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Abstract. Building personalized task-oriented dialogue system is an im-
portant but challenging task. Significant success has been achieved by
selecting the responses from the pre-defined template. However, prepar-
ing massive response template is time-consuming and human-labor in-
tensive. In this paper, we propose an end-to-end framework based on
the memory networks for responses generation in the personalized task-
oriented dialog system. The static attention mechanism is used to encode
the user-conversation relationship to form a global vector representation,
and the dynamic attention mechanism is used to obtain import local in-
formation during the decoding phase. In addition, we propose a gating
mechanism to incorporate user information into the network to enhance
the personalized ability of the response. Experiments on the benchmark
dataset show that our model achieves better performance than the strong
baseline methods in personalized task-oriented dialogue generation.

Keywords: Dialogue Generation · Task-oriented Dialogue System · Per-
sonalized Response

1 Introduction

Task-oriented dialogue systems have become increasingly important in a variety
of applications, such as reservation systems or navigation inquiry systems [1].
Earlier efforts in task-oriented dialogue systems are composed of pipeline struc-
tures (e.g., language understanding, dialogue management and language gen-
eration), where each module is designed separately and heavily relies on hand-
crafted rules [2, 3]. Inspired by the recent success of sequence-to-sequence(seq2seq)
encoder-decoder model in language generation, the end-to-end dialogue systems,
which input the dialogue history and directly output system responses, have
shown promising results based on recurrent neural networks(RNN)[4] and mem-
ory networks [5, 6].
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Although the encoder-decoder networks have made great success in task-
oriented dialogue systems, the methods only generate responses based on the
dialogue history, and cannot accommodate users with different personalities [7].
Therefore the response of the system is dull and fails to adjust the strategy of
the conversation according to the personalized information.

The personalized task-oriented dialogue system is designed to generate re-
sponses that are more user-friendly and to help users complete conversations
faster than non-personalized conversation systems [8]. In general, the personal-
ized dialogue system can extract the requirement of the user during multi-turn
interactions and then utilize personalized information to speed up the interac-
tion process. Arguably, personalization drives the task-oriented dialogue system
closer to the user’s actual information needs [9]. Significant improvements have
been achieved in the personalized system by using deep memory network with
copy mechanism [10]. Joshi et al.[7] and Luo et al. [11] utilize the memory net-
work to encode user information and conversation history to construct an end-
to-end personalized task-oriented dialogue model. Compared with the RNN en-
coder, the memory network can effectively store long-term conversation history.
Despite the effectiveness of the above methods, the personalized dialogue system
remains considerable challenges for several reasons: (1) The performance of the
previous methods is based on the selection of the numerous manual predefined
responses template, which is essentially a multi-label classification problem and
heavily relies on hand-crafted features [5]. (2) For the previous method with the
copy mechanism, the only information sent to the decoder is the global hidden
state of the encoder [12]. However, Bahdanau et al. [13] reveal that the perfor-
mance of text generation decreases rapidly as the length of the input sentence
grows, if only the global hidden vector is utilized.

To alleviate the aforementioned challenges, in this paper, we designed an
end-to-end memory network with a static and dynamic attention mechanism
that can generate personalized responses, instead of selecting from predefined
templates. The proposed method also works in an encoder-decoder framework.
The encoder is a memory network and trainable user profile embeddings are
utilized as a query to form the global hidden state of dialogue. The way to form
dialogue representation is named as static attention mechanism. The decoder is
composed of an RNN and a memory network, accounting for generating person-
alized responses. The RNN part will generate a dynamic query to the memory
network, and the memory network part utilizes the dynamic query with a care-
fully designed gating strategy to form a local representation, which will be the
input of RNN in the next time stamp. The way to produce a local representation
is termed as dynamic attention mechanism. The contributions of the paper are
summarized as follows:

1. We propose a novel framework for personalized task-oriented dialogue gener-
ation scenario. (1) In the encoding phase, the static attention mechanism can
learn the relationship between dialogue and user information to adequately
represent the global representation of the dialogue history and knowledge
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base. (2) The dynamic attention mechanism can trace the history of dia-
logue and important local features in the response generation stage.

2. As personalized task-oriented dialoguing needs meet two important objec-
tives: (1) the responses are personalized so that people feel user-friendly; (2)
the responses must solve the user requirement. To nicely integrate the two
objectives, we propose a gating strategy in the decoder stage.

3. Extensive experiments are carried out on the personalized bAbI dialog dataset
and the results demonstrate the superiority of the proposed model over state-
of-the-art competitors.

2 Related Work

End-to-end neural network methods to establish a personalized dialogue system
has attracted a lot of research interest, which is widely accepted as being divided
into task-oriented and non-task-oriented systems [9].

The seq2seq approach is very effective for building a personalized dialogue
system. Many research works focus to make dialogue agents smarter by using
user profiles. Li et al. [15] first proposed a persona-based model for dealing with
user consistency in neural response generation. Speaker models are used to cap-
ture user characteristics such as background information and speaking style. The
dyadic speaker addressee model captures the properties of the interaction be-
tween two interlocutors. Subsequently, research interest in personalized dialogue
grew rapidly. Luan et al. [16] extend the user personalization model to multi-task
learning. Yang et al. [9] proposed a method of using deep reinforcement learn-
ing to achieve user-specific conversation, which can generate object-coherence,
informative and grammatical responses. Herzig et al. [10] proposed a response
generation model that allows agents to respond to information about person-
ality traits. Zhang et al. [19] use the key-value memory network to store the
context information of conversations and users profile to implement personalized
Dialogue Agents. These methods essentially pay more attention to personaliza-
tion and user consistency. These methods can be divided into non-task-oriented
dialogue(Chit-Chat) system, which the goal is to generate personalized responses
based on user-specific information and to ensure consistency of user information
during the conversation.

For personalized task-oriented dialogue systems, Joshi et al. [7] first pro-
posed a personalized-BAbi dataset that is more user-friendly than traditional
BAbi datasets and can speed up the dialogue process based on the user informa-
tion(with recommendation ability). Among them, they proposed split-memory
network, which uses two memory networks to separately model the conversation
history and user information, and then concatenate them as input to the decoder.
The network is effective, but simply concatenate the user vector with the global
content vector sometimes it pays more attention to the personalized response and
ignores the specific goals. Luo et al. [11] later improved this model, which can
capture user preferences over knowledge base entities to handle the ambiguity
in user requests. However, both methods are based on the response selection in
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the templates, which is essentially a multi-task classification problem. However,
designing a template requires a lot of manual work, which is time-consuming
and greatly reduces scalability.

3 Method

Fig. 1. The overall architecture of our model.

As depicted in Figure 1, our model is a variant of the Mem2Seq proposed
in Madotto et al. [5]. Additionally, we propose a static multi-hop attention and
dynamic attention to improve the performance of personalized task-oriented di-
alogue systems. To better understand our approach, in subsection 3.1, we first
give the problem definition. Then, we expound our framework step by step in
subsection 3.2. Finally, the training objective of the algorithm is given in sub-
section 3.3.

3.1 Problem Definition

We use X = [x1, x2, . . . , xn] to denote the concatenation of multi-turn dialogue
history with the current utterance of user, where n is the length of X. Similarly,
we define the knowledge base tuples as K = [k1, k2, . . . , kl]. Each dialogue has
a set of user-specific information and we concatenate them as U = [u1, . . . , u`],
where ui is the i-th feature in user profile and ` is the number of features.
Specially, we further define D = [K,X, $] as a concatenation of two sets and
$ used as a sentinel. The goal of our model is to generate a response sequence
Y = [y1, . . . , ym] when given D and U , where m is the length of Y .
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3.2 Framework Structure

Our model uses a multi-hop attention-based Mem2Seq structure with copy mech-
anism as the backbone of seq2seq. It consists of two components: Memory En-
coder and the Memory Decoder networks. The memory encoder network encodes
the dialogue history and user information into a vector and sends them to the
memory decoder, which then generates a response.

Memory Encoder Network Inspired by [20], memories consist of a set of
trainable embedding matrices {Cu

1 , C
r
1 , . . . , C

r
t−1, C

u
t }, where each Cj maps to-

kens from D to a embedding vector and u, r donate for user or agent utterances.
It is well known that query as a reading head is very important in reading
memory and obtaining global content information. Thus we expect to fuse per-
sonalized information in the query so that the user information can be effectively
merged into the global representation vector and the reading pointer. Therefore
the static attention mechanism is proposed. Specifically, we donate M as
the embedding represents for U , and query vector q is the average vector of M .
Note that the dimension of q is the same Cj . Thus we can calculate the attention
weights probability at hop h by:

ph = softmax(qh × Ch
i ) (1)

where softmax(zi) = ezi/
∑

j e
zj , and × represents the multiplication of vectors

with each corresponding vector in a matrix. Then, the model reads out the
memory by the weighted sum over Ch,

oh =
∑
i

phi C
h
i (2)

in the next hop, the query is updated by using qh+1 = qh + oh. Finally, the
model obtains the global vector representation g by concatenating the last hop
of o and q:

g = o⊕ q (3)

where ⊕ is the concatenation operator. Note that g is the input for the first
decoding step.

Memory Decoder Network Since the memory network stores dialogue his-
tory and knowledge base, the memory size is often very large. Using only one
global context vector does not apply to response generation. Therefore, we pro-
pose a dynamic attention mechanism in which each generated token is ob-
tained by important features in memories. In the decoder phase, we use the
gated recurrent unit network (GRU) [21] to dynamically generate each query,
which is then used as the pointer for reading the memory to select the tokens
that need to be generated or copied. The response in personalized dialogue sys-
tems aims to achieve a personalized response while completing the goals. Thus
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we introduced a gate mechanism that allows the decoder to focus on user in-
formation for personalized responses, while focusing on contextual information
when addressing requirements.

Specifically, for decoding yt, the first step of the decoder tends to use q1 and
hidden last state ht−1 to generate the dynamic attention vector rt−1 though the
gate,

pg = σ(W1q
1 + b1)

rt−1 = ht−1 + pg × q1
(4)

where W1 and b1 are trainable parameters. Subsequently, at each token genera-
tion stage, we used rt−1 to make a dynamic attention for the memories C to
obtain vector representation l .

In the second step, for generatie yt, ht−1, l and yt−1 are sent to the GRU to
generate the new ht:

v = softmax(rt−1 ×Ci) (5)

l =
∑
i

viCi (6)

α = σ(W2(l ⊕ rt−1) + b2) (7)

ht = GRU(M(yt−1), α) (8)

where M(yt−1) donates the embedding vector of yt−1, and W2, b2 are trainable
parameters. Next, we send the generated ht as the query to the memory net-
work in the decoder. On the one hand, it produces a probability distribution all
over dialogue history and knowledge, and on the other hand it can generate a
distribution based on the word corpus. Thus, we can implement the generation
and copying of tokens. Specifically, inspired by [5], we take the multiplication
probability of the first hop in the memory network as the pointer distribution
pr. Next, we can acquire od as the content vector in the decoder, which similar
to Eq.2. The probability of generating tokens pv are obtained by passing the
content vector od and hidden state hj through a fully connected layer,

pv = softmax(W3(hj ⊕ o + b3)) (9)

where W3 and b3 are trainable parameters.

3.3 Training Objective

The training objective of our method consists of two parts, which are the stan-
dard cross-entropy loss functions:

ζ =

m∑
t=1

p(yi) log(pv(ŷi)), J =

m∑
t=1

p(yi) log(pr(ŷi)) (10)

where p(yi) and p(ŷi) are the actual word distribution and the generative word
distribution for the i-th word of the response. Overall, the final objective function
is minimized by:

L = ζ + J (11)
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4 Experimental Setup

4.1 Experimental Data

In this study, we conduct extensive experiments on the personalized bAbI dia-
logue corpus [7] to illustrate the effectiveness of our method. This is a multi-turn
dialog corpus with personalized interactions that extends from the bAbI dialogue
dataset [3]. It designs five separate tasks for the restaurant reservation task. We
give a brief introduction to each task.

Personalization Task 1: Issuing API calls. The agent must ask questions
to fill the missing fields of the user request and then generate the API-call
correctly.

Personalization Task 2: Updating API calls. The agent must change
the API call accordingly based on changes in user requirements.

Personalization Task 3: Displaying Options. Based on the user’s re-
quest, the agent uses the API call to query the knowledge base and add the
correct entity to the response. The robot must recommend the restaurant to the
user based on the user profile to accomplish this task.

Personalization Task 4: Providing extra information. The user asks
for information about the restaurant and based on his multiple needs, the robot
must learn to retrieve the correct knowledge base entity from history and cus-
tomize it to the user.

Personalization Task 5: Conducting full dialogues. This is a complete
dialogue combining all aspects of tasks 1-4.

The personalized bAbI dialogue corpus contains two sets. The full data set
contains 6000 dialogues, and the small data set contains 1000 dialogues.

4.2 Model Configurations

We give the implementation details of the model as follows: In all the experi-
ments, for equivalent the size between query and memory cells, we set the same
RNN hidden size and memory size between [64, 512]. the drop rate we set in the
range [0.1-0.5], and use the random mask in memory network as the same setting
in [12]. We choose h={1,3,6} hop to encode and decode the memory network,
and use greedy search during the response generation. Other weight parameters
are initialized by randomly sampling the values from the uniform distribution
U(-0.01, 0.01). We initial other weight parameters by random sampling from
a uniform distribution U (-0.01, 0.01). The model is trained using the Adam
optimization algorithm with a batch size of 8 and a decay rate of [0.2-0.9] [22].

4.3 Baseline Methods

To fully validate the performance of the model, we compared several strong
baselines in the task-oriented dialogue generation.
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– MemNN [7]: This method proposes to use memory network to encode
the content and user profiles, in which employs two network structures:
(1)MemNN-org the user profile concatenate in the dialogue memories of
the encoding stage. (2)Mem2Seq-split uses a split memory network to store
the user information and concatenate the hidden vectors as the final output
of the encoder. However, These methods generate the response by selecting
the templates.

– PMemN2N [11]: This method essentially similar to the basic framework
as MemNN, but it combines the dialogue style information of the same user
attribute in the encoder, which enhances the model personalization ability.

– Mem2Seq [5]: It is an end-to-end differentiable model, which the encoder
is the memory network and the decoder uses RNN to generate query and
memory network to generate response tokens. Followed by [7], we further
employ three models: Mem2Seq-org, Mem2Seq-split and Mem2Seq-
att which uses the embedding vector as the query of memory.

– GLMP[12]: This model is a variant of Mem2Seq, including global and local
encoder to share external knowledge. We add the user information in memory
cells, which the same as MemNN-org.

– Seq2Seq-att [24]: This model is the basic seq2seq method that combines
the attention and pointer mechanisms. This method is widely used in text
generation tasks.

4.4 Evaluation Metrics

Per-response/dialogue Accuracy: Per-response is based on each turn of re-
sponses, while Per-dialogue is based on an entire multi-turn dialogue. It is correct
only if the generated and actual responses are identical, which also can be consid-
ered a task completion rate. Since Bordes [7] and Luo [11] employ their models
by selecting the response from predefined candidates, directly using this met-
ric for evaluation is more challenging for our model. Therefore, we also use the
BLEU score which commonly used in the tasked-oriented dialogue generation
task [25] to verify the performance of our network.

5 Experimental Results

Table 1 shows the per-response results of the full and the small datasets re-
spectively. Methods 1-3 are based on template selection, and 4-8 are existing
start-of-the-art task-oriented dialogue generation models. Since the problem of
the generation methods is far more challenging than the template selection meth-
ods, the two types of problems cannot be directly compared. Despite this, for
tasks 1-4, our approach yielded the best results comparison for both generation
and selection methods. One can find that our method is far superior to other
comparison methods in tasks 3 and 4. For example, for task 3, our approach
improves 10.27% and 11.55% compared to the most advanced template selection
and generation methods on full and small datasets respectively. For the gen-
eration methods, our model gains 1.27% (0.82%) improvement for task 4 over
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Table 1. Evaluation Results of Per-response Accuracy.

Task 1 Task 2 Task 3 Task 4 Task 5 BLEU

SMALL SET

1 MemNN-org 98.87 99.93 58.71 57.17 77.74 -
2 MemNN-split 82.44 91.27 68.56 57.11 78.1 -
3 PMemN2N 99.93 99.95 71.52 80.79 88.07 -

4 Seq2Seq-att 98.21 95.74 70.13 78.82 76.15 84.99
5 Mem2Seq-org 98.54 97.83 70.31 89.73 80.22 91.99
6 Mem2Seq-split 98.53 97.92 71.25 90.11 80.38 92.67
7 Mem2Seq-att 99.67 99.89 72.99 91.07 82.91 94.24
8 GLMP 99.27 99.69 72.25 88.97 80.73 92.62

9 Ours 99.99 100 77.38 92.34 83.89 96.23

FULL SET

1 MemNN-org 99.83 99.99 58.94 57.17 85.10 -
2 MemNN-split 85.66 93.42 68.60 57.17 87.28 -
3 PMemN2N 99.91 99.94 71.43 81.56 95.33 -

4 Seq2Seq-att 99.42 98.82 71.78 87.73 80.41 89.23
5 Mem2Seq-org 99.88 99.87 72.13 89.91 82.19 94.23
6 Mem2Seq-split 99.92 99.90 73.64 89.80 82.38 94.11
7 Mem2Seq-att 99.96 99.98 74.18 91.01 85.39 96.20
8 GLMP 99.45 99.77 74.56 90.97 86.20 94.91

9 Ours 100 100 78.94 91.83 87.26 97.98

Mem2Seq-att (the best competitor) on the small (full) dataset. consequently,
the improvement for recommending restaurants (task 3) and providing relevant
information (task 4) according to the user information can prove that our ap-
proach can effectively utilize user information to achieve personalized responses
and accomplish user goals. Task 5 is the synthesis of tasks 1-4, which is more
complicated to evaluate. Therefore, we also give the BLEU evaluation, which
commonly used in the dialogue generation methods to prove the effectiveness of
our model. Compared to generating problems, our method achieves the highest
score in both accuracy and BLEU evaluation. For example, our method obtains
87.26% in per-response accuracy and 97.98% in BLEU on the full dataset, which
in general, much higher than those of other baselines.

Table 2. Evaluation Results of Per-dialogue Accuracy.

Task 1 Task 2 Task 3 Task 4 Task 5

Seq2Seq-att 87.2 97.0 3.7 66.7 1.2
Mem2Seq-org 97.1 97.9 6.7 70.5 2.6
Mem2Seq-split 98.3 97.6 7.4 69.9 3.3
Mem2Seq-att 99.3 99.9 8.4 70.9 5.2

Ours 100 100 8.7 71.6 5.6
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To further investigate the performance of the proposed method, following [5],
we employ per-dialogue accuracy compare with baselines on the small dataset.
As we can see from Table 2, our method achieves best per-dialogue accuracy.
Note that the Seq2Seq-att model performs poorly on per-dialogue evaluation
compared to the methods of the memory-based network(rows 2-4), especially
on tasks 3 and 5. This is due to the weak ability of Seq2Seq-att for knowledge
base query, and it is inefficient for encoding long dialogue history based on the
RNN approach. The mechanism of the memory network can effectively query
the knowledge and represent the dialogue history.

5.1 Ablation Study

Table 3. Ablation Study.

Task 1 Task 2 Task 3 Task 4 Task 5

Ours 100 100 8.7 71.6 5.6

w/s 99.9 99.9 5.9 70.9 3.7
w/d 99.4 99.9 8.1 71.2 5.3
w/g 99.9 99.9 8.5 71.3 5.4

In order to investigate the effects of each part, we perform the ablation test
on the small dataset that discarding the static attention mechanism (denoted as
w/s), the dynamic attention mechanism (denoted as w/d) and the user informa-
tion gate mechanism (denoted as w/g). Note that for the method without static
attention mechanism, we randomly initialize the query of the memory encoder
and store the user information in memory cells.

We summaries the per-dialogue results in Table 3. From the results, we can
observe that all the proposed components have a significant impact on our model.
After discarding the two attention mechanisms, the performance of the model
declined significantly, especially the static method. This is our expectation be-
cause the static attention captures the context of inter-relation between user
and dialogue while coding the context, while the dynamic attention can help
to obtain information about important local contexts for decoding. In addition,
the user-guided gating mechanism also helps to improve the effectiveness of the
model. In summary, the best performance of all experiments can be achieved by
combining all factors.

6 Conclusion and Future Work

In this paper, we introduce a novel end-to-end personalization model in task-
oriented dialog generation. Experimental results on a benchmark dataset and
further analysis indicated that our method considers and alleviates to some
extent the aforementioned challenges.
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In the future, we plan to extend the personalized task-oriented dialogue sys-
tem to cross-domain task, which can reduce labor costs and closer to actual
needs.
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