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Abstract. Existing task-oriented dialogue systems seldom emphasize multi-intent
scenarios, which makes them hard to track complex intent switch in a multi-turn
dialogue, and even harder to make proactive reactions for the user’s next poten-
tial intent. In this paper, we formalize the multi-intent tracking task and introduce
a complete set of intent switch modes. Then we propose [Switch, a system that
can handle complex multi-intent dialogue interactions. In this system, we design
a gated controller to recognize the current intent, and a proactive mechanism to
predict the next potential intent. Based on these, we use pre-defined patterns to
generate proper responses. Experiments show that our model can achieve high
intent recognition accuracy, and simplify the dialogue process. We also construct
and release a new dataset for complex multi-turn multi-intent-switch dialogue.

1 Introduction

Task-oriented dialogue systems have applications in a broad variety of scenarios such
as hotel reservation, airline ticket booking and customer servicing. A task-oriented di-
alogue system allows the users to interact with computers via natural language, which
emancipates human labors from repetitive, redundant and boring tasks.

Dialogue systems are designed to satisfy the user intents. Here, intent means a user’s
goal of the current utterance in a dialogue session. In existing dialogue state tracking
work [13,20,9, 15, 24], each dialogue session is either assumed to contain only a sin-
gle (predetermined) intent, or rarely emphasized multi-intent scenario. Multi-domain
dialogue systems [18, 14, 16,23, 12] can handle queries from different domains, while
they still consider intents are independent and process different intents separately. Since
intents have finer granularity and sometimes they will interact with each other, these ap-
proaches cannot handle complex multi-intent switch situations. Since a user may switch
intent during a dialogue session and greatly affect the following dialogue flow, it is
crucial for a multi-turn dialogue system to recognize and track the intents of the inter-
locutors. Moreover, in reality, some of the user’s intents are usually followed by some
specific relevant intents. If the system can make a reasonable “guess” for these follow-
up intents, and provide useful information before the user asks, it can save repetitive and
redundant dialogue turns by borrowing information from other intents. For example, in
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a scheduling dialogue session, people often wish to book a meeting (1%¢ intent) and ask
about the weather (2"? intent), then eventually decide whether to change the schedule
or not (back to 1°¢ intent). Existing dialogue systems sometimes is not able to model
such interaction well, or only can simply respond to the user’s questions, as shown in
the naive response in Figure 1. However, when booking a meeting, the weather informa-
tion is usually needed. If the system can “guess” the next intent might be weather, and
provide weather information before the user asks, as shown in the proactive response
in Figure 1, it would improve the user experience and make the system seem “smarter”.
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Fig. 1: Example of the naive and the proactive responses. The proactive response predict the next
intent of the user would be weather, and provide weather information before the user asks.

We can use two relatively straight forward approaches to adapt existing dialogue
systems for multi-intent tracking. One trivial approach is to use a hierarchical recurrent
encoder-decoder (HRED) framework [19] to form the sentence-level representation of
each dialogue turn, and use this representation to perform the user intent classification.
Since this approach does not take the slot values into consideration, it does not leverage
all available information for intent tracking. The other approach is to directly use the
slot information for intent tracking. [24] uses a belief tracker to help leverage all the slot
value information to perform information extraction. Since their system is not designed
for multi-intent interactive, they can not handle the complex intent switch scenario.
Moreover, they are not able to share the overlap slot information between different
intents. When facing intent switching, the system has to ask duplicated questions.

In this paper, we formalize the multi-intent tracking task, propose the ISwitch sys-
tem which can handle complex multi-intent switch scenarios, including recognize cur-
rent intent and predict next intent. The system is evaluated by the intent recognition
accuracy and the intent switch accuracy. Experiment results show that our model can
achieve high performance and simplify the dialogue process. We also release the MISD
datasets for complex intent switch dialogue scenarios.
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2 Model

In this paper, we treat a multi-turn dialogue as a sequence of N query-response pairs
D ={Q1, Ry, - ,Qn, Ry} between two interlocutors, in which guery represents the
user’s utterance and response represents system’s utterance. Given K potential intents
and L kinds of slots, each query @; has an intent distribution I; € R, which rep-
resents the interlocutor’s purpose in the current utterance. The model consists of four
parts, which are multi-intent tracking, proactive mechanism, information slot memory
filling and response generation. In each dialogue turn ¢, the multi-intent tracking part
leverages current query , last response R;_; and current slot information S; € R
into the a gated controller g, to recognize the intent I; of current turn. Then the proactive
mechanism uses an intent transition matrix to predict the next potential intent [; 1. If
the next potential intent confidence exceeds the threshold and at least one corresponding
slot of next potential intent is filled, we confirm ;1 as the next intent. The slot infor-
mation is obtained through sequence labeling methods, and is filled into a slot memory
for global sharable. The system uses the current intent I; and its corresponding slots to
form a database query. The query results are filled into the corresponding patterns in
the response generation process. The system is illustrated in detail in Figure 2.
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Fig.2: An illustration of ISwitch model. Note that we first generate responses by pattern and
slots. Then the R; in the figure is calculated by reading the generated response via an LSTM.

2.1 Multi-intent tracking

The multi-intent tracking part is the core of our ISwitch system, which can recognize
the current intent. We first track the state of dialogue session in a distributed embed-
ding representation. The dialogue session is modeled in two levels: word-level and
utterance-level. We model the sequences with two RNNs: one at word-level and the
other at utterance-level. The word-level RNN takes a query/response sentence as input
and learns the embedding representation of it. While the utterance-level RNN takes the
representation of each sentence as input, and outputs the session’s states up to this turn.
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For multi-intent tracking, we first distinguish three switching scenarios. We call
them “modes” in the rest of the paper.

— Mode b (Switch before finish): When the current intent is still in process, the user
asks the system a question of another intent.

— Mode a (Switch after finished): After the current intent is completed, the user
starts to ask the question of another intent.

— Mode n (No switch): The user continues to help the system solve the question of
the current intent.

A brief illustration of the three intent switch modes is shown in Figure 3.

Switch before finish

Mode b:
Calendar Scheduling
Switch after finished
Mode a: D Weather Information
No switch
Point-of-interests
Mode n: D o

Fig. 3: An illustration of the 3 kinds of intent switch modes.

In our model, at each dialogue turn, we first decide the distribution of the modes,
and use the results to form a gated switch process. More precisely, we can recognize
hints of possible switch mode from the user’s query in the current dialogue turn ¢); and
the system’s response in the previous turn R;_;. In addition, the slot information S}
can also provide valuable hints for deciding intent switch mode. Therefore, we use a
feed-forward layer to generate a distribution of the three modes.

9 =197, 9%, 97']

1
= softmax(W, R;_1 + W,Q; + WsS;) M

where g, € R3, W,., W, and W, are trainable parameters. We leverage the softmax
with temperature [10] to make the distribution “sharper”.

If the system believes that I, is going to switch without finishing (mode b), then
I; would be related to @y, R;—1, Si, and I;_1. So we calculate the intent probability
distribution of mode b as fy(I;—1,Qt, Ri—1, St), where f; is a feed-forward layer.

If the system believes that I;_ is completed (mode a), then we need to add a punish-
ment to it since a user is not likely to fulfill a single task twice in one dialogue session.
In this case, the distribution of I; is calculated as f,(P(I;—1), Q¢, Ri—1,St), where f,
is also a feed-forward layer. The punishment function P is implemented as follows:

P(I;—1) = (1 — softmax(I;—1))l:—1 2)

we leverage the softmax with temperature [ 10] to make the intent distribution “sharper”.
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If the system decides that the user is not switching intent (1mode n), then the intent
stays unchanged. In summary, the intent switch formula is as follows:

Iy = gf : fb(Itflv Qt, Ri_q, St)

+9¢ - fa(P(Ii-1), Qs Ri—1,St) (3)
+9¢ I
Our training object is the cross entropy of the intents in D. Given Iy, --- , Iy, and
the annotated one-hot intent vector y1, - - - , yn, we have the loss of the intents:
N
Linem(D) = =Y _yilogI; )

2.2 Proactive Mechanism

The proactive mechanism can make a reasonable “guess” for the user’s next potential
intent. If the “guess” is confirmed, it will provide useful information before the user
asks, to avoid repetitive dialogue turns. We use an intent transition matrix .7 € RE*K
to model the switching of intents. An element .7;; is a real-valued score indicating
the confidence of how likely the i-th intent will switch to the j-th intent. By using a
transition matrix, we model the intent switching as a Markov chain. We use a quadratic
form I; 1.7 1,” to represent the consistency between the intent transition matrix and the
predicted probability. We link the cross entropy and the consistency function together
via the predicted intents, which makes the intent switch information distilled to the
intent transition matrix. Our final loss function is as follows:

£(D) = ﬁi"lcnt(D) -\ Z It—1y[tT

te(1,N]

5)
st 3Ty =1.5520,7: =0, fori=1, K.
J

The constraint is integrated into the loss function by the Lagrange function. Since
all the components described above are differentiable, our model can be trained end-to-
end by back propagation. We use Adam [11] for optimization. During inference, after
I is predicted, we multiply it with .7 to obtain the probability distribution of the next
intent: I, = I;7. If the next potential intent confidence exceeds the threshold and
at least one corresponding slot of next potential intent is filled, we confirm I;,; as the
next intent. Then, our system can react one step ahead.

2.3 Information Slot Memory Filling

For each @), we need to extract the key information for the final response generation.
Intuitively, the response made by the machine should be based on the information pro-
vided by @, so we should record the information slots in each dialogue turn. Each
dialogue session D has a slot-value list, which contains all the information slots re-
quired. All the utterances in this session retain and updates this list during the dialogue
process. Different slots are divided into informable slots and requestable slots [24]:
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The informable slots are exacted information which is provided by the users to
constrain the content of response. For example, as shown in Table 1, the value of an
informable slot event can be extracted from the user’s utterance as playing football.
Then the content of response must be something related with playing football.

The requestable slots are unknown information, which are the slots the users tried to
ask a value for, such as time and parties in Table 1. We also take the question words like
“where” and “when” as requestable slots. The system needs to return the exact value of
these slots in the next few dialogue turns.

Context I need the time and parties for playing football please.
Labels O O O R-time O R-party O I-sport I-sport O

Table 1: An example of an utterance with labels for each words. “I” and “R” means informable
and requestable slots, “O” means others.

We use sequence labeling methods to extract the slots. The labeling process takes an
utterance as input, labels each word in the utterance as an informable slot, requestable
slot, or others, and fills these slots into a global memory so that different intents can
share overlapped slot values. An labeling example is shown in Table 1. The value of
requestable slots cannot be directly extracted from the current utterance. The system
needs to form a query for database to get the value of the requestable slots after label-
ing. The interaction process with database relies on several manually designed patterns,
which will be introduced in detail in Section 2.4.

2.4 Response Generation

In each dialogue turn, after the current intent and slot-value list are ready, the system
would generate a natural language response to the user by pattern and filled slots. The
response of a task-oriented dialogue system requires accuracy more than diversity and
fluency, which is relatively hard for language-model-based generation. Therefore, we do
not use the widely-chosen sequence-to-sequence model [21] in the response generation.
Instead, we use “pattern+slot” method to make responses. The generation patterns are
manually built sentences with some empty slots. Certain slot values can not be directly
extracted from the dialogue process, and need to be retrieved from database. After the
requested information is obtained, the pattern with slot information filled will be used
as the response. According to the situation of requestable slots in the query sentence,
we decide whether to provide information or update the database. For each intent, we
design five types of patterns. Note that we have a particular pattern (Pattern 5) for the
situation that the next intent is confirmed by the proactive mechanism.

— Pattern 1: For the requestable slots, if there’s only one possible result, we directly
return it to the user. A simple example is shown as “Pattern 1 in Table 2.

— Pattern 2: For the requestable slots, if there are more than one possible results, we
give the user all choices to choose from. In the example above, if the system found
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two possible restaurants, it will ask the user to choose one as is shown in the line
“Pattern 2” in Table 2.

— Pattern 3: If the system cannot find any possible result for requestable slots from
the database, it would ask the user to change the question. (Table 2 Pattern 3).

— Pattern 4: If the user did not provide any requestable slots, then update the database.
(Table 2 Pattern 4).

— Pattern 5: (proactive pattern) If the next intent is confirmed by proactive mecha-
nism, the system would provide extra useful information. (Table 2 Pattern 5).

Q: Where can I find a pizza restaurant?

Pattern 1: restaurant A serves delicious pizza, want to have a try?

Pattern 2: restaurant A and restaurant B both serves delicious pizza, which
one would you choose?

Pattern 3: Sorry, I don’t know, would you ask something else?

Q: Book a meeting at 10 am on Tuesday in Chicago office for me.

Pattern 4: OK, set up a meeting on that day.

Pattern 5: The weather of on Tuesday in Chicago is rainy with temperature
60F. Do you want to set the meeting at that time?

Table 2: Examples of generated responses of five types of patterns.

3 Experiments

In this section, we compare our model with the baseline systems in terms of the in-
tent tracking metrics. We also provide the generation results in a real case for human
evaluation of the proactive mechanism, and the slot labeling results.

3.1 MISD Dataset

The lack of appropriate training data is one of the main challenges for the dialogue com-
munity when building a multi-intent dialogue system. Existing well-known datasets like
ATIS [6, 17] and DSTC [25, 7, 8] are either single-turn, or not designed for multi-intent
tracking. For the multi-intent switch scenario, we build a new dataset called multi-intent
switch dataset (MISD), which contains 6214 dialogue sessions with 22863 dialogue
turns. One average, there are about 3 intent switches in a single dialogue session. The
MISD dataset is based on the Stanford dataset which takes the real in-car assistant
scenario, and is grounded through knowledge bases [5]. Since in the Stanford dataset,
there’s only one intent in each dialogue session, we manually relabel the dataset to in-
clude more complex intent switch cases that might happen in reality. We first define 14
kinds of intents, which have 48 kinds of corresponding slots. Since the intents and slots
may change in one dialogue session, we manually relabel the slots and intents for each
dialogue turn. We will release our MISD dataset for further research.
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3.2 Baseline Systems

Since there is no existing systems especially designed for multi-intent tracking, we
adapt two well-known and influential multi-turn dialogue systems as our baselines. The
first one is the state-of-the-art single-intent dialogue system proposed by [24]. The sec-
ond one is the most common approach for multi-turn dialogue structure (HRED) pro-
posed by [19]. Since neither of them has the multi-intent tracking module, we extract
the embedding before the generation part of those models, feed them into a classifier to
detect the intent of the current utterance. Moreover, since our ISwitch system and the
system proposed by [24] both leverage all the information — the query, response and
slot information — in a dialogue process while the HRED system do not take them all
into account, we also extend the HRED system. We feed all information above into the
HRED structure, and use a general matrix to form the intent switch process, in which
Iy = WooQi+WroRi_1+WsoS,, where Wg, Wg and Wy are trainable parameters.

For all the ISwitch models and baseline models, the hidden dimension of BiRNN
structure is 50. All the dialogue sessions are padded to ten turns. The Adam learning
rate and the dropout rate we used are 0.001 and 0.5, respectively.

3.3 Evaluation

Since the overall ISwitch system consists of multi-intent tracking, slot labeling, and
proactive generation, the evaluation is also conducted on all these parts. For the multi-
intent tracking, we leverage frequently-used quantitative metrics for evaluation. For the
proactive generation, we provide the generation results in a real case for qualitative
human evaluation. We also provide the slot labeling performance.

Model Accuracy|Macro-P Macro-R Macro-F|Switch-accuracy
Serban 91.64 93.03 83.48 88.00 90.53
Wen 92.16 92.04 85.57 88.69 91.85
Serban(Q+R+S) | 92.34 94.77 85.70 90.01 91.19
ISwitch(Q) 92.60 92.32 90.07 91.18 92.17
ISwitch(R) 65.60 36.88 30.34 33.29 69.11
ISwitch(S) 91.60 93.21 88.77 90.93 91.27
ISwitch(Q+R) 93.73 93.42 90.43 91.91 93.00
ISwitch(Q+S) 93.77 94.28 90.72 92.47 93.13
ISwitch(R+S) 93.38 93.86 90.58 92.19 93.08
ISwitch(Q+R+S)| 94.27 94.63 91.18 92.87 93.57

Table 3: The intent prediction accuracy, macro precision, recall, F-score, and intent switch accu-
racy for the proposed ISwitch model and other benchmark models.

Muti-intent Tracking For the multi-intent tracking evaluation, we leverage the intent
recognition accuracy and the marco precision, recall and F-score as evaluation metrics.
Moreover, since the gate mechanism of our proposed ISwitch system is mainly aimed at
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the intent switch detection, we specifically observe the switch position of the dialogue
sessions, and leverage the switch accuracy to evaluate the ability of switch detection.
Since our switch gate is generated according to (), R, and .S, we also conduct ablation
tests on different combination of these components. The experimental results are shown
in Table 3. From Table 3, we find that ISwitch(Q+R+S) can achieve better performance
(acc 94.27) than all the baseline systems. Since ISwitch(Q+R+S) introduces more ac-
curate information for intent tracking than the system modified from [19] and [24], we
can achieve at least 2 points intent prediction accuracy improvement. For the switch
accuracy, we also outperform baseline systems with about 3 points, which implies the
effectiveness of our gate mechanism. From the ablation test results, we find that the in-
formation in query is more important than the information in slots, and is significantly
more important than the information in last response. Since the query utterance con-
tains almost all the key information including some slot information, it is crucial for
multi-intent tracking. The slot information is also helpful for the intent tracking since
some slots has obvious corresponding relationship with intents. On the contrary, the
information in last response contains few useful information for current turn’s intent
decision. We also find that if we combine components together, the result is better than
we use the components separately.

Proactive Response (3 turns): ‘

Driver: Please book a meeting at 10 am on Tuesday in Chicago office for me.
Assistant: The weather on Tuesday in Chicago is rainy with temperature 60F ~ 80F.
Do you want to set the meeting at that time?
Driver: Oh no, please help me change to 10 am on Wednesday.
Assistant: The weather on Wednesday in Chicago is sunny with temperature 80F ~
100F. Do you want to set the meeting at that time?
Driver: Ok, thank you very much!
Assistant: You're welcome.

Non-proactive Response (6 turns):

Driver: Please book a meeting at 10 am on Tuesday in Chicago office for me.
Assistant: Sure.
Driver: What about the weather of that day?
Assistant: The weather on Tuesday in Chicago is rainy with temperature 60F ~ 8OF.
Driver: Oh no, please help me change to 10 am on Wednesday.
Assistant: Sure.
Driver: What about the weather on Wednesday?
Assistant: The weather on Wednesday in Chicago is sunny with temperature 80F ~ 100F.
Driver: Ok, set up the meeting on that day.
Assistant: Sure.
Driver: Thank you very much!
Assistant: You’re welcome.

Fig. 4: Case for response generated by the proactive mechanism and the non-proactive version.
The words underlined are extracted slots by slot labeling part.
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Proactive Generation The proactive mechanism provides extra useful information,
which needs human to recognize, and then use to simplify the questions. So it can
not be evaluated by a fixed “test set”, and needs the human evaluation during the real
interaction between human and the system demo. We tried 100 dialogue interactive
sessions with our system, and find that each dialogue process has 2 less turns using
proactive mechanism by average. We demonstrate a real example in which a user asks
for booking a conference when the weather is unsuitable and then changes to another
day. Figure 4 shows the proactive generated response and non-proactive version. Both
responses are generated by ISwitch model, while the non-proactive version does not
include the proactive module in Section 2.2. As shown in Figure 4, when the driver asks
to book a meeting on exact time and location, the proactive version can automatically
predict the user’s potential intent would be weather, and provide weather information
before the user asks. This will save lots of repetitive and redundant dialogue process
(3 less turns in this session). While the non-proactive can still follow the intent of the
driver and provide relevant responses, but it takes more interactive turns.

Slot Labeling As introduced in Section 2.3, we treat the slot information extraction for
each utterance in dialogue as a sequence labeling task. For a given utterance, we first
use the NLTK tokenizer and pos-tagger [1] to do the tokenization and pos tagging. Then
we feed the tokenized query utterance, the pos-tag labels, chunk labels and slot labels
of each word in the utterance into an open source CNN-BiRNN-CRF based sequence
labeling toolkit NeuraINER' [3]. In the MISD dataset, we have 48 kinds of slots to
label. The slot labeling accuracy, precision, recall and F-score are 94.40, 95.45, 88.11,
91.63, respectively. From the results, we can see that such kind of sequence labeling
method can already provide good quality for slot information extraction.

4 Related Work

Methods Existing task-oriented dialogue systems [13, 20, 9, 26, 15] are data-driven sys-
tems which leverage partially observable Markov Decision Process (POMDP) based
dialogue managers. Recently, a relatively complete end-to-end task-oriented dialogue
system is proposed by [24]. This system divided the dialogue processing procedure
into four modules, which are Intent Network, Belief Tracker, Database Operator, and
Generation Network. In this structure, the Intent Network is the same as the encoder in
sequence-to-sequence framework [21, 2], which encodes the input tokens, and get the
representation at each dialogue turn. Belief Tracker (also called Dialogue State Tracker)
is a discriminative model which tracks key information across the whole dialogue ses-
sion. It is the most important component in the end-to-end task-oriented dialogue sys-
tem. [9] first proposes Belief Tracker based on recurrent neural network, which takes
advantage of the automatic speech recognition (ASR)’s output to update the belief state.
Since then, many different belief tracking models has been proposed, such as rule-based
system [8], statistical discriminative model [22]. There are also researches using latent
neural embeddings for state tracking [15,27, 5].

! https://github.com/Franck-Dernoncourt/NeuroNER
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Corpora One classical corpora for single-turn multi-intent classification task is the
airline travel information system (ATIS) corpus [6, 17], but it is specific for single
turn dialogue. Classical corpora of multi-turn task-oriented dialogue include the well-
known Dialogue State Tracking Challenge (DSTC) [25, 7, 8], which contains topics of
bus schedule, booking restaurants and tourist information. More recently, Stanford pro-
posed a dataset [5] which is grounded through underlying knowledge bases. Maluuba
also releases a dataset [4] of hotel and travel-booking dialogues collected in Wizard-of-
Oz Scheme. The limitation of the previous corpora is that they are either single-turn, or
seldom emphasize the multi-intent scenario. The uniqueness of our proposed dataset is
that our dataset is a multi-turn multi-intent switch dataset.

5 Conclusion

In this paper, we formalize the multi-intent tracking task and introduce a complete set of
intent switch modes. Then we propose a task-oriented multi-turn dialogue system which
can handle the complex multi-intent switch scenario. In this system, we design a gated
controller and a proactive mechanism to track intents and guess the next potential intent,
then use pre-defined patterns to generate proper responses. We evaluate our system on
a multi-intent dialogue dataset made by ourselves. Experimental results show that our
ISwitch system contributes to the intent recognition in terms of both intent prediction
accuracy and intent switch accuracy, simplifies the dialogue process, provides high slot
labeling results, and can make the generated responses more natural.
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