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Information Retrieval	
l  IR is the process of finding desired information that is

 relevant to a user’s information need. 
l  By nature IR is a cognitively situated task involving

 user’s continuous interaction, learning and decision
 making about information. 
l  Relevance 
l  Text understanding 
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Quantum inspired IR models 
  - Pioneering work by Keith van Rijsbergen 	

van Rijsbergen “Quantum Haystacks”, Salton Award Lecture, SIGIR2006 4 



 
	

“one has a formal mechanism in which logics and probability theory arise
 simultaneously and are derived simultaneously” 
- J. von Neumann 
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van Rijsbergen’s view 

l  Logical, vector space, probabilistic and language models can
 be formulated in a unified framework of QT 

l  Retrieval from incompatible perspectives (Principle of
 Uncertainty) 
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Milestones � 

Development of Quantum IR
 formal models  

Quantum Language 
Models (QLMs) 

 

Original QLM  
 
 

Adaptive QLM 
  

Quantum Language 
Models in Neural Network 
structures 
 

NN-based QLM 
 
 

Tensor space QLM 
 
 

Quantum Analogy 
based IR Methods  

 

Double Slit  
 
 

Photon Polarization 
 
Quantum 
measurement 

What’s missing here:  
Are these simply a try-out of another apparent relevant theory in IR? Is
 there a fundamental quantum-like structure in IR and in what aspects,
 so as to the QM framework is necessary? 



A Quantum Cognitive View of IR	
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Quantum 
probability 
theory

Quantum 
cognition

Information retrieval

User interaction 
decision making

Text 
understanding 

•  “quantumeness” of users in relevance decision making

•  Text representation in line with human understanding of text



Quantum Cognition 
l  Quantum Theory – generalised theory of probability. 
l  Human decision-making under uncertainty is more

 quantum-like rather than classical. 
l  Quantum Cognition – offers an alternative way to build

 probabilistic models for human decision-making
 under uncertainty. 

l  Utilizes mathematical tools of Quantum Theory. 
l  Complex Hilbert space 
l  Superposition 
l  Projective measurement over subspaces 

l  PAPB ≠ PBPA  - incompatible decision perspectives 
l  Contextuality  
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Events 

l  Classic theory 
o  Universal set contains all elements  
o  Events are subsets of a universal set 

l  Quantum theory 
o  Vector space spanned by all eigenvectors 
o  Events are subspaces of a vector space 
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Example 

l  First set of questions    Event 
l  Will you vote democrat?        X 
l  Will you vote republican?    Y 
l  Will you vote independent?   Z 

l  Second set of questions 
l  Are you a moderate?    U 
l  Are you a liberal?     V 
l  Are you a conservative?    W 



Eigenvector	  Set	  1:	  
X=democrat	  
Y=republican	  
Z=independent	  

Eigenvector	  Set	  2:	  
U=moderate	  
V=liberal	  
W=	  conserva?ve	  

A Vector Space Representation 



State of the System 

l  Classic probability 
o  A probability function p assigns probabilities to 

events (subsets) 
l  Quantum probability 

o  A state vector |ψ〉 assigns probabilities to 
quantum events (subspaces), as density matrices 



Projectors 



Quantum State 

|ψ〉	  =	  S	  	  =	  State	  

|ψ〉=S = (-.6963)X + (0.6963)Y + (0.1741)Z
|ψ〉=S = (0.000)U + (-0.5732)V + (0.8194)W



Quantum State |ψ〉  
|ψ〉	  =	  S	  	  =	  State	  
	  
MX	  S	  =	  A	  	  =	  projec?on	  on	  X	  
Q(X)	  =|A|2	  	  (pr.	  vote	  democrat)	  

	  
MW	  S	  =	  B	  =	  projec?on	  on	  W	  
Q(W)=	  |B|2	  	  (pr.	  conserva?ve)	  
	  
MY	  S	  =	  C	  	  =	  projec?on	  on	  Y	  
Q(Y)	  =	  |C|2	  	  (pr.	  vote	  republican)	  
	  

|ψ〉=S = (-.6963)X + (0.6963)Y + (.1741)Z
X,Y,Z are canonical basis vectors



Q(X)=|A|2	  	  =	  |-‐.6963|2	  =	  .4848	  
(pr.	  vote	  democrat)	  
	  
Q(Y)=|C|2	  	  =	  |+.6963|2	  =	  .4848	  
(pr.	  vote	  republican)	  



Compatibility 

l  Quantum theory allows for two kinds of 
events 
o  Compatible events are described by a common 

set of eigenvectors 
o  Incompatible events are not described by a 

common set of eigenvectors 
l  Classic probability theory essentially assumes 

all events are described by a common set of 
elements --in other words, compatible. 



Test for Compatibility 
l  Incompatible events  

 (order matters) 
 MU ⋅ MX ≠ MX  ⋅ MU  

l  Compatible Events   
(order does not matter) 
MX  ⋅ MY = MY ⋅ MX  



Probability of Conjunction (A 
and B) 

Depends	  on	  order	  for	  incompa?ble	  events:	  	  	  
MA	  ⋅MB	  	  ≠	  MB	  ⋅MA	  	  



Algebra of Events 

•  Classic probability 
o  Events form a Boolean Algebra 
o  Commutative and Distributive axioms required 
o  Law of total probability obeyed 

•  Quantum probability 
o  Events form a Partial Boolean Algebra 
o  Commutative and Distributive axioms not 

necessary 
o  Law of total probability violated 
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|ψ〉	  =	  S	  =	  state	  of	  voter	  
	  
X=democrat	  
Y=republican	  
Z=independent	  
	  
U=moderate	  
V=liberal	  
W=	  conserva?ve	  
	  

Probability of X or Y 

Q(X	  or	  Y)	  =	  |MX+Y	  ⋅S|2	  =	  |-‐.6963|2+|.6969|2	  =	  .9697	  
(pr.	  vote	  democrat	  or	  republican)	  



Complementary Event ~(X or Y) 

Q(	  ~	  (X	  or	  Y))	  =	  |(I-‐MX+Y	  )⋅S|2	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  =	  Q(Z)	  	  =	  |	  MZ	  ⋅	  S|2	  	  	  =	  |.1741|2	  =	  .0303	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  =	  1	  -‐	  Q(X	  or	  Y)	  



Lüder’s Rule: Conditional 
Probabilities 

1. Project	  state	  	  
A	  =	  MX+Y	  ⋅S	  
	  

2. Normalize	  	  
ψA	  =	  A/|A|	  
	  

3. 	  Project	  to	  new	  state	  
MW	  ⋅	  ψA	  	  
	  

4. Condi?onal	  Probability	  
Q(W|X	  or	  Y)	  =	  |MW	  ⋅	  ψA	  |2	  

Q(W|	  X	  or	  Y)	  =	  .52	  
(pr.	  Conserva?ve	  given	  vote	  
democrat	  or	  republican)	  

	  



Probability of Conjunction (A 
and B) 

Depends	  on	  order	  for	  incompa?ble	  events:	  	  	  
MA	  ⋅MB	  	  ≠	  MB	  ⋅MA	  	  



Violation of Commutative 
Property 

  X and then U 
Q(X)Q(U|X)  

 = |MU ⋅MX ⋅ψ|2  
 = .2424 

 
   U and then X 
Q(U)Q(X|U)  

 = |MX ⋅MU ⋅ψ|2  
 = 0 



Violation of Law of total 
probability 

Q(Z) = .0303 and Q(~Z) = .9797 
Q(W|Z) = .50  and Q(W|~Z) = .52 
Total Prob: Q(W) = Q(Z and W)+ Q(~Z and W) = Q(Z)Q(W|Z) + Q(~Z)Q(W|~Z) = .9848  
 

But Q(W) = .6714 =  
  

Q(Z)Q(W|Z) + Q(~Z)Q(W|~Z) + Int 

Int = 2⋅Re[(MW ⋅MZ ψ)T ⋅(MW ⋅M~Z ψ)]



How does it have to do with user 
cognition and decision making? 
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Five Principles that challenge the 
Current Foundations of Cognitive 
Science 
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1. Cognitive Measures Create  
rather than Record 

30 



 
à We construct new judgments rather than 

simply record existing judgments about 
complex emotional events 

•  Quantum measures not always pre-defined 
•  Constructed at the point of interaction with 

information 
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Classic Information Processing 

Cogni?ve	  
System	  is	  in	  a	  
definite	  state	  
with	  respect	  
to	  each	  
possible	  
measure	  

Take	  a	  
Measure	  
pre-‐
defined	  
e.g.	  
Similarity	  
Preference	  
Emo?on	  
Memory	  

Simply	  record	  
what	  existed	  
immediately	  
before	  our	  
Measurement	  
was	  taken	  
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Quantum Information 
Processing 

Impose	  a	  Measure	  
e.g.	  
Similarity	  
Preference	  
Emo?on	  
Memory	  

Create	  a	  	  
definite	  state,	  
bringing	  into	  
existence	  a	  
reality	  which	  
was	  not	  there	  
before	  

Cogni?ve	  
System	  is	  in	  a	  
indefinite	  state	  
with	  respect	  to	  
each	  possible	  
measure	  
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2. Cognition behaves like a wave 
rather than a particle 
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Classic Information Processing 

G I G

Is	  the	  defendant	  Guilty	  or	  Innocent?	  

I 
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Quantum Information 
Processing 

G

I 

Is	  the	  defendant	  Guilty	  or	  Innocent?	  

G

I 

G

I 

G

I 
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à Our beliefs are superposed – we don’t jump 
from state to state, instead we experience a 
feeling of ambiguity about all of the states 
simultaneously 

 

A quantum system as superposition state in 
indefinite Hilbert space 
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3. Cognitive measures disturb 
each other, creating uncertainty 
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Views about climate change vs. 
employment 
l  If you ask someone directly about climate change, they 

may say its important and needs to be addressed 
l  However, if you first ask how important it is to keep low 

levels of unemployment, they may become less certain 
about the need to address climate change 
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à Questions are incompatibile – we can’t 
answer questions simultaneously, and one 
question disturbs the answer to another, so 
that judgments do not commute 

l  Quantum measurement disturbs/changes the 
system 

l  Quantum operators do not commute in general 
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4. Cognitive logic  
does not obey classic logic 
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Classic Information Processing 

l  You may believe a person is guilty or not 
guilty (two mutually exclusive and exhaustive events) 

l  You may feel a person is good or bad  
 (two mutually exclusive and exhaustive events) 

l  Distributive Axiom of Boolean Logic applies 
 Guilty  ∧ (Good ∨ Bad)  

 = (Guilty ∧ Good) ∨ (Guilty ∧ Bad) 
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Quantum Information 
Processing 

l  Existence of a superposed state  
à Distributive Axiom does not always apply 

Guilty  ∧ (Good ∨ Bad)  
  ≠ (Guilty ∧ Good) ∨ (Guilty ∧ Bad) 
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à Human judgments do not necessary obey 
classic Boolean logic, and comply with a more 
general quantum logic. 
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5. Classical cognitive models 
cannot account for apparent non-
compositionality of concept 
combinations 
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apple chip 

How do we ascribe meaning to such 
novel conceptual combinations?
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How..? Semantic compositionality 

The Principle of Semantic Compositionality (sometimes 
called 'Frege's Principle’)

Whole = sum of the parts 
 
…. Are conceptual combinations 
such as  “apple chip” semantically 
compositional? 
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Conceptual combination ≈ entangled photons:
	  
A,	  B	  concepts,	  polariza?on	  ≈	  sense	  (e.g.	  fruit	  sense	  of	  “apple”)	  
Polarizers	  ≈	  primes	  to	  orient	  interpreta?on	  (e.g.,	  “banana”	  orients	  subject	  to	  fruit
	  sense	  of	  “apple”)	   48 



Bridge: conceptual combination ≈
 entangled photons 

apple chip

+1 -1

+1
-1

+1

-1
+1

“dried pieces of apple that you eat”
“a nano-chipped granny smith”
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Definition of Entanglement	

 
l  a system can not be factorized into two

 subsystems via tensor product.	
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Detec%ng	  entanglement 

Can we construct a joint probability distribution Pr(A1,A2,B1,B2) from from 
the pair-wise joint distributions which are empirically collected:
 Pr(A1,B1),Pr(A1,B2),Pr(A2,B1), Pr(A2,B2) 

CHSH	  inequality:	  
|E(A1 B1) + E(A1 B2) + E(A2 B1) − E(A2 B2)| ≤ 2 
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Detecting entanglement 

N=65

Quantum probabilistic model required

CHSH	  >	  2	  	  	  
(non-‐composi?onal)
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A Quantum Cognitive View of IR	
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Quantum 
probability 
theory

Quantum 
cognition

Information retrieval

User interaction 
decision making

Text 
understanding 

•  “quantumeness” of users in relevance decision making

•  Text representation in line with human understanding of text



Quantum-like Contextuality in 
Relevance decision making 

Case Study 1 
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Relevance 
l  A cognitive concept 
l  A relation. Relevance “to” something 
l  Relates an information object to a context or a

 situation (information need) 
l  Fundamentally contextual 

l  No pre-defined and fixed values of relevance 
l  Explicit, causal: e.g. “things near me”- time, location,

 weather 
l  Implicit: e.g. relevance judgment of other documents  
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Quantum Contextuality 
l  Contextuality is a fundamental feature of quantum systems 
l  Quantum contextuality exists due to the inherently random nature of

 systems, rather than direct, causal influences.   
l  Impossible to pre-assign a value to the property of a system

 independent of the context.  
l  The value of a property comes into existence only at the instance of

 measurement.  
l  Contradiction with classical world: 

l  Any measurable property (for example, weight of a person) has values
 independent of measurement and measurement only serves to reveal its value.  

l  Any measure of randomness is only due to ignorance of certain latent variables
 of the system.  

l  Quantum Mechanics was proven incompatible with hidden variable theories.  

l  Impossibility of assigning joint probability distribution P(A1,A2,B1,B2)
 with the marginal distributions P(A1, A2) and P(B1, B2) obtained from
 different measurement contexts. 

56 



Definition of Entanglement	

 
l  a system can not be factorized into two

 subsystems via tensor product.	
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Detec%ng	  entanglement 

Can we construct a joint probability distribution Pr(A1,A2,B1,B2) from the pair-
wise joint distributions which are empirically collected:
 Pr(A1,B1),Pr(A1,B2),Pr(A2,B1), Pr(A2,B2) 

CHSH	  inequality:	  
|E(A1 B1) + E(A1 B2) + E(A2 B1) − E(A2 B2)| ≤ 2 58 



Contextuality by Default Theory 
l  Entanglement considered as contextuality at a distance 
l  CHSH inequality in quantum mechanics assumes no signalling 
l  In human cognition, there may be signalling (direct influence), denoted

 as ∆ 
|E(A1B1) + E(A1B2) + E(A2B1) − E(A2B2)| − ∆ ≤ 2  
 

∆ = |E[]−E[]|+|E[]−E[]|+|E[]−E[]|+|E[]−E[]|  
 

Ehtibar N. Dzhafarov, et al. 2017. Contextuality in canonical systems of random variables. Philosophical 
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, 2106 (oct 2017).
Ehtibar N. Dzhafarov, et al. 2016. Contextuality-by-Default: A Brief Overview of Ideas, Concepts, and 
Terminology. In Quantum Interaction, 12–23. 59 



Experiment - Material 
l  Three queries from TREC 2013 Webtrack  
l  Three document snippets were selected for each

 query.  
l  Documents were paired to form three contexts. For

 example, for documents D1, D2 and D3, we created
 three contexts - {D1, D2}, {D2, D3} and {D3, D1}.  

l  Users were asked to decide which document is more
 relevant to the query 

l  242 participants using crowdsourcing platform –
 Prolific.ac 
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Experiment -  Query 
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Experiment – Interface 
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Experiment - Results 

•  No significant order effect between documents 
in the pair -> existence of marginal joint 
probability distributions

•  CbD inequality violated -> Existence of implicit 
contextuality 63 



Case Study 2: 

Complex Hilbert Space of 
Multi-dimensional Relevance 
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Multidimensional Relevance 
l  Manifestation in terms of judgement criteria

 (Dimensions) 
l  Traditionally considered to be Topical 
l  Other factors or dimensions affecting relevance. 
l  Reliability/Credibility, Understandability/Readability,

 Novelty/Diversity, Interest, etc. 

l  Different manifestations are considered as layers
 interacting with each other1. 

l  Each of these interacting layers include inferences
 of relevance. 

 
[1] Tefko Saracevic. 1997. The stratified model of information retrieval interaction :Extension and applications. 
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l  In a search session or search task, there is combination (and

 ordering) of dimensions which user has in mind for judging
 documents. 

l  For query “Visa to the USA”, “Topicality” and “Reliability” maybe
 the predominant factors to judge documents 

l  For “Hotels in Palo Alto”, the user might go to the preferred
 websites that give a wide range of selections (“Habit” and
 “diversity” dimensions more important) 

l  For some randomly sampled 4837 sessions of Bing query log,
 we found that in 3910 or 80.84% of the sessions, one of the top
 three dimensions for the first query of the session remains in the
 top three for all the queries of the session. 

Multidimensional Relevance 

66 



Topical 

Reliable 

Reliable 

Topical 

Document 

𝑅↓1   

In	  the	  case	  a	  user	  considers	  mul?ple	  relevance	  dimensions	  for	  
judging	  a	  document,	  the	  final	  judgment	  will	  depend	  upon	  the	  
order	  of	  dimensions	  considered,	  called	  Order	  Effect	  in	  Psychology.	  	  

A user may find a document less reliable due to 
its source, but when the user considers the 
"Topicality" dimension and reads it, it might 
remove the doubts about the reliability.

Incompatible Decision Perspectives 
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Research Questions 

1)  How	  does	  considera?on	  of	  one	  relevance	  dimension
	  affect	  inference	  of	  relevance	  with	  respect	  to	  another
	  dimension.	  

2)  Can	  we	  construct	  a	  formal	  mathema?cal	  model	  of	  the
	  user’s	  underlying	  cogni?ve	  state	  in	  order	  to	  make
	  predic?ons	  about	  such	  interac?ons?	  
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Experiment - Design 

T 

P(U=+|R=+,T=+)

T RY
U

U

Y

N

P(U=-|R=+,T=+)

P(U=+|R=-,T=+)
P(U=-|R=-,T=+)

Y
N

N

Y

T 

P(R=+|U=+,T=+)

T UY
R

R

Y

N

P(R=-|U=+,T=+)

P(R=+|U=-,T=+)
P(R=-|U=-,T=+)

Y
N

N

Y
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Experiment - Material 

l  3 query-document pairs. 
l  Between-subject design: 2 groups of

 participants 
l  300 participants using crowdsourcing platform

 – Prolific.ac 
l  Documents modified so as to introduce

 uncertainty in the judgement of these
 dimensions. 
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Experiment 

l  Experiment  to study interaction between
 relevance dimensions. 

 
l  We study 3 dimensions - Topicality,

 Understandability, Reliability 

l  Asking user yes/no questions about
 dimensional relevance in different orders. 
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Experiment -  Query 

Query 1 Query 2 Query 3 
Query Terms radio waves and 

brain cancer 
symptoms of mad 
cow disease in 
humans 

educational 
advantages of 
social networking 
sites 

Information Need Look for evidence 
that radio waves 
from radio towers or 
mobile phones 
affect brain cancer 
occurrence. 
 

Find information 
about mad cow 
disease 
symptoms in 
humans. 
 

What are the 
educational benefits 
of social 
networking sites? 
 

Source TREC 2005 Robust 
Track (310) 

TREC 2013 Web 
Track (236) 

TREC 2014 Web 
Track (293) 
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Experiment – Document design 
Information Need: Look for evidence that radio waves from radio towers or 
mobile phones affect brain cancer occurrence.

Query: radio waves and brain cancer
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Complex Hilbert Space of Cognitive State

Representing User Cognitive State:

|𝑆⟩=𝑡|𝑇+⟩+√1−𝑡2 |𝑇−⟩

|T+⟩  -‐  State  of    judging  document  as  topically  relevant  

|T−⟩    -‐  State  of  judging  document  as  topically  non-‐relevant

|S⟩  -‐  User’s  state  before  the  judgement

t2    -‐  Probability  of  judging  document  as  topically  relevant
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Complex-valued Hilbert Space

Representing User Cognitive State:

|𝑈+⟩=𝑢|𝑇+⟩+√1−𝑢2 |𝑇−⟩

|𝑅+⟩=𝑟|𝑇+⟩+  √1−𝑟2   𝑒𝑖𝜃↓𝑟 |𝑇−⟩


𝑃𝑈+ 𝑇+ = |𝑈+ 𝑇+ |↑2 = 𝑢↑2 

𝑃𝑅+ 𝑇+ = |𝑅+ 𝑇+ |↑2 = 𝑟↑2 

𝑃𝑅+ 𝑈+,  𝑇+ = |𝑅+ 𝑈+ |↑2 =𝑓(𝑢,𝑟, 𝜃↓𝑟 )  
=

Query 1 Query 2 Query 3 
0.7622 0.6736 0.8993 
0.5779 0.8041 0.9701 
0.5462 0.7311 0.6456 


 

80.62 
deg  

56.79 
deg 

51.43 
deg 

75 



Experiment - Analysis 

Q1 Q2 Q3 

0.5779 0.8040 0.9701 

0.5999 0.8822 0.9633 

0.4074 0.4801 0.8887 

Effect	  of	  Reliability	  on	  Understandability	  

Q1 Q2 Q3 

0.5462 0.7311 0.6456 

0.5872 0.8332 0.7384 

0.3692 0.5261 0.0000 

Effect	  of	  Understandability	  on	  Reliability	  

P(R+,T+) Pu(R+,T+) 

Query 1 0.3775 0.4609 

Query 2 0.5207 0.4857 

Query 3 0.6442 0.5616 

Law	  of	  total	  probability	  (LTP)	  violated:	  
	  
P(R+,T+)	  =	  P(R+,	  U+,	  T+)	  +	  P(R+,	  U-‐,	  T+)	  
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Experiment - Analysis 

	  

	  
l  	   	   	  

            	  	  

•  Non-commutativity of operators 
implies presence of order effects.

•  P(T,R) ≠ P(R,T)

•  Even though we do not 
ask questions in T,R and 
R,T order, we can predict 
an order effect between 
these two dimensions!
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Reflections 
p  A	  Complex	  Hilbert	  Space	  representa?on	  of	  user’s

	  cogni?ve	  state	  for	  a	  document	  is	  introduced,	  inspired
	  from	  Quantum	  Physics.	  

p  In	  general	  there	  is	  incompa?bility	  in	  relevance
	  dimensions	  	  

p  A	  Quantum	  probabilis?c	  explana?on	  of	  the	  Order
	  effects	  arising	  from	  incompa?bility	  is	  provided.	  

78 

p A	  Hilbert	  Space	  representa?on	  of	  user’s	  cogni?ve	  state	  for	  a	  
document	  is	  introduced,	  inspired	  from	  Quantum	  Physics.	  
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Case Study 3: 

Complex Hilbert Space of 
Text Representation Learning 
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Semantic Hilbert Space for text
 representation learning 

•  A unified quantum view of different levels of 
linguistic units 

•  Sememes  à basis states {| 𝑒↓𝑗 ⟩}↓𝑗=1↑𝑛 ↑ . Basis of 
Semantic Hilbert Space

•  Words à superposition states |𝑤↓𝑙 ⟩=∑𝑗=1↑𝑛▒
𝑟↓𝑙,𝑗 𝑒↑𝑖𝜙↓𝑙,j  | 𝑒↓𝑗 ⟩ 

•  Word Composition à density matrix 𝜌=∑𝑤↓𝑖 ∈  
𝑑↑▒𝑝(𝑖)| 𝑤↓𝑖 ⟩⟨ 𝑤↓𝑖 | 

•  High Level Features à measurement probabilities  
{𝑡𝑟(𝜌| 𝑣↓j ⟩⟨ 𝑣↓j |)}↓𝑗=1↑𝑘 
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Uncertainty in Language/QT	
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•  A single word may have 
multiple meanings 

“
Apple” 

•  Uncertainty of a pure state 

•  Multiple words may be 
combined in different ways 

“Ivory 
tower” 

•  Uncertainty of a mixed state 

or +



Semantic Hilbert Space	
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Word Semantic 
Composition

High-level Semantic 
FeaturesWords Word 

Vectors

Pure States Mixed State Semantic Measurements

…

| 𝑣↓1 〉| 𝑣↓2 〉 | 𝑣↓𝑘 〉{|𝑤↓𝑖 〉} 𝜌

𝑝
↓
1 

𝑝
↓
2 


𝑝
↓
𝑘  

…
 …

…

Benyou Wang*, Qiuchi Li*, Massimo Melucci, and Dawei Song. Semantic Hilbert Space for Text Representation Learning. In WWW2019 



Semantic Hilbert Space	
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•  Complex-valued word embedding gives rise to non-linear combination of 
word features 

•  𝑊↓𝑙 =[𝑟↓𝑙,1 𝑒↑𝑖𝜙↓𝑙,1  ,…, 𝑟↓𝑙,𝑛 𝑒↑𝑖𝜙↓𝑙,𝑛  ],  amplitudes 𝑟↓𝑙,
1 ,…, 𝑟↓𝑙,𝑛  and phases   𝜙↓𝑙,1 ,…, 𝜙↓𝑙,𝑛  carries different levels of 
information 

•  The mixture process implicitly performs a non-linear combination of 
amplitudes and phases within a single word as well as between 
different words 

•  𝑟𝑒↑𝑖𝜙 = 𝑟↓1 𝑒↑𝑖𝜙↓1  + 𝑟↓2 𝑒↑𝑖𝜙↓2   à {█■𝑟=√|𝑟↓1 |↑2 
+ |𝑟↓2 |↑2 +2𝑟↓1 𝑟↓2 𝑐𝑜𝑠(𝜙↓1 − 𝜙↓2 )   𝜙=𝑎𝑟𝑐𝑡𝑎𝑛( 𝑟↓1 
𝑠𝑖𝑛𝜙↓1 + 𝑟↓2 𝑠𝑖𝑛𝜙↓2 /𝑟↓1 𝑐𝑜𝑠𝜙↓1 + 𝑟↓2 𝑐𝑜𝑠𝜙↓2  )   

•  The semantic measurements are trainable, enabling one to find 
discriminative measurement projectors in a data-driven way 



Semantic Hilbert Space	
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Quantum Probability Driven Network for Text Classification 



Semantic Hilbert Space	
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Results 



Semantic Hilbert Space	

86 

•  With  well-constraint  complex  values,  our  model  components 
can be explained as concrete quantum states at design phase

Explainability



Semantic Hilbert Space	
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Trainable semantic measurements

•  Semantic measurements are superposition states in the same 
Semantic Hilbert Space

•  We can understand measurements by referring to their neighboring 
words, while it is not easy for CNN/RNN cells 



Application to Text Matching 
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𝜌↓𝑞 

𝜌↓𝑎  

How did women’s role change during the war   ? 

the World Wars started a new era for women’s opportunities 
to… 

| 
𝑣
↓
1 
〉

| 
𝑣
↓
2 
〉

Mixture

Mixture

Question:

Answer: 

Measurement



Complex-valued Network for
 Matching	
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Experiment Result	
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•  Effectiveness 
•  Competitive compared to strong baselines
•  Outperforms existing quantum-inspired QA model



Semantic Hilbert Space	
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•  Reflections

•  Interpretability for language understanding

•  Quantum-inspired complex-valued network
•  Transparent & Post-hoc Explainable
•  Comparable to strong baselines



Case Study 4: 

An End-to-End Quantum-like 
language Model 
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Quantum	  Language	  Model	  (QLM)	

p    A	  sequence	  of	  quantum	  events.	  
p 	  	  	  The	  probability	  uncertainty	  of	  single	  terms	  or	  term	  dependencies,	  
are	  encoded	  as	  a	  density	  matrix	  𝜌	  

Our	  Approach	

p    Embedding	  vector	  as	  the	  Input	  for	  the	  global	  seman?cs  
p    Analy?cal	  solu?on	  for	  density	  matrix	  es?ma?on	  
p 	  	  	  End-‐to-‐End	  QLM	  based	  on	  Convolu?onal	  Neural	  Network	  

Neural	   Network	   based	   Quantum-‐like	   Language	  
Model(NNQLM) 



NNQLM	   achieves	   significant	   improvements	   over	   the	   original	   QLM	   and	   a	  
comparable	   result	   to	   the	   state-‐of-‐the-‐art	   approaches	   on	   Ques?on	   Answering	  
task.	  

	  

Neural	  Network	  based	  Quantum-‐like	  Language	  Model(NNQLM)	

Single	   Sentence	   Representa%on	   (Density	   Matrix	   with	   Embedding	   as	  
States)	  

                            𝜌=∑𝑖↑▒𝑝↓𝑖 𝐒↓𝑖 =∑𝑖↑▒𝑝↓𝑖 |𝑠↓𝑖 〉〈 
𝑠↓𝑖 |  	  

Joint	  Representa%on	  (Encoding	  the	  Similarity	  Features	  Between	  Q	  and	  A) 
𝑀↓𝑞𝑎 = 𝜌↓𝑞 𝜌↓𝑎 =∑𝑖,𝑗↑▒𝜆↓𝑖 𝜆_𝑗|𝑟↓𝑖 〉〈 𝑟↓𝑖 | 𝑟↓𝑗 〉〈 𝑟↓𝑗 | 	  

Convolu%on	  Neural	  Network	  (Extrac%ng	  Richer	  Similarity	  PaQerns)	  



A Quantum Cognitive View of IR	

Quantum 
probability 
theory

Quantum 
cognition

Information retrieval

User interaction 
decision making

Text 
understanding 

•  “quantum-like structures” exist in user’s cognitive state in relevance 
decision making and text understanding with uncertainty

•  Quantum probability theory, which is a generalization of classical 
theory, is necessary to cope with the “quantumness” of users 
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More Quantum-inspired IR
 models  

•  Text Representation
•  Quantum language model (QLM) for ad-hoc retrieval 
•  QLM for sentiment analysis
•  Adaptive QLM for session search
•  End-to-End QLM for question answering
•  Many-body Wave Function Inspired LM 
•  Tensor Space LM 
•  QLM for multimodal sentiment analysis 
•  Tensor-based multimodal content fusion  
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More Quantum-inspired IR
 models  

• Modelling user interaction and decision making
•  Quantum-interference inspired decision fusion 

model for multimodal sentiment analysis
•  Quantum-inspired conversational sentiment analysis 

model

97 



A Broader Quantum-Cognitive
 Perspective for Artificial Intelligence 

C
ontextual Interaction 

and D
ecision M

aking 

Quantum 
Probability and 

Logic 

Quantum-like 
Deep Neural 

Networks 

Quantum-like Cognition Features 

Quantum-Like AI Framework

Future AI that is compatible with human cognitive processing
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