
BSIL: A Brain Storm-based Framework for
Imbalanced Text Classification

Jiachen Tian, Shizhan Chen, Xiaowang Zhang(�), and Zhiyong Feng

College of Intelligence and Computing, Tianjin University, Tianjin, China
Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin, China

{jiachen6677,shizhan,xiaowangzhang,zyfeng}@tju.edu.cn

Abstract. All neural networks are not always effective in processing
imbalanced datasets when dealing with text classification due to most of
them designed under a balanced assumption. In this paper, we present
a novel framework named BSIL to improve the capability of neural net-
works in imbalanced text classification built on brain storm optimization
(BSO). With our framework BSIL, the simulation of human brainstorm-
ing process of BSO can sample imbalanced datasets in a reasonable way.
Firstly, we present an approach to generate multiple relatively balanced
subsets of an imbalanced dataset by applying scrambling segmentation
and global random sampling in BSIL. Secondly, we introduce a parallel
method to train a classifier for a subset efficiently. Finally, we propose
a decision-making layer to accept “suggestions” of all classifiers in order
to achieve the most reliable prediction result. The experimental results
show that BSIL associated with CNN, RNN and Self-attention model
can performs better than those models in imbalanced text classification.

1 Introduction

A neural networks (NN)-based model often needs a large number of datasets
for training when dealing with text classification task with the assumption that
the distribution of datasets is balanced and the error cost is equal [10]. However,
real-world data is often heavily skewed and, as a result, standard classification al-
gorithms tend to ignore the minority class and overwhelm the majority one [14].
The imbalance of datasets mainly determined as one of essential characteristics
of datasets cannot be avoided in our real life such as natural disasters, network
intrusion, cancer detection, etc. [7]. Although the sample size of the minority
class is much smaller than that of the majority one, they usually carry more
important information not be ignored in processing. It becomes interesting and
important to improve the capability of existing models to correctly classify sam-
ples of the minority class [12].

In this paper, inspired from the idea of brain storm optimization (BSO) al-
gorithm [5], we design a framework for dealing with the imbalanced learning
problem, named brain storm imbalanced learning (BSIL). This algorithm can
simulate our brain well, where the left and right hemispheres collaboratively

work together on a job [4]. The purpose of BSIL is to utilize a distributed ex-
tensible framework and within this framework, a deep learning algorithm can
improve train models with good performance for an imbalanced dataset. Based
on this idea, we first apply “scrambling segmentation” or “global random sam-
pling” to obtain multiple sets of relatively balanced datasets. During the model
training process, all classifiers train weight through a parallel ensemble learning
method and then iteratively update the optimal weight among them. Finally, all
classifiers put all results of their training together for discussion in the decision-
making layer for obtaining the best classification scheme.

The novel sampling method in our model can guarantee that all information
is retained and each subset has the same distribution as the original dataset.
In a parallel training layer, each classifier acts as an agent and is responsible
for working within its subset. The built-in weight selection module can ensure
that the initial weight of each training epoch is optimal. The efficiency of each
classifier is much improved due to the reduced workload. The decision-making
layer has a higher robustness for finding the “best available” prediction result of
all classifiers.

In a short, we summarize three main contributions as follows:

– We present a brain storm-based framework by applying scrambling segmen-
tation and global random sampling in generating multiple relatively balanced
subsets of an imbalanced dataset.

– We develop a distributed and extensible training method to computing rel-
atively balanced subsets efficiently.

– We introduce a decision-making method to generate optimal results for mul-
tiple predictions in decision-making layer.

This paper is further organized as follows. In the next section, we discuss related
works. Section 3 addresses our method. Section 4 is devoted to experiments and
evaluation. We conclude the work in Section 5.

2 Related Works

He et al. analyzed the causes regarding the performance degradation of the
classifier in detail and summarized the existing research methods [7], which can
be divided into data-based level, algorithm-based level, and transfer learning.
Kubat et al. raised the problem of imbalanced learning when dealing with the
detection of the oil spilled problem in 1998 [9]. Many studies have revealed that
imbalanced learning problem is relevant to data complexity. Datta et al. proposed
a method for identifying the disjunction problem in a dataset [6].

The research on data level mainly lies in the resampling method. Wang et al.
used resampling to cope with online class imbalances. They proposed two resam-
pling techniques (i.e., OOB and UOB), defined class imbalances and verified that
data distribution determines the imbalance problem [16]. Charte et al. proposed
specializing measures to assess the imbalance level for multilabel classification.

Using these measures to test which multilabel datasets are imbalanced, and p-
resented both random undersampling and random oversampling algorithms to
reduce the degree of imbalance [3]. Lin et al. proposed two resampling strategies
to assist in the data preprocessing [11]. Charte et al. proposed a procedure to
hybridize some resampling method with a novel algorithm designed to decouple
imbalanced labels [2].

The cost-sensitive model mainly utilizes a cost matrix to impose distinct
penalties on different classes. Khan et al. proposed a neural network combined
with the cost-sensitive method, which can automatically robust extract feature
vectors of the majority and minority class [8].

Transfer learning is to train the model on a related large-scale balanced
dataset and then fine-tuning weight according to the target one. Al-Stouhi et al.
presented a model combined with the transfer learning mechanism. This method
used auxiliary data to make up for the lack of the imbalanced dataset [1]. Wang
et al. used the conditional and marginal distribution discrepancies to treat the
imbalanced learning problem [15].

3 Our Method

The structure of BSIL adopts the idea of distributed machine learning which
is utilized to deal with the problem that large-scale data cannot be processed
in a single node. BSIL utilizes a data preprocessing layer to transform the in-
coming imbalanced datasets into multi-group balanced subsets, then works a
distributed ensemble learning framework with optimal weight selection strategy
to train multiple agents, and finally uses a brainstorming algorithm to integrate
the output of each agent to obtain the final results. This section will focus on
the data preprocessing layer (DPL), the parallel training layer (PTL, the dis-
tributed ensemble learning framework) and the decision-making layer (DML, the
brainstorming algorithm).

3.1 Data preprocessing layer (DPL)

To transform an imbalanced dataset into multi-group balanced subsets and en-
sure that their original distribution characteristics are not broken, we utilize
“scrambling segmentation” or “global random sampling” to adjust the dataset
(see Fig.1).

“Scrambling segmentation” randomly scrambles the training dataset, then
divides it into the corresponding subset according to the number of classifiers
in PTL. This method retains every sample so that the dataset information is
not lost. “Global random sampling” randomly samples the data of the entire
majority class. It guarantees that the subset and the original training dataset
are independently and identically distributed.

Suppose our dataset has only two classes, the majority class P : {xi, yi} and
the minority class N : {xj , yj}. |P | is much large than |N | and | · | is the size of
the corresponding class.

We first randomly sample m subsets Pi from P according to the size of
the minority class, then we get m training subset {Pi, N} which is obtained
by combining Pi and N . We use {Pi, N} to train the corresponding agenti and
evaluate the performance of each agent and obtain the F1 Score value Fi related
to them. If one of the Fi is greater than the threshold value λ (in our experiment,
λ is 60%. This mainly depends on the baseline of the selected model), i.e., one
of agents (classifiers) obtains a “good enough” prediction result, {Pi, N} can be
retained, otherwise, we will sample m+1 subsets of P and generate m+1 agents.

Fig. 1. Training process and internal structure.

3.2 Parallel Training Layer (PTL)

When we have m training subset {Pi, N}, the number of the agent in the parallel
training layer is also fixed to m. In our framework, we used three basic NN-based
models as agents(see Fig.1):

– Convolutional Neural Networks (CNN) is the deep neural network
with the convolution structure. It has three key operations, including the
convolution layer, weight sharing, and pooling layer.

– Recurrent Neural Network (RNN) is a type of neural network for pro-
cessing sequence data. We used the most basic LSTM model which can get
long short-term memory information.

– Self-attention Neural Network (SaNN) is a very popular NLP neural
network which uses a global self-attention mechanism to enable the model
to obtain more important feature information.

Fig. 2. Weight Selection Process.

Weight Selection Process Different agents can be considered as any functions
f , which map the input samples {Pi, N} into a new feature space. In the initial
step of model training, since the weight is arbitrarily initialized, the mapping
function f obtained by the training does not fit the feature space well. At time
t−1, the weight selection mechanism selects the best weight {W t−1

i , bt−1
i } as the

initial weight of the succeeding time t by comparing the accuracy of all agents.
Since the model has multiple sets of weights to choose at each time, the feature
selection method improves the robustness of the model. Taking Fig.2 as an ex-
ample. In the first step, all agents get a set of mapping functions {f11 , f12 , f13 , f14 }
through training. The weight selection method finds that f11 has the highest ac-
curacy and uses {W 1

1 , b
1
1} as the initial weight of the next step. During time 2,

all agents use {W 1
1 , b

1
1} to train their mapping functions f2i . Repeat the above

steps, the weight of f31 is finally obtained. We can see that f31 can distinguish
the imbalanced dataset very well at this time.

3.3 Decision-making Layer (DML)

We generally divide the dataset into a training set, a validation set, and a test
set. The training set is used to fit the parameters of the classifier. The validation
set is used to tune the hyperparameters (i.e., the architecture) of a classifier and
can evaluate the performance of each epoch’s classifier. The test set is a dataset
that is independent of the training dataset, but that follows the same probability
distribution as the training dataset and the validation dataset.

Due to the consistency of the above probability distribution, if a classifier
has higher accuracy in the validation set, then the classifier will also get higher
one in the test set. In our framework, if one agent predict the validation set to
obtain a higher F1 Score in the PTL module, then we believe that it can give us
a better result for predicting the test set, so the DML gives it higher confidence.
In our experiments, the accuracy of each agent play a role of confidence, which
tells us which output of the agent should be trusted.

More formally, each agent train a set of {W t
i , b

t
i} and predict the evaluation

dataset to get the F1 Score value Fi in PTL. Fi participates in the Eq.1 as a
confidence.

predfinal =

∑N
n=1(Fi · predi)

Z
(1)

Here N is the number of agents, Fi is the F1 Score value, predi is the prediction
value of each agent. Z is a normalization factor to ensure that each output is 0
or 1. Due to the existence of Fi, the result tends to the outputs of several agents
with higher Fi.

Fig. 3. Decision-making Process in DML.

Taking Fig.3 as an example, the ground true of the test dataset is [1, 0,
1, 0, 1]. After training, the prediction result of agent1 is [1,1,0,1,1], and F1 is
40%. The predicted result of agent2 is [1,0,1,0,0], and F2 is 80%. The predicted
result of agent3 is [1,0,0,0,1], and F3 is 80%. The predicted result of agent4 is
[0, 1, 1, 0, 1], and F4 is 60%. For sample 1, agent1, agent2, agent3 predict it as
a positive sample, so the final prediction is 1. For sample 2, although agent1,
agent4 predict it as a positive sample, agent2, agent3 predict it as a negative
sample, but agent2, agent3 have higher Fi, we should believe them more, so
sample 2 is finally predicted to be a negative sample. By analogy, it can be seen
that although they did not classify all the samples correctly in their respective
task, they finally reached the correct result through discussion.

4 Experiments and Evaluation

In this section, we use the BSIL framework to combine with three different
agents(CNN, RNN, and SaNN). We investigate the classification performance
of the BSIL framework and compare it with state-of-the-art models for text
classification and analyze the robustness of the DML on various datasets.

4.1 Experimental Evaluation Criteria

In imbalanced learning, accuracy has not been a good indicator of the perfor-
mance of the classifier. The Precision, Recall, and F1 Score values are more
reflective of the classification effect of the classifier on the minority class. In our
experiments, we used the F1 Score value, which is a combination of Precision
and Recall, see Eq.2.

F1 Score =
2 ·Recall · Precision
Recall + Precision

(2)

Precision is referred to as a positive predictive rate. Recall is also referred
to as the true positive rate or sensitivity (see Eq.3).

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(3)

Where TP is the number of the positive sample which is right predicted. FP
is the number of the negative sample which is predicted to be a positive one.
FN is the number of the positive sample which is predicted to be a negative
one.

4.2 Datasets

We choose five text classification datasets, which include English and Chinese
datasets. They can be divided into the sentence and document levels. We used
random sampling technology to construct their imbalances. We briefly summa-
rize these datasets as follows:

- MR: Movie reviews with one sentence per review. Positive and negative
sentiment polarity is included in the classification. Imbalance ratio (IR) is
1250:4250.

- SST-2: An extension of MR but with train/dev/test splits provided. IR is
1009:3310.

- IMDB: A document-level text classification dataset containing 100,000 movie
reviews with binary labels. IR is 12500:50000.

- SPAM: A Chinese classification dataset for spam detection. IR is 635:2743.
- CR: A car review dataset. IR is 6000:22800.

The first two datasets are for sentence-level classification and the last three
datasets are for document-level classification. IMDB is the biggest dataset and
SPAM is the Chinese dataset. These five datasets involve as many different as
possible(see Tab.1).

Table 1. Description of Datasets.

Dataset Average Length Vocabulary Size Train Size Test Size

MR 20 18K 1250:4250 CV
SST-2 18 15K 1009:3310 1821
IMDB 294 392K 12500:50000 22500
SPAM 574 22K 635:2743 1034
CR 100 133K 6000:22800 6300

4.3 Model Training and Hyper-parameters

In our experiment, the agents are set to CNN, RNN, and SaNN, respectively.
The three agents use different parameter settings:

- BSIL LSTM: Our framework combined with the LSTM model, i.e., all
agents utilize the LSTM model. We use a bidirectional RNN, the learning
rate is 0.3, the Sequence length is set according to different datasets, the
dropout rate is 0.8, the size of the hidden layer is 32, and there are 2 hidden
layers.

- BSIL CNN: Our framework combined with the CNN model, i.e., all agents
utilize the CNN model. This model uses a total of 100 convolution kernels.
The size of the kernel is 1, i.e., each convolution kernel filters a word. The
defined length of a sentence is also set according to different datasets.

- BSIL SaNN: Our framework combined with the SaNN model, i.e., all a-
gents utilize the SaNN model. The learning rate is 0.003, the number of
scaled dot-product attention module is 8 and the number of encoder is 6.

The word embeddings initialized with the 300-dimensional word vector pub-
lished by Glove. The objective function uses a cross-entropy loss function. The
epochs of training are 10 and the batch size is 32.

4.4 Baselines

Our framework combined with CNN, RNN, and SaNN, so we need to compare
with them to prove that they are not suitable for imbalanced dataset. Besides,
we have compared many existing state-of-the-art models to illustrate that our
models are indeed more suitable for imbalanced dataset than them.

- LSTM: The LSTM model mentioned in Section 3.2. We use it to compare
with BSIL LSTM.

- LSTM+attention: We implement flatten variants of the attention-based
LSTM model for different levels of classification.

- CNN: The CNN model mentioned in Section 3.2. We use it to compare with
BSIL CNN.

- SaNN: The SaNN model mentioned in Section 3.2. A self-attention mecha-
nism model for classification. We use it to compare with BSIL SaNN.

- FastText: The FastText model is based on RNN.

- TextCNN: The TextCNN model is based on CNN.

- SMOTE (CNN/RNN/SaNN): The SMOTE algorithm is an oversam-
pling method. It generates a new one between two samples, avoiding the
problem of repeated sampling.

- RandomUnderSampler (CNN/RNN/SaNN): RandomUnderSampler
is a undersampling method, we use the RandomUnderSampler made by s-
cikit learn.

4.5 Compared with Baselines

To illustrate the performance improvement of our BSIL model, we compare it
with the robust baseline model, which has achieved the best results in their
respective tasks.

Table 2. Classification perfermance of the different approaches.

Model MR SST-2 IMDB SPAM CR

LSTM 61.4 76.1 78.3 87.6 37.5
CNN 51.5 30.8 73.7 80.6 66.1
SaNN 58.4 54.3 60.2 68.0 24.4
LSTM+attention 64.5 78.7 80.2 89.2 44.4
FastText 60.3 74.1 79.2 88.2 50.5
TextCNN 52.9 49.1 77.0 82.9 60.2

SMOTE (CNN/RNN/SaNN) 73.3 79.0 81.6 89.6 54.9
RandomUnderSampler (CNN/RNN/SaNN) 74.5 80.0 81.4 91.0 74.8

BSIL LSTM 76.1 80.4 82.1 90.9 67.7
BSIL CNN 72.5 67.4 80.8 88.9 76.4
BSIL SaNN 75.4 74.8 80.5 86.9 71.4

Due to our framework combines CNN, RNN, and SaNN, we first compare
them with these three models shown in Table.2. We can see that LSTM, C-
NN, and SaNN have a very low performance on the imbalanced dataset. The
F Score of LSTM model on CR dataset only has 37.5% and the SaNN model
on CR dataset only has 24.4%. The reason is CR has the more professional vo-
cabulary. Therefore, CR is more suitable for CNN which is better at capturing
keywords but lacks the ability of long short-term memory. When the dataset is
skewed, the professional vocabulary in the majority class is more than that in
the minority one, so the classifier has a serious over-fitting problem. the CNN
model on SST-2 only has 30.8%. SST has a high degree of context-dependency,
and there are many turning words in the sentence. Therefore, the LSTM model
is more suitable for capturing this kind of semantic information. In the imbal-
anced dataset, the semantic information of minority class is also easily covered
by the majority class, resulting in semantic over-fitting. Besides, CR is also a
document-level dataset. Each sample is too long, which makes it difficult for

SaNN’s self-attention mechanism to capture topic information. Therefore, its
accuracy rate is only 24.4%.

Compared with the state-of-the-art models in Tab.2, our model give the best
performance on four datasets. On the SPAM dataset, the undersampling al-
gorithm is only 0.1% higher than ours. In addition to the CR dataset, BSIL
combined with LSTM have better performance, BSIL-CNN has the best per-
formance on the CR dataset because its own CNN model is more suitable for
extracting local features.

Analysis The imbalance problem aggravates the skewed distribution of seman-
tic information and keywords in the dataset, and our BSIL model first divides
the dataset into multiple balanced data subsets and captures more useful infor-
mation through the distributed learning model. Unlike the resampling method,
our model does not lose useful information or generates virtual information, and
ensures the original distribution of the dataset.

4.6 Ablation Experiment for Weight Selection

To illustrate the importance of weight selection in the model, we do ablation
experiments on it. We remove the weight selection module from the BSIL model
and retain only the distributed model.

Table 3. Ablation Experiment for Weight Selection

Model MR SST-2 IMDB SPAM CR

Distributed LSTM 74.5 80.0 81.6 87.6 65.2
Distributed CNN 71.3 66.3 80.0 88.7 75.1
Distributed SaNN 75.2 72.9 79.4 86.5 70.3

BSIL LSTM 76.1 80.4 82.1 90.9 67.7
BSIL CNN 72.5 67.4 80.8 88.9 76.4
BSIL SaNN 75.4 74.8 80.5 86.9 71.4

Analysis The experimental results show that the weight selection module can
increase the accuracy of BSIL by 1%-2%. This is because the weight selection
module chooses the best initialization scheme for the model. When an agent
achieves a poor accuracy in the next step, the weight selection module will
improve it and make it get rid of the existing bad situation.

4.7 Comparison Experiment for DML

To demonstrate the robustness of the DML, we compare the F1 score value of
each agent with the final prediction result(see Tab.3). The DML uses Eq.1 to
make the final predictions more accurate than the results of each agent. We also

find that when BSIL LSTM trains CR dataset, even though only agent3 achieves
64.3% accuracy, while the other three agents all get very low accuracy, the final
result is still 3.4% higher than that of agent3. The same situation occurs when
BSIL SaNN trains CR dataset.

Table 4. BSIL Framework Combined with Different NN-based Models

Model(dataset) agent1 agent2 agent3 agent4 final result

BSIL LSTM(MR) 72.4 73.4 72.7 74.5 76.1
BSIL LSTM(SST-2) 78.1 75.4 80.0 - 80.4
BSIL LSTM(IMDB) 77.6 80.4 81.4 80.3 82.1
BSIL LSTM(SPAM) 87.4 90.7 90.9 89.0 90.9
BSIL LSTM(CR) 57.5 54.8 64.3 42.8 67.7

BSIL CNN(MR) 71.3 69.9 69.5 68.0 72.5
BSIL CNN(SST-2) 66.3 57.7 62.8 - 67.4
BSIL CNN(IMDB) 76.5 79.4 78.1 79.9 80.8
BSIL CNN(SPAM) 85.9 87.1 87.7 88.7 88.9
BSIL CNN(CR) 66.1 67.9 74.8 74.2 76.4

BSIL SaNN(MR) 72.4 74.5 73.4 72.7 75.4
BSIL SaNN(SST-2) 70.4 70.8 71.3 - 74.8
BSIL SaNN(IMDB) 77.6 79.2 76.8 79.4 80.5
BSIL SaNN(SPAM) 81.8 83.8 84.6 86.5 86.9
BSIL SaNN(CR) 70.3 41.9 64.2 57.1 71.4

Analysis DML uses the brain storm algorithm to evaluate the final classification
result for each sample in the test set. Based on the better results achieved by
all agents, the final classification results are improved again. The brain storm
algorithm effectively utilizes the principle of the minority obeying the majority
and eliminates the result with a high probability of error.

5 Conclusion

In this paper, we propose a brain storm-based framework to improve those neural
networks which are not always good at imbalanced text classification by applying
brain storm optimization (BSO) in sampling imbalanced datasets. Our proposal
is independent of neural networks and thus our approach is more adaptable for
neural networks. Besides, our approach is easy to perform better in imbalanced
text classification even for those neural networks relying on strict conditions
of datasets. In the future work, we are interested to investigate a fine-grained
metric to characterize imbalance index in text classification since the judgement
of imbalanced datasets in BSIL depends on the ratio of positive samples and
negative samples.

Acknowledgments

This work is supported by the National Key Research and Development Program
of China (2017YFB1401200,2017YFC0908401) and the National Natural Science
Foundation of China (61672377). Xiaowang Zhang is supported by the Peiyang
Young Scholars in Tianjin University (2019XRX-0032).

References

1. Al-Stouhi, S., and Reddy, K. (2016). Transfer learning for class imbalance problems
with inadequate data. Knowl. Inf. Syst., 48(1):201–228.

2. Charte, F., Rivera, J., del Jesus, J., and Herrera, F. (2019). REMEDIAL-HwR:
Tackling multilabel imbalance through label decoupling and data resampling hy-
bridization. Neurocomputing, 326:110–122.

3. Charte, F., Rivera, J., del Jesus, J., and Herrera, F. (2015). Addressing imbalance
in multilabel classification: Measures and random resampling algorithms. Neuro-
computing, 163:3–16.

4. Chen, w., Cao, Y, Sun, Y, Liu Q, and Li Y. (2017). Improving brain storm opti-
mization algorithm via simplex search. arXiv, CoRR abs/1712.03166.

5. Cheng, S., Qin, Q., Chen, J., and Shi, Y. (2016). Brain storm optimization algo-
rithm: A review. Artif. Intell. Rev., 46(4): 445–458.

6. Datta, S., Nag, S., Mullick, S., and Das, S. (2017). Diversifying support vector
machines for boosting using kernel perturbation: Applications to class imbalance
and small disjuncts. arXiv, CoRR abs/1712.08493.

7. He, H., and Garcia, A. (2008). Learning from imbalanced data. IEEE Trans. Knowl.
Data Eng. (9):1263–1284.

8. Khan, H., Hayat, M., Bennamoun, M., Sohel, A., and Togneri, R. (2018). Cost-
sensitive learning of deep feature representations from imbalanced data. IEEE
Trans. Neural Netw. Learning Syst., 29(8):3573–3587.

9. Kubat, M., Holte, C., and Matwin, S. (1998). Machine learning for the detection of
oil spills in satellite radar images. Machine Learning, 30(2-3):195–215.

10. Lai, S., Xu, L., Liu, K., and Zhao, J. (2015). Recurrent convolutional neural
networks for text classification. In Proc. of AAAI’15, pp.2267–2273.

11. Lin, C., Tsai, F., Hu, H., and Jhang, S. (2017). Clustering-based undersampling
in class-imbalanced data. Inf. Sci., 409:17–26.

12. Moreo A., Esuli A., and Sebastiani F. (2016). Distributional random oversampling
for imbalanced text classification. In Proc. of SIGIR’16, pp.805–808.

13. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
and Vanderplas, J. (2012). Scikit-learn: Machine learning in Python. arXiv, CoRR
abs/1201.0490.

14. Sun Y., Kamel M., and Wang Y. (2006). Boosting for learning multiple classes
with imbalanced class distribution. In Proc. of ICDM’17, pp.592–602.

15. Wang, J., Chen, Y., Hao, S., Feng, W., and Shen, Z. (2017). Balanced distribution
adaptation for transfer learning. In: Proc. of ICDM’17, pp. 1129–1134.

16. Wang, S., Minku, L., Yao, X. (2015). Resampling-based ensemble methods for
online class imbalance learning. IEEE Trans. Knowl. Data Eng., 27(5):1356–1368.

