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Abstract. Cross-lingual word embeddings aim at capturing common linguistic
regularities of different languages. Recently, it has been shown that these em-
beddings can be effectively learned by aligning two disjoint monolingual vector
spaces through a simple linear transformation (word mapping). In this work, we
focus on learning such a word mapping without any supervision signal. Most
previous work of this task adopts adversarial training or parametric metrics to
perform distribution-matching, which typically requires a sophisticated alternate
optimization process, either in the form of minmax game or intermediate density
estimation. This alternate optimization process is relatively hard and unstable. In
order to avoid such sophisticated alternate optimization, we propose to learn un-
supervised word mapping by directly minimize the maximum mean discrepancy
between the distribution of the transferred embedding and target embedding. Ex-
tensive experimental results show that our proposed model can substantially out-
perform several state-of-the-art unsupervised systems, and even achieves com-
petitive performance compared to supervised methods. Further analysis demon-
strates the effectiveness of our approach in improving stability.
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1 Introduction

It has been shown that word embeddings are capable of capturing meaningful represen-
tations of words [7]. Recently, more and more efforts turn to cross-lingual word em-
beddings, which benefit various downstream tasks ranging from unsupervised machine
translation to transfer learning.

Based on the observation that the monolingual word embeddings share similar ge-
ometric properties across languages [19], an underlying idea is to align two disjoint
monolingual vector spaces through a linear transformation. [23] further empirically
demonstrates that the results can be improved by constraining the desired linear trans-
formation as an orthogonal matrix, which is also proved theoretically by [22].

Recently, increasing effort has been motivated to learn word mapping without any
supervision signal. One line of research focuses on designing heuristics [16] or uti-
lizing structural similarity of monolingual embeddings [1,6,14]. However, these meth-
ods often require a large number of random restarts or additional skills such as re-
weighting [5] to achieve satisfactory results. Another line of research strives to learn



2 Pengcheng Yang, Fuli Luo, Shuangzhi Wu, Jingjing Xu, and Dongdong Zhang

unsupervised word mapping by directly matching the distribution of the transferred
embedding and target embedding. For instance, [8,17,25] implement the word mapping
as the generator in the generative adversarial network (GAN), which is essentially a
minmax game. [26] and [24] adopt the Earth Mover’s distance and Sinkhorn distance as
the optimized distance metrics respectively, both of which require intermediate density
estimation. Although this line exhibits relatively excellent performance, both the min-
max game and intermediate density estimation require alternate optimization. However,
such a sophisticated alternate optimization process tends to cause a hard and unstable
optimization problem [11].

In order to avoid the sophisticated alternate optimization process required by min-
max game or intermediate density estimation, in this paper, we propose to learn unsu-
pervised word mapping between different languages by directly minimize the maximum
mean discrepancy (MMD) [12] between the distribution of the transferred embedding
and target embedding. The MMD distance is a non-parametric metric, which measures
the difference between two distributions. Compared to other parametric metrics, it does
not require any intermediate density estimation as well as adversarial training. This
MMD-based distribution-matching at one-step results in a relatively simple and stable
optimization problem, which leads to improvements in the model performance.

The main contributions of this paper are summarized as follows:

– We propose to learn unsupervised word mapping by directly minimize maximum
mean discrepancy between distribution of transferred embedding and target embed-
ding, which avoids a relatively sophisticated alternate optimization process.

– Extensive experimental results show that our approach achieves better performance
than several state-of-the-art unsupervised systems, and even achieves competitive
performance compared to supervised methods. Further analysis demonstrates the
effectiveness of our approach in improving stability.

2 Background

Here we briefly introduce the background knowledge of learning cross-lingual word
embeddings based on the linear mapping between two monolingual embedding spaces.
Let X = {xi}ni=1 and Y = {yi}mi=1 be two sets of n and m pre-trained monolingual
word embeddings, which come from the source and target language, respectively. Our
goal is to learn a word mapping W ∈ Rd×d so that for any source word embedding
x ∈ Rd, Wx lies close to the embedding y ∈ Rd of its corresponding target lan-
guage translation. Here d represents the dimension of pre-trained monolingual word
embeddings. Furthermore, [22,23] show that the model performance can be improved
by constraining the linear transformation W as an orthogonal matrix.

2.1 Supervised Scenarios

Suppose X ∈ Rn×d and Y ∈ Rn×d be the aligned monolingual word embedding ma-
trices between two different languages, which means that (Xi,Yi) is the embedding
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of the aligned word pair. Here Xi and Yi denote the i-th row of X and Y, respec-
tively. Then, the optimal linear mapping W∗ can be recovered by solving the following
optimization problem:

W∗ = argmin
W∈Od

||XW −Y||F (1)

where Od is the space composed of all d × d orthogonal matrices and || · ||F refers to
the Frobenius norm. Under the constraint of orthogonality of W, Eq. (2) boils down to
the Procrustes problem, which advantageously offers a closed form solution:

W∗ = UV> (2)

where USV> is the singular value decomposition of X>Y.

2.2 Unsupervised Scenarios

When involving in unsupervised cross-lingual embedding, one representative line of
research focuses on learning the linear mapping W by matching the distribution of
transferred embedding and target embedding. In other words, the optimal liner mapping
W∗ can be learned by making the distribution of WX and Y as close as possible:

W∗ = argmin
W∈Od

Dist(P,Q) (3)

where P andQ denote distribution of the transferred embedding and target embedding,
respectively. Dist(·, ·) is the optimized distance metric between two distributions, which
can be adopted as Jensen-Shannon Divergence [17,8,25], Wasserstein Distance [26],
Sinkhorn Distance [24], Gromov Distance [2], and so on.

3 Proposed Method

The most crucial component of our approach is MMD-matching. In addition, the iter-
ative training and model initialization also play an important role in improving results.
We elaborate on these three components in detail as follows.

3.1 MMD-Matching

In order to avoid sophisticated alternate optimization process required by adversarial
training or intermediate density estimation, we directly minimize the maximum mean
discrepancy between the distribution of the transferred embedding and target embed-
ding. Maximum mean discrepancy (MMD) is a non-parametric metric that measures
the difference between two distributions. It does not require any intermediate density
estimation as well as adversarial training, thus avoiding a relative sophisticated alter-
nate optimization.

Same as Section 2.2, we use P andQ to represent the distribution of the transferred
embedding WX and target embedding Y , respectively, i.e., Wx ∼ P and y ∼ Q.
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Then, the difference between the distributions P and Q can be characterized by the
MMD distance between P and Q:

MMD(P,Q) = sup
f∈F

[
EWx∼Pf(Wx)− Ey∼Qf(y)

]
(4)

whereF is generally defined as a unit ball in Reproducing Kernel Hilbert Space (RKHS)
H. MMD applies a class of functions as a collection of trials to measure the difference
between two distributions. Intuitively, for two similar distributions, the expectation of
multiple trials should be close. MMD(P,Q) in Eq. (4) reaches its minimum only when
the distribution P andQ match exactly. Therefore, in order to match the distribution of
transferred embedding and target embedding as exactly as possible, the optimal map-
ping W∗ can be learned by solving the following optimization problem:

min
W∈Od

MMD(P,Q) (5)

By means of kernel trick [13], the MMD distance between the distributions P and Q
can be calculated as follows:

MMD2(P,Q) = EWx∼P,Wx′∼P [k(Wx,Wx′)]

+ Ey∼Q,y′∼Q[k(y, y
′)] (6)

−2EWx∼P,y∼Q[k(Wx, y)]

where k(·, ·) : Rd × Rd 7→ R is the kernel function in the RKHS space, such as poly-
nomial kernel or Gaussian kernel. Due to the large size of search space (monolingual
embedding space), it is intractable to directly calculate Eq. (6). Therefore, at the training
stage, Eq. (6) can be estimated by the sampling method, which is formulated as:

MMD2(P,Q) = 1

b2

{ b∑
i=1

b∑
j=1

k(Wxi,Wxj) (7)

−2
b∑

i=1

b∑
j=1

k(Wxi, yj) +

b∑
i=1

b∑
j=1

k(yi, yj)

}
where b refers to the size of mini-batch.

Previous work [22,23] has shown that imposing the orthogonal constraint to the
linear mapping W can lead to better performance. The orthogonal transformation not
only preserves the quality of the monolingual embeddings, but also guarantees the con-
sistency of Euclidean distance and the dot product of vectors. Therefore, in order to
maintain the orthogonality of W during the training phase, we adopt the same update
strategy proposed in [17]. In detail, after updating the linear mapping W with a certain
optimizer in each learning step, we replace the original update of the matrix W with
the following update rule:

W← (1 + β)W − β(WWT )W (8)

where β is a hyper-parameter. The results show that the matrix W is capable of staying
close to the manifold of orthogonal matrices4 after each update.

4 In the experiment, we can observe that the eigenvalues of the matrix W all have a modulus
close to 1.
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Algorithm 1 The training process of our approach.

Require: source monolingual embeddings X = {xi}ni=1 and target monolingual embeddings
Y = {yi}mi=1

1: Initialization:
2: Utilize the structural similarity of embeddings to learn the initial word mapping W0

3: MMD-Matching:
4: Randomly sample a batch of x from X
5: Randomly sample a batch of y from Y
6: Compress x and y to a lower feature space via Eq. (9)
7: Compute the estimated MMD distance via Eq. (7)
8: Update all model parameters via backward propagation
9: Orthogonalize linear mapping W via Eq. (8)

10: Iterative Refinement:
11: Repeat the following process:
12: Build the pseudo-parallel dictionary D via Eq. (10)
13: Learn a better W by solving Procrustes problem
14: Until convergence

3.2 Compressing Network

At the training stage, Eq. (6) is estimated by the sampling method. The bias of estima-
tion directly determines the accuracy of the calculation of the MMD distance. A reliable
estimation of Eq. (6) generally requires the size of the mini-batch to be proportional to
the dimension of the word embedding. Therefore, we adopt a compressing network5

to map all embeddings into a lower feature space. Experimental results show that the
use of compressing network can not only improve the performance of the model, but
also provide significant computational savings. In detail, we implement the compressing
network as a multilayer perceptron, which is formulated as follows:

CPS(e) = W2

(
max(0,W1e+ b1)

)
+ b2 (9)

where e refers to the input embedding and CPS(·) represents the compressing network.
W1,W2, b1 and b2 are learnable parameters.

3.3 Iterative Refinement and Initialization

Previous work has shown that refinement can bring a significant improvement in the
quality of learned word mapping [6,17]. Therefore, after the optimization process of
matching the distribution P and Q based on the MMD distance converges, we apply
the iterative refinement to further improve results. For each source word s, we apply the
currently learned linear mapping W to find its nearest target translation t̂ based on the
cosine similarity to build the pseudo-parallel dictionary D = {(s, t̂)}. Formally,

t̂ = argmax
t

cos(Wxs, yt) (10)

5 We train a specific compression network separately for each language pair.
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where xs and yt represent the pre-trained embedding of the source word s and target
word t, respectively. Subsequently, we apply the Procrustes solution in Eq. (2) on the
pseudo-parallel dictionary to learn a better word mapping. As a result, the improved
word mapping is able to induce a more accurate bilingual dictionary, which in turn
helps to learn better word mapping. The two tasks of inducing bilingual dictionary and
learning word mapping can be boosted with each other iteratively.

Another important issue is the initialization of model parameters. Considering that
an inappropriate initialization tends to cause the model to stuck in poor local opti-
mum [1,24,26], following previous work [1,26], we provide a warm-start for the pro-
posed MMD-matching. Specifically, we take advantage of the structural similarity of
embeddings to construct a pseudo-parallel dictionary, and then obtain the initial word
mapping W0 by solving the Procrustes problem. Readers can refer to [6] for the de-
tailed approach.

In summary, at the training stage, we first utilize the structural similarity of embed-
dings to obtain the initialized word mapping W0. Then, we perform MMD-matching
to match the distribution of transferred embedding and target embedding. Finally, iter-
ative refinement is adopted to further improve model performance. An overview of the
training process is summarized in Algorithm 1.

4 Experiments

4.1 Evaluation Tasks

Following previous work [17,24], we evaluate our proposed model on bilingual lexicon
induction. The goal of this task is to retrieve the translation of given source word. We
use the bilingual lexicon constructed by [17]. Here we report accuracy with nearest
neighbor retrieval based on cosine similarity6.

4.2 Baselines

We compare our approach with the following supervised and unsupervised methods.

Supervised baselines. [19] proposes to learn the desired linear mapping by minimizing
mean squared error. [23] normalizes the word vectors on a hypersphere and constrains
the linear transform as an orthogonal matrix. [21] tries to alleviate the hubness problem
by optimizing the inverse mapping. [27] refines the model in an unsupervised manner
by initializing and regularizing it to be close to the direct transfer model. [3] proposes
a generalized framework including orthogonal mapping and length normalization. [4]
presents a self-learning framework to improve model performance.

Unsupervised baselines. [25] implements the word mapping as the generator in the
GAN and [26] goes a step further to apply Wasserstein GAN by minimizing the earth
mover’s distance. [17] presents the cross-domain similarity local scaling (CSLS). [24]
incorporates the Sinkhorn distance as a distributional similarity measure, and jointly
learns the word embedding transfer in both directions.

6 We also tried CSLS retrieval and results show that our approach achieved consistent improve-
ment over baselines. Due to page limitations, we only report results with cosine similarity.
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Methods DE-EN EN-DE ES-EN EN-ES FR-EN EN-FR IT-EN EN-IT

Supervised:
[19] 61.93 73.07 74.00 80.73 71.33 82.20 68.93 77.60
[23] 67.73 69.53 77.20 78.60 76.33 78.67 72.00 73.33
[21] 71.07 63.73 81.07 74.53 79.93 73.13 76.47 68.13
[27] 67.67 69.87 77.27 78.53 76.07 78.20 72.40 73.40
[3] 69.13 72.13 78.27 80.07 77.73 79.20 73.60 74.47
[4] 68.07 69.20 75.60 78.20 74.47 77.67 70.53 71.67

Unsupervised:
[25] 40.13 41.27 58.80 60.93 - 57.60 43.60 44.53
[26] - 55.20 70.87 71.40 - - 64.87 65.27
[17] 69.73 71.33 79.07 78.80 77.87 78.13 74.47 75.33
[24] 67.00 69.33 77.80 79.53 75.47 77.93 72.60 73.47
Ours 70.33∗ 71.53∗ 79.33∗ 79.93∗ 78.87∗ 78.40∗ 74.73∗ 75.53∗

Table 1: Results of different methods on bilingual lexicon induction. Bold indicates the best
supervised and unsupervised results, respectively. “-” means that the model fails to converge
and hence the result is omitted. “*” indicates that our model is significantly better than the best
performing unsupervised baseline. Language codes: EN=English, DE=German, ES=Spanish,
FR=French, IT=Italian.

4.3 Experiment Settings

We use publicly available 300-dimensional fastText word embeddings. The size of the
parameter matrices W1 and W2 in the compressing network are [300, 1024] and [1024,
50], respectively. The batch size is set to 1280 and β in Eq.(8) is set to 0.01. We use a
mixture of 10 isotropic Gaussian (RBF) kernels with different bandwidths σ as in [18].
We use the Adam optimizer with initial learning rate 10−5. We adopt the unsupervised
criterion proposed in [17] as both an early-stopping criterion and a model selection
criterion. For a fair comparison, we apply the same initialization and iterative refinement
to all baselines.

5 Results and Discussion

In this section, we report all experimental results and conduct in-depth analysis.

5.1 Experimental Results

The experimental results of our approach and all baselines are shown in Table 1. Re-
sults show that our proposed model can achieve better performance than all unsuper-
vised baselines on all test language pairs. Compared to the supervised methods, it is
gratifying that our approach also achieves completely comparable performance. This
demonstrates that the use of MMD is of great help to improve the quality of the word
mapping. Our approach adopts a non-parametric metric that does not require interme-
diate density estimation or adversarial training. This enables the matching process of
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Models EN-ES EN-FR EN-DE EN-IT

[25] 0.28 0.36 0.51 0.37
[26] 0.41 0.42 0.71 0.36
[17] 0.26 0.28 0.43 0.29
[24] 0.49 0.61 0.67 0.54

Ours 0.21 0.27 0.35 0.24

Table 2: Standard deviation (%) of the accuracy of 10 repeated experiments. The language codes
are shown in Table 1.

the distribution of transferred embedding and target embedding to avoid sophisticated
alternate optimization, leading to the improvements in the model performance.

5.2 Effectiveness of Improving Stability

Most of the previous work requires sophisticated alternate optimization, resulting in a
relatively hard and unstable training process. This poor stability also leads to a large
variance in the model performance. In order to verify that our proposed model based
on the MMD metric can do a great favor to improving the stability, we repeat 10 sets
of experiments on the bilingual lexicon induction task with different random seeds and
calculate the standard deviation of the accuracy of these 10 sets of experiments. Table 2
presents the relevant results7.

As shown in Table 2, the baselines suffer from poor stability in the repeated ex-
periments. The variance of the accuracy of the baseline [26] reaches 0.71% in the EN-
DE language pair. In contrast, our approach is able to achieve an obvious decline in
standard deviation, which means a significant improvement in stability. For instance,
the standard deviation on the EN-DE language pair is dropped from 0.43% to 0.35%,
which powerfully illustrates the effectiveness of our approach in improving stability.
With the MMD metric, our approach is able to perform distribution-matching in one
step. This avoids the trade-off between the two optimization problems in the alternate
optimization, resulting in a significant improvement in stability.

5.3 Effectiveness of Improving Distant Language Pairs

Previous work has shown that learning word mapping between distant language pairs
remains an intractable challenge. Distant languages exhibit huge differences in both
grammar and syntax, leading that their embedding spaces have different structures.
Surprisingly, our approach can substantially outperform baselines on distant language
pairs, as shown in Table 3. For instance, on the EN-ZH language pair, our method beats
the best result of baselines by a margin of 2.4%.

Existing methods require sophisticated alternate optimization, whose performance
depends on a delicate balance between two optimization procedures during training.

7 Due to page limitations, for each language pair, we only show results in one direction because
the conclusions drawn from the other direction are the same. For example, we only show EN-
FR and ignore FR-EN. Same in Table 3, Table 4, and Figure 1.
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Models EN-BG EN-CA EN-SV EN-ZH

[25] - 17.87 - 18.07
[26] 16.47 29.33 - 22.73
[17] 22.53 35.60 32.80 26.07
[24] 25.07 40.53 38.47 29.87

Ours 27.13 42.47 39.93 32.27

Table 3: Performance of different methods on four distant language pairs. Language codes:
EN=English, BG=Bulgarian, CA=Catalan, SV=Swedish, ZH=Chinese.

Models EN-ES EN-FR EN-DE EN-IT

Full model 79.93 78.40 71.53 75.53

w/o Compression 76.87 75.93 70.73 73.47
w/o MMD-matching 71.60 72.53 68.20 71.40
w/o Refinement 55.80 65.27 61.00 58.67
w/o Initialization - - - -

Table 4: Ablation study on the bilingual lexicon induction task. “-” means that the model fails to
converge and hence the result is omitted. The language codes are shown in Table 1.

Once this training balance is not well maintained, the model performance tends to de-
grade. For instance, GAN [25] is vulnerable to mode collapse when learning word map-
ping between distant languages. For embedding spaces of a distant language pair, some
subspaces are similar between two languages, while others show language-specific
structures that are hard to align. Since it is easy for the generator to obtain high rewards
on the former subspaces from discriminator, the generator is encouraged to optimize
on the former subspaces and ignores the latter ones, which results in a poor alignment
model on language-specific dissimilar subspaces. In contrast, our approach bypasses
this issue by avoiding alternate optimization, which reduces the strict requirements for
the training balance. The MMD distance strives to directly align the global embedding
spaces of the two languages via kernel functions, which models the dissimilar embed-
ding subspace of distant language pairs more effectively, leading to better performance.

5.4 Ablation Study

In order to understand the importance of different components of our approach, here we
perform an ablation study by training multiple versions of our model with some missing
components. The relevant results are presented in Table 4.

According to Table 4, the most critical component is initialization, without which
the proposed model will fail to converge. The reason is that an inappropriate initializa-
tion tends to cause the model to stuck in a poor local optimum. The same initialization
sensitivity issue is also observed by [1,26,24]. This sensitivity issue is ingrained and
difficult to eliminate. In addition, as shown in Table 4, the final refinement can bring a
significant improvement in the model performance. What we need to emphasize is that
although the missing of MMD-matching brings the relatively weak decline in model
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Fig. 1: The performance of our approach in common words and rare words on the bilingual lex-
icon induction task. Common words are the most frequent 20,000 words, and the remaining are
regarded as rare words.

performance, it is still a key component to guide the model to learn a better final word
mapping. For instance, with the help of MMD-matching, the accuracy increases from
71.60% to 79.93% on the EN-ES testing pair. Our approach is able to avoid sophisti-
cated alternating optimization, leading to an improvement in the model performance.
In addition, the results also show that the compressing network also plays an active role
in improving accuracy. The compressing network aims to project the embedding into a
lower feature space, making the estimation of the MMD distance more accurate.

5.5 Error Analysis

In the experiment, we find that all methods exhibit relatively poor performance when
translating rare words on the bilingual lexicon induction task. Figure 1 shows the perfor-
mance of our approach on the common word pairs and the rare word pairs, from which
we can see that the performance is far worse when the model translates rare words.

Since the pre-trained monolingual word embeddings provide the cornerstone for
learning unsupervised word mapping, the quality of monolingual embeddings directly
determines the quality of word mapping. Due to the low frequency of rare words, the
quality of their embeddings is lower than that of common words. This makes the isomet-
ric assumption [6] more difficult to satisfy on rare words, leading to poor performance
of all methods on rare word pairs. Improving the quality of cross-lingual embeddings
of rare words is expected to be explored in future work.

6 Related Work

This paper is mainly related to the following two lines of work.

Supervised cross-lingual embedding. Inspired by the isometric observation between
monolingual word embeddings of two different languages, [19] proposes to learn the
desired word mapping by minimizing mean squared error. At the inference stage, they
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adopt cosine similarity as the distance metric to fetch the translation of a word. Fur-
thermore, [9] investigates the hubness problem and [10] incorporates the semantics of
a word in multiple languages into its embedding. [23] argues that the results can be
improved by imposing the orthogonal constraint to the linear mapping. There also exist
some other representative researches. For instance, [22] presents inverse-softmax which
normalizes the softmax probability over source words rather than target words and [4]
presents a self-learning framework to perform iterative refinement.

Unsupervised cross-lingual embedding. The endeavors to explore unsupervised cross-
lingual embedding are mainly divided into two categories. One line of research focuses
on designing heuristics or utilizing the structural similarity of monolingual embeddings.
For instance, [14] presents a non-adversarial method based on the principal component
analysis. Both [1] and [6] take advantage of geometric properties across languages to
perform word retrieval to learn the initial word mapping. However, these methods usu-
ally require plenty of random restarts or additional skills to achieve satisfactory perfor-
mance. Another line strives to learn unsupervised word mapping by directly perform
distribution-matching. For example, [17] and [25] completely eliminate the need for
any supervision signal by aligning the distribution of transferred embedding and target
embedding with GAN. [26] and [24] adopt the Earth Mover’s distance and Sinkhorn
distance as the optimized distance metrics respectively, which requires intermediate
density estimation. Although this line achieves relatively excellent performance, they
suffer from a sophisticated alternate optimization, which tends to cause a hard and un-
stable training process. There are also some attempts to improve distant language pairs.
For instance, [15] generalizes Procrustes analysis by projecting the two languages into
a latent space and [20] proposed to learn neighborhood sensitive mapping by training
non-linear functions.

7 Conclusion

In this paper, we propose to learn unsupervised word mapping between different lan-
guages by directly minimize the maximum mean discrepancy between the distribu-
tion of transferred embedding and target embedding. The proposed model adopts non-
parametric metric that does not require any intermediate density estimation or adversar-
ial training. This avoids a relatively sophisticated and unstable alternate optimization
process. Experimental results show that the proposed method can achieve better per-
formance than several state-of-the-art systems. Further analysis demonstrates the effec-
tiveness of our approach in improving stability.
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