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Abstract. Computational modeling of human multimodal language is
an emerging research area in natural language processing spanning the
language, visual and acoustic modalities. Comprehending multimodal
language requires modeling not only the interactions within each modal-
ity (intra-modal interactions) but more importantly the interactions be-
tween modalities (cross-modal interactions). In this paper, we present
a novel neural architecture for understanding human communication
called the Hierarchical-gate Multimodal Network(HGMN). Specifically,
each modality is first encoded by Bi-LSTM which aims to capture the
intra-modal interactions within single modality. Subsequently, we merge
the independent information of multi-modality using two gated layers.
The first gate which is named as modality-gate will calculate the weight
of each modality. And the other gate called temporal-gate will control
each time-step contribution for final prediction. Finally, the max-pooling
strategy is used to reduce the dimension of the multimodal representa-
tion, which will be fed to the prediction layer. We perform extensive
comparisons on five publicly available datasets for multimodal senti-
ment analysis, emotion recognition and speaker trait recognition. HGMN
shows state-of-the-art performance on all the datasets.
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1 Introduction

Computational modeling of human multimodal language is an upcoming research
area in natural language processing. This research area focuses on modeling tasks
such as multimodal sentiment analysis, emotion recognition, and personality
traits recognition. We utilize three modalities to Communicate our intentions:
language modality (words, phrases and sentences), vision modality (gestures and
expressions), and acoustic modality (paralinguistics and changes in vocal tones).
These multimodal signals are highly structured with two prime forms of inter-
actions: intra-modal and cross-modal interactions [11]. Intra-modal interactions
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represent information within a specific modality, independent of other modali-
ties. Cross-modal interactions represent interactions between modalities. Mod-
eling these interactions lies at the heart of human multimodal language analysis
processing [2].

Intra-modal interactions are usually captured by Convolutional Neural Net-
works or Long Short-Term Memory Networks. The methods of getting cross-
modal interactions are different. Traditional methods like TFN [14] use outer
product to fuse different modalities which is a coarse-grained fusion method
that can not capture the complex interactions between modalities. MARN(Multi-
attention Recurrent Network) [16] utilizes attention mechanism to capture the
importance between modalities, but ignores the temporal information. The ex-
isting methods do not take into account both modality and temporal information
importances.

In order to overcome the challenges of the above methods, we propose a
novel model called the Hierarchical-gate Multimodal Network(HGMN). Each
modality is first encoded by Bi-LSTM which aims to capture the intra-modal
interactions within single modality. Subsequently, we merge the independent
information of multi-modality using two gated layers. The first gate which is
named as modality-gate will calculate the weight of each modality. And the
other gate called temporal-gate will capture the importances of temporal infor-
mation. Finally, the max-pooling strategy is used to reduce the dimension of the
multimodal representation, which will be fed to the prediction layer. We per-
form extensive comparisons on five publicly available datasets for multimodal
sentiment, emotion analysis and speaker trait recognition. HGMN shows state-
of-the-art performance on all the datasets.

2 Related Work

Researchers dealing with multimodal human communication have largely focused
on three major types of models.

The first category is Early Fusion models which rely on concatenation of all
modalities into a single view to simplify the learning setting. These approaches
then use this concatenated view as input to a learning model. Hidden Markov
Models (HMM) [1], Support Vector Machines (SVM) and Hidden Conditional
Random Fields (HCRF) [10] have been successfully used for structured predic-
tion.

The second category is Late Fusion models which learn different models for
each modality and combine the outputs using decision voting [5, 12]. While these
methods are generally strong in modeling intra-modal interactions, they have
shortcomings for cross-modal interactions since these inter-modality interactions
are normally more complex than a decision vote.

The third category of models rely on collapsing the time dimension from
sequences by learning a temporal representation for each of the different modal-
ities. Such methods have used average feature values over time [8]. Essentially
these models apply conventional multi-modality learning approaches, such as
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Multiple Kernel Learning, subspace learning or co-training to the Multimodal
representations. Other approaches have trained different models for each view
and combined the models using decision voting, tensor products or deep neural
networks [9].

Different from the first category models, our proposed approach in this paper
models both intra-modal and cross-modal interactions. In addition, different
from the second and third categories, we simultaneously handle the modality
contribution and sequence contribution in time-dependent interactions by two
kinds of gated mechanisms.
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Fig. 1. Overview figure of Hierarchical-gate Multimodal Network(HGMN) pipeline.

3 HGMN Model

In this section we outline our pipeline for human communication comprehen-
sion: the Hierarchical-gate Multimodal Network(HGMN). Specifically, HGMN
consists of three main components: 1) Intra-modal Interactions Calculation. 2)
Cross-modal Interactions Identification which includes the Hierarchical-gate net-
work. 3) Prediction layer. Figure 1 shows the overview of HGMN model.
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Fig. 2. Modality-Gate(a) and Temporal-Gate(b).

3.1 Intra-modal Interactions Calculation

The input to HGMN is a multi-modality sequence consisting of language, video,
and audio for M = {l; v; a}. At first, in terms of language modality, we assume

that an utterance contains n words. wlt ∈ Rd
l

represents the t-th word in the
utterance. Then, we use a bidirectional LSTM (namely, Bi-LSTM) to encode

the forward and backward contexts. The Bi-LSTM contains the forward
−−−−→
LSTM

which reads the utterance from wl1 to wln and a backward
←−−−−
LSTM which reads

from wl
n

to wl
1
:

−→
hlt =

−−−−→
LSTM(wl

t
,
−−→
hlt−1); t ∈ [1, n] (1)

←−
hlt =

←−−−−
LSTM(wl

t
,
←−−
hlt+1); t ∈ [n, 1] (2)

We obtain an annotation for a given word by concatenating the forward hidden

state
−→
hlt ∈ Rd and backward hidden state

←−
hlt ∈ Rd as hl

t
, which summarizes the

contextual information of whole utterance centered around the word wlt. The
sequence output of the language modality is H l=[hl

1
;hl

2
; · · · ;hl

n
];H l ∈ Rn×2d.

Similarly, the vision modality and audio modality is represented as Hv ∈ Rn×2d

and Ha ∈ Rn×2d after the individual Bi-LSTM over all time-steps.

3.2 Cross-modal Interactions Identification

In this subsection, we will introduce the cross-modal interactions identification.
We have got the hidden state of each modality in last subsection. Let ht =
[hlt;h

v
t ;h

a
t ] represent the modalities concatenated hidden state of the t-th word

in the utterance ,ht ∈ R3×2d.
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Modality-Gate As the first gated layer, modality-gate will fuse different modal-
ities according to the weight of each modality. Figure 2(a) shows the construc-
tion of the modality-gate. Modality-gate calculate the weight of each modality
through two steps: 1) Calculate the mean of each modalitys hidden state. 2)Feed
the concatenated mean of three modalities to a softmax layer.

amt = Meanpooling(hmt );m ∈ {l, v, a} (3)

[slt, s
v
t , s

a
t ] = softmax([alt, a

v
t , a

a
t ]) (4)

zt = hlt · slt + hvt · svt + hat · sat ; zt ∈ R2d (5)

smt is the weight of modality m at time tth. Firstly, we multiply the features of
each modality with corresponding weight. Then, summing the weighted modal-
ities features togehter will get the fusion representation zt. Z = [z1; z2; · · · ; zn]
is the fusion represention of a sentence.

Temporal-Gate We have got the weighted modalities fusion represention by
utilizing modality-gate. Then, temporal-gate will compute the weights of every
time-steps. Figure 2(b) shows the construction of the temporal-gate. However,
there is still a problem that there is no connection between the fusion represen-
tation previously obtained. So we use a GRU layer to solve this problem.

zgrut = GRU(zt); z
gru
t ∈ Rd (6)

zgrut in the above equation is the hidden state of GRU. We set its length to be
d which is the same as the Bi-LSTM layer. The sequence output of the sentence
is Zgru=[zgru

1
; zgru2 ; · · · ; zgrun ];Zgru ∈ Rn×d.

S = softmax(ZgruT);S ∈ Rd×n (7)

M = Multiply(Zgru, ST);M ∈ Rn×d (8)

We feed Zgru to a softmax layer to calculate the importance of each time-step
information which is shown in equation (7). At last, we multiply S with Zgru to
get the weighted feature M .

3.3 Prediction

In order to ensure that no information is missed, we use two parts to predict:
1)The output of the temporal-gate. 2)The output of modality-gate. We utilize a
max-pooling layer to filter and reduce the temporal-gate features. We use Dmg

and Dtg to represent the outputs of modality and temporal gate, respectively:

Dtg = MaxPooling(M);Dtg ∈ Rd (9)

For the second part, we use a fully connected layer to filter features,

Dmg = tanh(Wm · Z + bm);Dmg ∈ R2d (10)
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Where Wm and bm are the parameters of the fully connected layer. We concate-
nate Dtg and Dmg for the final prediction:

D = Dtg ⊕Dmg (11)

pθ(i) = softmax(Wp ·D + bp) (12)

4 EXPERIMENTATION

4.1 Dateset

We benchmark HGMN’s understanding of human communication on three tasks:
1) multimodal speaker traits recognition, 2) multimodal sentiment analysis and
3) multimodal emotion recognition. We perform experimentations on five pub-
licly available datasets and compare the performance of HGMN with the perfor-
mance of competitive approaches on the same datasets.
Trait Recognition: POM(Persuasion Opinion Multimodal) dataset [6] con-
tains movie review videos annotated for the following speaker traits: confidence,
passion, dominance, credibility, entertaining, reserved, trusting, relaxed, nervous
and humorous. 903 videos were split into 600 for training, 100 for validation and
203 for testing.
Sentiment Analysis: YouTube dataset [4] contains videos from the social
media web site YouTube that span a wide range of product reviews and opinion
videos. Out of 46 videos, 30 are used for training, 5 for validation and 11 for
testing. MOUD To show that HGMN is generalizable to other languages, we
perform experimentation on the MOUD dataset [8] which consists of product
review videos in Spanish. Each video consists of multiple segments labeled to
display positive, negative or neutral sentiment. Out of 79 videos in the dataset, 49
are used for training, 10 for validation and 20 for testing. ICT-MMMO dataset
consists of online social review videos that encompass a strong diversity in how
people express opinions, annotated at the video level for sentiment. The dataset
contains 340 multimodal review videos, of which 220 are used for training, 40
for validation and 80 for testing.
Emotion Analysis: CMU-MOSEI [4] is a collection of 22634 opinion video
clips. Each opinion video is annotated with sentiment in the range [-3,3]. There
are 16188 segments in the train set, 1832 in the validation set and 4614 in the
test set.

4.2 Modality Features

Text Modality: All the datasets provide manual transcriptions. We use glove [7]
to convert the transcripts of videos into a sequence of word vectors. The dimen-
sion of the word vectors is 300. Vision Modality: Facet is used to extract
a set of features including per-frame basic, advanced emotions and facial ac-
tion units as indicators of facial muscle movement. Audio Modality: We use
COVAREP [3] to extract low level acoustic features including 12 Melfrequency
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cepstral coefficients (MFCCs), pitch tracking and voiced/unvoiced segmenting
features, glottal source parameters, peak slope parameters and maxima disper-
sion quotients.

Modality Alignment: To reach the same time alignment between different
modalities we choose the granularity of the input to be at the level of words. The
words are aligned with audio using P2FA [13] to get their exact utterance times.
Time-step t represents the t-th spoken word in the transcript. We treat speech
pause as a word with vector values of all zero across dimensions. The visual and
acoustic modalities follow the same granularity. We use expected feature values
across the entire word for vision and acoustic since they are extracted at a higher
frequency (30 Hz for vision and 100 Hz for acoustic).

Table 1. Results for sentiment analysis on the ICT-MMMO, YouTube and MOUD
dataset

Dataset
ICT-MMMO YouTube MOUD

Task
Metric A2 F1 A3 F1 A2 F1

SOTA2 73.8‡ 73.1‡ 51.7‡ 51.6‡ 81.14 80.9[

SOTA1 76.3[ 76.2[ 55.0[ 53.5[ 81.1[ 81.24

HGMN 79.6 79.4 56.3 54.2 81.6 81.6

∆SOTA ↑ 3.3 ↑ 3.2 ↑ 1.3 ↑ 0.7 ↑ 0.5 ↑ 0.4

4.3 Baseline

SVM (§) a SVM is trained on the concatenated multimodal features for classi-
fication or regression [17].
EF-LSTM(]) concatenates the inputs from different modalities at each time-
step and uses that as the input to a single LSTM.
SAL-CNN (◦) is a model that attempts to prevent identity-dependent informa-
tion from being learned by using Gaussian corruption introduced to the neuron
outputs.
TFN (•) explicitly models view-specific and cross-view dynamics by creating a
multi-dimensional tensor that captures unimodal, bimodal and trimodal inter-
actions across three modalities. It is the current state of the art for CMU-MOSI
dataset.
BC-LSTM (†) [9] is a model for context-dependent sentiment analysis and
emotion recognition.
DF (\) [5] is a model that trains one deep model for each modality and performs
decision voting on the output of each modality network.
MARN (4) [16] is a model which can discover interactions between modalities
through time using a neural component called the Multi-attention Block (MAB)
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Table 2. Results for trait recognition on the POM dataset. Human traits use short-
hand, for example, Con. represent Confident.

Dataset POM
Task Con. Pas. Dom. Cre. Ent. Res. Tru. Rel. Ner. Hum.
Metric A7 A7 A7 A7 A7 A5 A5 A5 A5 A5

SOTA2 30.0[ 33.04 38.44 31.6[ 33.54 36.94 55.74 52.24 47.34 45.6•

SOTA1 34.5‡ 35.7‡ 41.9‡ 34.5‡ 37.9‡ 38.4‡ 57.1‡ 53.2‡ 47.8‡ 47.3‡

HGMN 36.4 35.9 43.9 34.7 38.7 39.4 57.6 55.7 49.8 47.8

∆SOTA ↑ 1.9 ↑ 0.2 ↑ 2.0 ↑ 0.2 ↑ 0.8 ↑ 1.0 ↑ 0.5 ↑ 2.5 ↑ 2.0 ↑ 0.5

MAE

SOTA2 1.016† 0.993‡ 0.589† 0.942† 0.927† 0.879◦ 0.533◦ 0.597\ 0.697◦ 0.767†

SOTA1 0.952‡ 0.983† 0.835‡ 0.903‡ 0.913‡ 0.821‡ 0.521‡ 0.566‡ 0.654‡ 0.727‡

HGMN 0.947 0.978 0.831 0.901 0.906 0.813 0.517 0.565 0.650 0.721

∆SOTA ↑ 0.005 ↑ 0.005 ↑ 0.004 ↑ 0.002 ↑ 0.007 ↑ 0.008 ↑ 0.004 ↑ 0.001 ↑ 0.004 ↑ 0.006

r

SOTA2 0.395‡ 0.428‡ 0.313‡ 0.367‡ 0.395‡ 0.333‡ 0.212[ 0.255‡ 0.318‡ 0.386‡

SOTA1 0.431[ 0.450[ 0.411[ 0.380[ 0.452[ 0.368[ 0.296‡ 0.309[ 0.333[ 0.408[

HGMN 0.433 0.444 0.426 0.387 0.462 0.389 0.302 0.309 0.337 0.419

∆SOTA ↑ 0.002 ↓ 0.006 ↑ 0.015 ↑ 0.007 ↑ 0.010 ↑ 0.021 ↑ 0.006 - ↑ 0.004 ↑ 0.011

and storing them in the hybrid memory of a recurrent component called the
Long-short Term Hybrid Memory (LSTHM).

MFN(‡) [15] is a modal that explicitly accounts for both interactions in a neural
architecture and continuously models them through time.

GMFN([) [18]is a novel multimodal fusion technique called the Graph Memory
Fusion Network that dynamically fuses modalities in a hierarchical manner.

4.4 Results and Discussion

Table 1, 2, 3 summarizes the comparison between HGMN and proposed baselines
for multimodal traits recognition, sentiment analysis and emotion analysis.

The results of our experiments can be summarized as follows: HGMN achieves
the best performance for multimodal human communication comprehension. Ta-
ble 1 shows the sentiment analysis experiment results of HGMN and other base-
lines on the three datasets. Our approach has achieved the highest accuracies
and F1 in all cases. Table 2 shows the performance of the HGMN on POM
dataset, where it achieves the best performance on all 10 speaker trait classi-
fication tasks. Table 3 shows the emotion analysis experiment results on the
CMU-MOSEI dataset. Our approach has achieved the best WA and F1 in most
cases.
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Table 3. Results for emotion analysis on the CMU-MOSEI dataset

Dataset CMU-MOSEI Emotion
Task Anger Disgust Fear Happy Sad Surpris
Metric WA F1 WA F1 WA F1 WA F1 WA F1 WA F1

SOTA2 60.5• 72.04 67.0\ 73.24 60.04 89.94 66.3[ 66.6• 59.2] 61.84 53.3‡ 85.4‡

SOTA1 62.6[ 72.8[ 69.1[ 76.6[ 64.2§ 89.9[ 66.5• 71.04 60.4[ 66.9[ 53.7[ 85.5[

HGMN 63.1 73.0 69.9 77.4 64.6 89.9 67.2 71.5 61.1 67.2 54.4 86.5

∆SOTA ↑0.5 ↑0.2 ↑0.8 ↑0.8 ↑0.4 - ↑0.7 ↑0.5 ↑0.7 ↑0.3 ↑0.7 ↑1.0

5 Conclusion

This paper introduced a novel approach for multi-modality sequential learning
called Hierarchical-gate Multimodal Network(HGMN). Each modality is first en-
coded by Bi-LSTM which aims to capture the intra-modal interactions within
single modality. Subsequently, we merge the independent information of multi-
modality using two gate layers. The first gate which is named as modality-gate
will calculate the weight of each modality. And the other gate called temporal-
gate will capture the importances of every time-step. We also use a GRU layer
to capture cross-modal interactions between two gates. We systematically in-
vestigate three typical multimodal tasks, i.e., multimodal sentiment analysis,
multimodal emotion recognition and speaker traits recognition, to justify the
effectiveness of our proposed approach. Detailed evaluation on multiple multi-
modal benchmark datasets, such as CMU-MOSEI and POM, shows that our
proposed approach significantly improves the state-of-the-art.
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