel functions to calculate sentence pair matching score. Here we
use two types of kernel functions: linear and non-linear. The liner functions
contain Cosine, Chebyshev, Manhattan, and Euclidean. And the non-liner
functions contain Polynomial, Sigmoid and Laplacian.

2.5 Matching Prediction

The representations of above three modules described in Sects. 2.2, 2.3 and 2.4
are concatenated (denoted as [p1, p2, p3]) to calculate the final matching score
g(u, r). We define ui represents a conversation context, ri represents a response
candidate and yi ∈ {0, 1} denotes label. Then we use softmax to obtain the final
matching score g(u, r) as follows:

g(u, r) = softmax(W2[p1, p2, p3] + b2), (11)

where W2 and b2 are parameters.
We learn g(u, r) by minimizing cross entropy with dataset D. Let Θ denotes

the parameters, then the objective function L(D,Θ) of learning is formulated
as:

−
|D|∑

i=1

[yilog(g(ui, ri)) + (1 − yi)(1 − log(g(ui, ri)))] (12)

2.6 Parameter Learning

All models are implemented using Tensorflow. We train word embeddings on
the training data using word2vec [15] and the dimensionality of word vectors is
set as 200. As previous works did [7], we set the hidden size of utterance GRU
and response GRU as 200, window size of convolution and pooling as (3, 3), the
number of feature maps as 8 and the dimensionality of matching vectors as 50.
Different from [7], we tune the hidden size of final GRU in second layer of SMN
module in [50, 100, 200, 300] and choose 200 finally. The LSTM in the MBMN
module uses a hidden size of 200. We try the number of attention cycles in [1, 3, 5,
7, 9] and set 5 finally. The parameters are updated by stochastic gradient descent
with Adam algorithm [16] and the initial learning rate is 0.001. We employ early
stop as a regularization strategy. Models are trained in mini-batches with a batch
size of 256. Hyperparameters are chosen using the validation set.

3 Experiments

3.1 Datasets

Specifically, this task provides 5, 000, 000 conversation sessions containing con-
text, query and reply as the training set and extra 10, 000 conversation sessions
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only contain context and query as the test set. Participants are required to select
a appropriate reply from 10 candidates corresponding to the sessions in test set.
Examples of the datasets are shown in Table 1.

Table 1. Data format of multi-turn response selection examples.

We randomly split the data into 4,960,000/40,000 for training/validation.
For each dialogue in training and validation set, we take the reply as a posi-
tive response for the previous turns as a context and randomly sample another
response from the 5 million data as a negative response. The ratio of the posi-
tive and the negative is 1:1 in training set, and 1:9 in validation set. The word-
segmentation is obtained with jieba3. We set the maximum context length (i.e.,
number of utterances) as 10. We pad zeros if the number of utterances in a con-
text is less than 10, otherwise we keep the last 10 utterances. Table 2 gives the
statistics of the training set, validation set and test set.

Table 2. Statistics of the training set, validation set and test set.

Train Val Test

# context-response pairs 9.92M 400K 100K

# candidates per context 2 10 10

# positive candidates per context 1 1 1

Max. # turns per context 86 50 34

Avg. # turns per context 3.10 3.07 3.10

Max. # words per utterance 135 93 94

Avg. # words per utterance 5.97 6.22 6.28

To evaluate the performance, given 10 candidates, we calculate precision at
top 1.
3 https://github.com/fxsjy/jieba.

https://github.com/fxsjy/jieba
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3.2 Experiments on Training Data

In order to explore the effectiveness of each module, we perform a series of
experiments. Table 3 lists the comparison of different modules on training set.
We observe the following findings:

(1) The MBMN(SMVM) performs the best among all single models. The per-
formance of MBMN(MVM) is lower than SMN. The possible reason may be
that SMN captures the sequential relationship of utterances in the context
and sequential relationship plays a dominant role in this dialogues context.

(2) The memory-based matching modules are quite effective. The combined
model MBMN(MVM)+SMN performs better than any single model. It indi-
cates that the memory-based matching module is able to distill the cue
information captured by global information in complex context rather than
sequential context alone.

(3) The performance of model MBMN(MVM)+SMN is comparable to that of
MBMN(SMVM)+SMN. It shows that the MBMN(SMVM) model itself has
taken advantage of sequential features and its combination with SMN may
not significantly improve the performance.

(4) The combination of three modules, i.e., MBMN(MVM)+SMN+NLP,
achieves the best performance, which proves the effectiveness of our designed
NLP features.

Therefore, the system configuration for our final submission is the combined
model of MBMN(MVM)+SMN+NLP.

Table 3. Performance of different modules on validation set. (MVM) means the model
based on matching vectors memory, (SMVM) means the model based on sequence
matching vectors memory and “+” means module combination.

Model Precision (%)

Single model NLP features 39.67

SMN [ACL2017] 61.76

MBMN(MVM) 60.03

MBMN(SMVM) 61.97

Combined model MBMN(MVM)+SMN 62.11

MBMN(SMVM)+SMN 62.08

MBMN(MVM)+SMN+NLP 62.26

MBMN(SMVM)+SMN+NLP 62.16

3.3 Results on Test Data

Table 4 shows the results of our system and the top-ranked systems provided by
organizers for this Retrieval Dialogue System task. Our system finally achieves
the precision of 62.61% on the test set and ranks 1st among all the participants.
This result validates the effectiveness of our model.
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Table 4. Performance of our system and the top-ranked systems in terms of precision
(%). The numbers in the brackets are the official rankings.

Team ID Precision (%)

ECNU 62.61 (1)

wyl buaa 59.03 (2)

YiwiseDS 26.68 (3)

4 Conclusion

In this paper, we design three modules of sequential matching network, memory-
based matching network and NLP features to perform multi-turn response selec-
tion in retrieval dialogue system. The system performance ranks 1st among all
the participants. In future work, we consider to design more effective memory to
incorporate the location and inner semantic information of context in dialogues.
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