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Abstract. Domain mismatch between training data and test data often degrades
translation quality. It is necessary to make domain adaptation for machine trans-
lation tasks. In this paper, we propose a novel method to tackle Neural Ma-
chine Translation (NMT) domain adaptation issue, where a soft-domain adapter
(SDA) is added in the encoder-decoder NMT framework. Our SDA automatically
learns domain representations from the training corpus, and dynamically com-
pute domain-aware context for inputs which can guide the decoder to generate
domain-aware translations. Our method can softly leverage domain information
to translate source sentences, which can not only improve the translation quality
on specific domain but also be robust and scalable on different domains. Ex-
periments on Chinese-English and English-French tasks show that our proposed
method can significantly improve the translation quality of in-domain test sets,
without performance sacrifice of out-of-domain/general-domain data sets.

Keywords: Domain adaptation ·Machine translation.

1 Introduction

Neural machine translation (NMT) have been proved to be the current most effective
approach to the machine translation task, which basically works in an attention-based
encoder-decoder framework. Similar with the situation in statistical machine transla-
tion (SMT), NMT approach still suffers from the domain adaptation problem. Its per-
formance degrades when domain mismatches between training data and test data. Mo-
tivated by previous work on domain adaptation for SMT, most existing work on NMT
domain adaptation mainly focuses on either the data adaptation or the model adaptation.

Data adaptation can be performed either by data selection or instance weighting. For
example, [18] revisited the instance weighting method in SMT and adapted it to NMT
by assigning more weights on in-domain data and less weights on out-of-domain data
in the objective function. This resulted in translation quality improvement on in-domain
data but drop on out-of-domain data.

Model adaptation tries to transfer the model parameters to in-domain. In the work
by [6,9,15] , NMT models were pre-trained over out-of-domain or general-domain
data sets, followed by continuous training over in-domain corpus so that the model
parameters can be fine-tuned towards in-domain test sets. To avoid the overfitting in
the in-domain training stage, [5] proposed to train NMT models with the mixture of
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Fig. 1: Global overview of our model architecture.

pre-tagged training corpus where domain-specified tags were associated with source
instances. They used oversampling to balance the proportion of in-domain and out-of-
domain data. In the evaluation, the inputs also needed to be tagged into correct domains
before performing translation.

These NMT domain adaptation approaches mostly concentrate on improving the
effect of the small scale in-domain corpus when training NMT models. The more the
in-domain training corpus affects the NMT model, the better performance could be
achieved on in-domain testsets. They are a kind of static domain adaptation strategy,
where prior domain types of inputs are needed before translating. In many practical
translation tasks, the inputs always come from different domains and the domain in-
formation of each input may be not clearly described or hard to be captured. Previous
methods are not robust and scalable enough to tackle cases like this. In addition, previ-
ous methods mostly focus on training models with translation quality improvement on
in-domain test sets.

In this paper, we propose a dynamic domain adaptation approach for NMT, in which
a novel soft-domain adapter (SDA) is introduced. Our SDA can learn domain represen-
tations from the training corpus. In decoding, SDA can dynamically generate domain
context for each input sentences based on the encoder states and domain representa-
tions. As shown in Figure 1, on the basis of normal encoder-decoder NMT framework,
there is an SDA consuming the encoder outputs to compute domain context of source
inputs. Then, the decoder is fed with both the domain context and attention information
to generate target translations. With SDA, our NMT decoder can softly leverage do-
main information to guide domain-aware translations. Therefore, our method belongs
to a dynamic domain adaptation strategy, which not only can improve the translation
quality of specific domain, but also can be scalable to multiple domains even with-
out prior domain knowledge. We conducted the experiments on benchmark data sets
of IWSLT2014 English-French and IWSLT2015 Chinese-English translation tasks. Ex-
perimental results show that our model significantly improves translation qualities on
the in-domain test sets compared with NMT baselines and outperforms most of state-
of-the-art methods.

2 NMT Background

NMT is an end-to-end framework [16,1] which directly models the conditional proba-
bilityP (Y |X) of target translation Y = y1,y2,...,yn given source sentenceX = x1,x2,...,xm,
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where m and n are source and target length respectively. An NMT model consists of
two parts: an encoder and a decoder. Both of them utilize recurrent neural networks
(RNN) which can be a Long Short-Term Memory (LSTM) [7] or a Gated Recurrent
Unit (GRU) [4] in practice. In this paper, we use GRU for all RNNs.

The RNN encoder bidirectionally encodes the source sentence into a sequence of
context vectors H = h1,h2,h3,...,hm, where hi = [hi,hi], hi and hi are calculated by
two RNNs from left-to-right and right-to-left respectively. Then the decoder predicts
target words one by one with probability

P (Y |X) =
n∏

j=1

P (yj|y<j, H) (1)

Typically, for the jth target word, the probability P (yj |y<j , H) is computed as

P (yj|y<j, H) = g(sj, yj−1, cj) (2)

where g is a nonlinear function that calculates the probability of yj , and sj is the RNN
hidden state. The context cj is calculated at each timestamp j based on H by the atten-
tion network [1]
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Fig. 2: Overview of our NMT model with soft-domain adapter (SDA-NMT). All characters in
bold refers to vectors and Eyi refers to embedding of yi.

3 Our Method

In this paper, we propose to model domain distribution in the conventional NMT model.
Given a source sentenceX = x1,x2,..,xm, its target translation Y = y1,y2,..,yn, wherem
and n is source and target sentence length respectively, we define D = D1, D2, .., Dl

of l dimensions as the latent domain distribution of the source sentence where l is the
number of different domains. Di specifies the i-th dimension in D. We then introduce
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this latent variable D into NMT. The original translation procedure of Equation 1 can
be reformulated as

P (Y |X) =
∑

Di∈D
P (Y,D|X)

=
∑

Di∈D
P (Y |D,X) · P (D|X)

=
∑

Di∈D
P (y1, y2, .., yn|D,X) · P (D|X) (3)

For translation Y , it is generated as y1,y2,..,yn following the way in a conventional
sequence-to-sequence model. For domain distributionD, we design a novel Soft-domain
Adapter (SDA) for NMT to model domains of source sentences. Figure 2 sketches the
high-level overview of our SDA-based NMT model where the SDA is added between
the NMT encoder and decoder. The goal of SDA module is to learn domain representa-
tions from training data in the training phase. Then during decoding, SDA will generate
a specialized domain context for the input sentence. The decoder will take the domain
context as an extra input, further update it at each timestep and utilize it to generate
domain-aware translation. Next we will describe the SDA module in detail.

3.1 Soft-domain Adapter (SDA) Module

For each domain Di in D, we denote ei, i ∈ [1, l], as its corresponding domain repre-
sentation. 3 These representations are randomly initialized and trained during training as
latent variables. Based on these representations, the SDA first maps ei into two vectors
by a linear transformation, denoted as ki and vi,

ki =Wkei + bk (4)
vi =Wvei + bv (5)

where Wk, Wv are weight matrices and bk and bv are bias vectors. The ki is used for
indexing the corresponding domain Di and vi is used as value of Di. Similar to the
attention mechanism [1], we then calculate normalized similarity scores between the
source sentence and each Di by

wi =
exp(hT

mki)∑l
j=1 exp(h

T
mkj)

(6)

where hm is the last concatenated hidden vector from the RNN encoder. In this way, we
can get a normalized score vector, W = w1,w2,..,wl. With this score vector, a specific
domain context d for the current input can be generated by the following equations,

d̃ =

l∑
i=1

wivi (7)

d = FFN(d̃)

= max(0, d̃W1 + b1)W2 + b2 (8)
3 In the rest of this paper, the characters in bold refer to vectors.
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where W1, W2 are weight matrices and b1, b2 are biases. Equation 7 is a weighted sum
operation. FFN (feed forward network) is a non-linear layer [17] which can be described
as two convolutions with kernel size 1. We use FFN to extract more important features
in d̃. d is then used in the decoder. The top-left part of Figure 2 gives a brief description
of SDA module. Due to space limitation, the detailed decoding procedure is only illus-
trated at timestamp j. Our SDA is added between the NMT encoder and decoder. The
encoder part and attention mechanism are the same with a conventional NMT model as
described in Section 2. Next we will introduce our domain-aware decoder.

3.2 Domain-aware Decoder

We incorporate the domain context into decoder, the Equation 2 is rewritten as below,

P (yj |y<j , D,H) = g(sj , yj−1, cj ,dj) (9)

dj is updated at each decoding step j based on d, cj and dj−1.
The reason we update the domain context d at each timestep is motivated by the

observation that: mostly, some parts of the source sentence may be domain sensitive,
while other parts may be domain in-sensitive such as some function words, common
words. In decoder, we update dj by the following equation,

dj = rj ⊗ d (10)

where rj is an update gate formulated by

rj = σ(Wrcj + Urdj−1) (11)

where Wr, Ur are weight matrices, cj is the source context calculated by the attention
mechanism, σ is the sigmoid activation function and ⊗ is the element-wise multiplica-
tion. The right part of Figure 2 gives a brief description of our DA-based decoder. The
attention mechanism follows the standard structure as described in [1].

3.3 Model Training

Our NMT model is trained on the mixture of multi-domain corpus. To ensure our
SDA module can accurately learn domain representations, we propose an extra domain-
related objective function to guide the model training. In our translation task, we can
acquire the domain tag of each training instance (i.e. which sentence belongs to in-
domain and which is from out-of-domain) in advance. For each training instance, we
define a golden one-hot domain vector G with l dimension, l is the number of domains.
We calculate another cross-entropy loss between the domain weights W described in
Section 3.1 and the golden vector G,

JD(θ) =
∑

(X,D)∈S

log P (D|X) (12)
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where S is the training set, θ is the model parameters. Then we add this function to the
original cross-entropy loss to form the final objective function,

J(θ) =
∑

(X,Y,D)∈S

log P (Y |X,D) + log P (D|X) (13)

With this function, our SDA module is trained in a supervised way. We can also train
our model without log P (D|X). Thus the SDA module is implicitly trained and the
objective function is the same with the conventional NMT model. We will further dis-
cuss the effect of term log P (D|X) in experiments. In the following parts of this paper,
we use SDA-NMT-DG to represent the domain guided SDA model and SDA-NMT to
represent the SDA-NMT-DG without the domain objective function log P (D|X).

4 Experiments

4.1 DataSet

In the Chinese-English task, we leverage the high quality bilingual data from IWSLT
2015 workshop [2] which contains about 200K sentence pairs as in-domain corpus.
We use the dev 2010 set for development and test 2010-2015(tst2010-tst2015) are used
as in-domain testsets. For out-of-domain corpus, we use a subset from LDC corpus 4

which has around 2.6M sentence pairs from News domain. NIST 2003, NIST 2005,
NIST 2006, NIST 2008 and NIST 2012 are used as out-of-domain testsets. All English
words are lowercased.

In the English-French translation task, the IWSLT 2014 English-French training
corpus [3] is used as in-domain training data and the out-of-domain corpus is from
WMT 2015 English-French translation task. The development data is TED dev2010
and we use test 2010 (tst2010) as testset. Both are with single reference per source
sentence.

tst2010 tst2011 tst2012 tst2013 tst2014 tst2015 Average

NMT-IWSLT (in-domain) 12.29 16.18 14.30 15.05 12.15 14.91 14.15
NMT-LDC (out-of-domain) 10.54 13.51 12.09 13.91 12.13 14.77 12.83
Fine-tuning 14.27 17.96 15.11 16.39 14.64 16.56 15.83
[5] (Mixed fine-tuning) 14.73 18.83 16.21 17.50 15.62 17.82 16.80
[13] (+Discriminator) 14.89 19.18 16.38 18.09 15.43 19.10 17.18
SDA-NMT 14.78 19.35 16.40 18.26 15.73 19.04 17.26
SDA-NMT-DG 15.42 20.04 17.28 19.50 16.32 19.95 18.09

Table 1: Evaluation results of Chinese-English in-domain test sets with BLEU% metric. “NMT-
IWSLT” refers to a conventional NMT model trained on in-domain corpus and “NMT-LDC”
denotes an NMT model trained on out-of-domain data.

4 LDC2002E17, LDC2002E18, LDC2003E07, LDC2003E14, LDC2005E83, LDC2005T06,
LDC2005T10, LDC2006E17, LDC2006E26, LDC2006E34, LDC2006E85, LDC2006E92,
LDC2006T06, LDC2004T08, LDC2005T10
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4.2 Implementation Details

As we have just an in-domain and an out-of-domain, the hyper parameter l is set to
2. In the neural network training, the vocabulary size is limited to 35K high frequent
words for both source and target languages in the Chinese-English translation task. All
low frequent words are normalized into a special token unk and post-processed by
following the work in [11]. For English-French task, we further split the words into
sub-words using byte pair encoding (BPE)5 [14] which has been shown to be effective
for rare word problem in NMT. For all the NMT models, the size of word embedding
is set to 512. The dimensions of the hidden states for all RNNs are set to 1024. The
dimension of ki and vi are set to 512. The inner layer of FNN is set to 1024.

4.3 Baselines

We compare our proposed method with original NMT baselines and several state-of-
the-art domain adaptation methods.

– NMT : An in-house reimplementation of [1]. In the following of this paper, we
use NMT-IWSLT to represent the NMT model trained on in-domain corpus, NMT-
WMT and NMT-LDC refers to NMT model trained on out-of-domain data.

– Fine-tuning : Fine-tune the out-of-domain model on the in-domain corpus.
– Mixed fine-tuning : [5] proposed a new training procedure named mixed fine-

tuning.
– Instance weighting : [18] proposed to assign different weights to in-domain and

out-of-domain instances.
– +Discriminator : [13] proposed a multi-task learning framework for NMT domain

adaptation.

All the evaluation results are reported with the case-insensitive IBM BLEU-4 [12].

4.4 Evaluation on IWSLT In-domain Chinese-English Task

We first evaluate our method on IWSLT In-domain Chinese-English translation task.
The evaluation results of in-domain testsets against baselines are listed in Table 1. We
can see that NMT-IWSLT, which is trained on small scale corpus, is much better than
NMT-LDC on the in-domain testsets in terms of average BLEU score. That is mainly
because the domain of IWSLT corpus (spoken domain) is different from LDC corpus
(news domain) and NMT models are sensitive to the training domain.

Though simple, “Fine-tuning” is an effective method which can improve the perfor-
mance a lot compared with both NMT-IWSLT and NMT-LDC. “Mixed fine-tuning [5]”
and “+Discriminator [13]” can achieve further improvements compared with “Fine-
tuning”. Overall, our SDA-NMT-DG achieves the highest BLEU scores on all the test-
sets. Compared with NMT-IWSLT baseline, our SDA-NMT-DG gains 3.94 more BLEU
points on average. This is mainly because our method can generate dynamically domain-
aware context for each instance where proper domain knowledge can be taken into

5 https://github.com/rsennrich/subword-nmt
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account during decoding. We also investigate the effect of domain objective function.
Even without this objective function, the SDA-NMT can still outperform other methods
on most of the testsets, which shows that our method can implicitly learn domain knowl-
edge. However, the SDA-NMT is not as good as SDA-NMT-DG, this demonstrates that
the golden domain tags can benefit the SDA module in training.

4.5 Evaluation on In-domain IWSLT English-French Task

In this section, we further evaluate our method on IWSLT English-French translation
task. Table 2 shows the comparison results from 7 systems with the evaluation metrics
of BLEU. A state-of-the-art result taken from [18] on this testset is also listed which
proposed a “Instance weighting” strategy for NMT.

According to Table 2, our SDA-NMT-DG still outperforms the other models, where
about 7 more BLEU points are gained compared to NMT-IWSLT baseline. Compared
with the [18], SDA-NMT-DG achieves 1 more BLEU score. This shows that our pro-
posed approach to modeling domain-aware context benefits NMT systems on in-domain
testsets. In addition, the SDA-NMT-DG is still better than SDA-NMT.

dev2010 tst2010

NMT-IWSLT (in-domain) 25.25 30.57
NMT-WMT (out-of-domain) 25.42 29.73
[18] (Instance weighting) 30.40 36.50
[5] (Mixed fine-tuning) 30.88 36.66
[13] (+Discriminator) 31.18 36.87
SDA-NMT 31.59 36.96
SDA-NMT-DG 31.86 37.54

Table 2: Evaluation results of English-French IWSLT dev and test sets with BLEU% metric.

4.6 Evaluation on Out-of-domain NIST Chinese-English Task

In this section, we investigate the performance of SDA-NMT-DG on the NIST out-of-
domain Chinese-English translation task. Table 3 shows all the evaluation results. From
the table, we can see that “Fine-tuning” performs the worst with more than 11 BLEU
scores decrease compared with NMT-LDC in terms of average BLEU. This shows that
even though “Fine-tuning” can improve the in-domain performance, it dramatically de-
teriorates the out-of-domain translation quality.

Overall, our SDA-NMT-DG achieves comparable BLEU scores compared with NMT-
LDC baseline and is better than all the other domain adaptation systems. This is be-
cause our SDA can dynamically generate domain-aware representations and guide the
decoder to generate out-of-domain translations. We can also find that, for some tests
such as NIST2006, SDA-NMT-DG is even better than NMT-LDC baseline. Actually,
these testsets are multilingual sets where Web data is contained. These web data may
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be drawn from user forums, discussion groups, and blogs. They are more likely to the
TED data. For these multiple domain testsets, our model can perform even better than
NMT-LDC.

NIST2003 NIST2005 NIST2006 NIST2008 NIST2012 Average

NMT-LDC (out-of-domain) 41.85 39.58 39.96 30.49 29.80 36.34
Fine-tuning 29.17 28.11 26.09 21.31 20.60 25.06
[5] (Mixed fine-tuning) 39.23 37.94 36.98 28.38 27.10 33.97
[13] (+Discriminator) 39.36 37.38 38.59 28.81 28.36 34.50
SDA-NMT 41.03 38.97 38.81 30.50 29.00 35.66
SDA-NMT-DG 41.10 39.20 40.64 31.14 30.08 36.43
Table 3: Evaluation results of Chinese-English out-of-domain test sets with BLEU% metric.

5 Related Work

Recently, neural machine translation (NMT) has achieved better performance than SMT
in many language pairs [10,19]. Our work builds on the recent literature on domain
adaptation strategies in NMT. The NMT model is trained in an end-to-end way which
is very sensitive to the training domain. Some effort has been done to improve the NMT
model on the in-domain testsets. [9] proposed to transfer out-of-domain knowledge to
in-domain by fine-tuning out-of-domain models on in-domain corpus. [8] involved ap-
pending a domain indicator token to each source sequence. Based on these work, [5]
further refined the model by integrating source-tokenization into the domain fine-tuning
paradigm. While it requires no changes to the NMT architecture, these approaches are
inherently limited because they stipulate that domain information for unseen test ex-
amples be known. For example, if using a trained model to translate user-generated
sentences, we do not know the domain a-prior, and this approach cannot be used. There
is another line of work. Inspired by the instance weighting methods in SMT, [18] ap-
plied this method to NMT models by assign different weights for each instance during
training. More weights are assigned to in-domain instances in the NMT loss function.

Different from the work above, [13] proposed a multi-task learning framework for
domain adaptation. They added a discriminator on the top of the NMT encoder which
is used to classify which domain the source sentence belongs to. However, this is not
effective enough to leverage domain information for NMT model. In this paper, we
introduce SDA into the conventional NMT model. This module can learn domain dis-
tribution of training data and generate domain-aware representation for each source
instances.

6 Conclusion and Future Work

In this paper, we propose a novel soft-domain adapter based neural machine translation
model. Our model can learn domain representations from the training data and gener-
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ate domain-aware context for input sentences. Then the decoder can generate domain-
aware translations with the help of domain contexts. Experimental results show that our
method can boost the translation quality on the in-domain testsets without deteriorating
the out-of-domain performance.

In future work, along this research direction, we will conduct multiple domain trans-
lation experiments (more than two), such as a mixture domain of spoken, news and
travel, to verify the effectiveness.
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2. Cettolo, M., Niehues, J., Stüker, S., Bentivogli, L., Cattoni, R., Federico, M.: The iwslt 2015

evaluation campaign. Proc. of IWSLT, Da Nang, Vietnam (2015)
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