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Abstract. Aspect extraction is an important task in ABSA (Aspect Based Sen-
timent Analysis). To address this task, in this paper we propose a novel variant 
of neural topic model based on Variational Auto-encoder (VAE), which con-
sists of an aspect encoder, an auxiliary encoder and a hierarchical decoder. The 
difference from previous neural topic model based approaches is that our pro-
posed model builds latent variable in multiple vector spaces and it is able to 
learn latent semantic representation in better granularity. Additionally, it also 
provides a direct and effective solution for unsupervised aspect extraction, thus 
it is beneficial for low-resource processing. Experimental evaluation conducted 
on both a Chinese corpus and an English corpus have demonstrated that our 
model has better capacity of text modeling, and substantially outperforms pre-
vious state-of-the-art unsupervised approaches for aspect extraction.  
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1 Introduction 

Aspect extraction is an important task in fine-gained sentiment analysis. It aims to 
extract target entities (or attributes of entities) that people have expressed in opinion-
ated text. Aspect extraction involves two subtasks: (1) Aspect Term Extraction and 
(2) Aspect Category Detection. The former subtask aims to identify all the aspect 
terms present in the sentence, while the latter aims to identify the predefined aspect 
categories discussed in a given sentence. For example, given the sentence "the waiters 
were so rude and obnoxious", the first subtask should extract “waiters” as an aspect 
term and the second should identify “Staff” as aspect category. 

Topic models have been widely applied for aspect extraction task because of some 
salient advantages, e.g., the ability of identifying aspect terms and grouping them into 
categories simultaneously, and the ability of domain adaption. Conventional topic 
models are mainly based on Latent Dirichlet Allocation (LDA) (Blei et al., 2003), 
which regard document as distribution over topics and topics as distribution over 
words. Many variants of LDA (Brody et al., 2010; Zhao et al., 2010; Chen et al., 
2014) have been proposed for aspect extraction and achieved good results. Recently, 
there is a surge of research interest in neural topic models (Miao et al., 2016, Miao et 
al., 2017; Srivastava et al., 2017; Ding et al., 2018), which is based on Variational 
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auto-encoder (VAE) (Kingma and Welling, 2015) and regard the latent variables as 
the topics of documents. VAE-based neural topic models make the most of the ability 
of auto-encoder structure in extracting features and have been proven by previous 
works to outperform conventional topic models in learning text representation (Sri-
vastava et al., 2017). 

In this paper, we proposed a multi-semantic neural topic model (called MS-NTM) 
based on variational auto-encoder for aspect extraction, which consists of an aspect 
encoder, an auxiliary encoder and a hierarchical decoder. In the encoding stage, we 
use two heterogeneous encoders, i.e., aspect encoder and auxiliary encoder, to build 
semantic representations in distinct vector spaces. Such structure is based on an intui-
tive assumption that variables with different priors and formalities (i.e. discrete and 
continuous) could capture distinct semantic. In the decoding process, we use a hierar-
chical decoder to decode the aspects and general semantic, which correlates better 
with the natural semantic structure of real-life reviews. In addition, we incorporate 
several empirical regularization terms to make two encoders work in a more collabo-
rative manner. 

To summarize, our contributions are three-fold: (1) We propose a neural topic 
model, which is able to learn semantic representation with better granularity by build-
ing latent variables in multiple spaces. (2) We apply the proposed neural topic model, 
which is based on VAE for the task of aspect extraction. and as far as we know, there 
are few similar work. (3) Experimental results of two domain datasets have demon-
strated that our model achieves controllable semantic encoding, and outperforms pre-
vious state-of-the-art models. 

2 Related Work 

For aspect extraction, supervised approaches heavily depend on labelled data and 
suffer from domain adaption, so a number of unsupervised approaches have been 
proposed in recent years. Brody et al (2010) used a standard implementation of LDA 
to detect aspect from online reviews. Zhao et al (2010) proposed MaxEnt-LDA to 
jointly extract aspect and opinion words. Chen et al (2014) proposed to discover as-
pects by automatically learning prior knowledge from a large amount of online data. 
Wang et al (2015) proposed a modified restricted Boltzmann machine (RBM), which 
jointly learn aspects and sentiment of text by using prior knowledge. He et al (2017) 
proposed a neural approach based on word embedding and attention mechanism.  

Recently, VAE-based neural topic model have been proved to perform well on text 
modelling. Miao et al (2016) proposed Neural Variational Document Model (NVDM) 
to use VAE framework for document modelling. Miao et al (2017) further proposed 
Gaussian Softmax Model (GSM), which modifies the NVDM by using a softmax 
function on Gaussian latent variables to endow model with the meaning of probabil-
ity. Srivastava et al (2017) proposed ProdLDA to replace the Gaussian priors of latent 
variables with Dirichlet priors. Ding et al (2018) proposed several regular versions of 
NVDM, which leverage pre-trained word embedding to directly optimized coherence 
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of inferred topics. Zeng et al (2018) proposed a hybrid model of neural topic model 
and memory networks for short text classification.  
2.1 Overview of our model 

Fig. 1. illustrates the overall architecture of our model. In comparison to previous 
neural topic models, the major superiority of proposed model is that it can learn un-
derlying semantic representations in better granularity by our innovative modifica-
tions of architecture and effective regularization terms. Generally speaking, the whole 
model includes a discrete aspect encoder, a continuous auxiliary encoder and a hierar-
chical decoder. Let 𝑟 ∈ ℝ௏ stand for bag-of-words (BOW) representation of a single 
review in dataset D, where V is the size of vocabulary. Two encoders both take r as 
input. Aspect encoder works like a discriminative model to learn the discrete latent 
vector z, which can be regarded as aspect label, while the goal of auxiliary encoder is 
to learn complementary semantic representation h, which are modelled by continuous 
values, to make aspect representation disentangled and lower the reconstruction loss 
of decoding process. Afterwards, hierarchical decoder jointly decodes these two types 
of latent variables in a two-step reconstruction process. We will explain each of the 
components in detail as follows. 

 
Fig. 1.. architecture of our model

 
2.2 Discrete Aspect Encoder 

The goal of aspect encoder is to learn aspect representation z of reviews. It consists of 
K units and each of them represents an aspect. We choose Multinomial distribution as 
the prior of z. Given a review r, we compute its exclusive posterior parameters 𝛼௥ 
with a softmax layer. 𝛼௥ = 𝑠𝑜𝑓𝑡𝑎𝑚𝑎𝑥(𝑊௔ ∙ 𝑟 + 𝑏௔) (1) 

Where 𝑊௔ ∈ ℝ௏×௄ and 𝑏௔ ∈ ℝ௄ are learnable parameters. 𝛼௥ can be regarded as the 
aspect distribution of input review r. 

To overcome the non-differentiable problem caused by sampling from non-
parameterized distribution, we use Gumbel-Max trick (Gumbel and Lieblein, 1954) 
which is widely used by recent work (Zhou and Neubig, 2017, Zhao et al., 2018) to 
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draw discrete samples from categorical distribution. 𝑧௥ ~ 𝐺𝑢𝑚𝑏𝑒𝑙-𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝛼௥) (2) 

Where 𝑧௥ ∈ ℝ௄ can be regarded as the approximate one-hot representation of aspect 
label obtained by Gumbel-Softmax (1954). 

According to Equation 1, the contribution of i-th word of review r towards k-th as-
pect is proportional to 𝑊௔(௜)(௞). Hence we could extract top representative words of 
each aspect by taking the most positive entries in each column of 𝑊௔. 

 
2.3 Gaussian Auxiliary Encoder 

Auxiliary encoder aims to learn complementary semantic representation h. Unlike 
aspect variables z, we model h with continuous values to flexibly capture implicit 
semantic besides aspects. We choose multivariate Gaussian p(h)=N(𝜇, 𝜎) as the prior 
over h. Given a review r, its exclusive posterior parameters 𝜇௥ and 𝜎௥ are computed 
by a Multi-Layer Perceptron (MLP). We also use the re-parameterization trick 
(Kingma and Welling, 2015) to create a differentiable estimator for h. 𝜇௥ = 𝑡𝑎𝑛ℎ (𝑊௠ ∙ 𝑟 + 𝑏௠) (3) 𝑙𝑜𝑔𝜎௥ = 𝑡𝑎𝑛ℎ(𝑊௦ ∙ 𝑟 + 𝑏௦) (4) ℎ௥ = 𝜇௥ ∗ 𝜀 + 𝜎௥ (5) 

where matrix 𝑊௠, 𝑊௦ ∈ ℝ௏×ௗ೓ and bias 𝑏௠, 𝑏௦ ∈ ℝௗ೓ are learnable parameters. ℎ௥ is 
the latent auxiliary variables of review r, 𝜀 is the random noise sampled from multi-
variate Gaussian with zero mean and unit variances. 

Introducing this auxiliary encoder brings two salient advantages. Firstly, it is ex-
pected to capture other semantic representation besides aspect by choosing different 
priors, which enables aspect encoder obtain disentangled aspects representation. Sec-
ondly, it makes the whole model achieve better convergence. Clearly, aspect repre-
sentation z is not adequate for decoding process because the number of aspect K is 
much smaller than the size of vocabulary V, which brings huge information loss and 
the high sparse form of z further also aggravates this problem. For instance, sentence 
“Dessert can’t be missed, so save room!” and “The beef is fabulous!” express the 
same aspect (Food), implying that aspect encoder should learn the same representa-
tion of two reviews while the decoder is expected to generate totally different words, 
which increases the reconstruction error. Thus, an additional encoder is an essential 
component to improve model’s overall performance. 

 
2.4 Hierarchical Decoder 

Now we have obtained discrete aspect vector 𝑧௥ and continuous auxiliary vector ℎ௥, 
Previous work (Serban et al., 2016) has demonstrated that hierarchical networks have 
better performance as data naturally possess a hierarchical structure. In our task, the 



5 

aspects information is a higher-level abstract of the general semantic representation. 
To avoid the representations entangled in decoding process and lower the reconstruc-
tion error of decoder, we use a hierarchical decoder to reconstruct reviews in two-step 
generation process. 

In the first step, we decode the aspect variables 𝑧௥ by projecting it into a continu-
ous space. 𝑡௥ = 𝑧௥ ∙ 𝐸௔ (6) 

where 𝐸௔ ∈ ℝ௄×ௗೌ can be regarded as a group of aspect vectors and is learned as a 
part of the training process. In the second step, we use aspect vector 𝑡௥ and auxiliary 
vector ℎ௥  to get the general sematic representation 𝑆௥ , then get reconstructed word 
distribution 𝑟ᇱ with a softmax layer. 𝑆௥ = tanh (𝑊௦ ∙ [𝑡௥; ℎ௥ሿ + 𝑏௦) (7) 𝑟ᇱ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑆௥ ∙ 𝐸௪) (8) 

Where 𝑊௦  and 𝑏௦  are learnable parameters, 𝐸௪ ∈ ℝ(ௗೌାௗ೓)×௏  can be regarded as a 
group of word vectors and is learned as a part of the training process.  

Note that we build aspect and word vectors in distinct vector spaces. In comparison 
to that, previous works (Ding et al, 2018; He et al., 2017; Miao et al., 2017) simply 
put aspect vectors and word vectors within the same vector space. In fact, the aspect 
information should be a part of whole word semantic. Hence we build the aspect vec-
tors in the subspace of word vector space to better learn these two different level se-
mantic vectors. 

 
2.5 Regularization Terms 

We further introduced several intuitive regularization terms to enable the two encod-
ers learn complementary semantic representation in a collaborative manner. Concrete-
ly, we first impose L1 normalization on 𝑊௔ to help aspect encoder select aspect words 
and filter irrelevant words more effectively. 𝑟𝑒𝑔௪ = ‖𝑊௠‖ (9) 

In contrast to contractive auto-encoder (Rifai et al., 2011), our model is only local 
contractive since we do not use the such regularization on 𝑊௠. The reason is that the 
goal of auxiliary encoder is to provide non-explicit semantic for decoder, thus we do 
not restrict its ability of learning features. 

Another regularization term is the distance between 𝑊௔ and 𝑊௠, which make our 
two encoders focus on different regions of input text. 𝑟𝑒𝑔ௗ = ||𝑇௔ − 𝑇௠||ଶ (10) 

Where 𝑇௔ and 𝑇௠ are the normalized vectors flattened by 𝑊௔ and 𝑊௠, respectively. 
At last, we incorporate minimum entropy regularization term (Grandvalet et al., 

2004) . 
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𝑟𝑒𝑔௛ = ෍ 𝐻(𝛼௥)௥∈஽ (11) 

Where 𝐻(𝛼௥) is the Shannon entropy of aspect distribution 𝛼௥ . This regularization 
term enable the model to learn the labels with high confidence, which correlates well 
with the fact that aspect of real-life reviews should not be ambiguous. Additionally, it 
also lowers the variance brought by sampling operation. 

 
2.6 Training Objective 

There are two parts of the objective functions to optimise in the model. The first part 
is to maximize the log-likelihood of reviews, we derive the evidence lower bound 
(ELBO) of a single review r as followings: 

ℒா௅஻ை(𝑟) = 𝔼௤ഇ(௛,௭) ൥෍ 𝑙𝑜𝑔𝑝ఏ௪∈௥ (𝑤|𝑧௥, ℎ௥)൩ − 𝐷௄௅[𝑞ఏ(𝑧௥|𝑟)||𝑝(𝑧)ሿ  
 
(12) −𝐷௄௅[𝑞ఏ(ℎ௥|𝑟)||𝑝(ℎ)ሿ

 
Where 𝜃  is total parameters of model. p(w|z,h) is the predictive word probability. 𝑝(ℎ) = 𝑁(0, I) is standard Gaussian prior, 𝑝(z) = 𝑀(𝛼) is Multinomial prior with 
hyper-parameter α.  

The second part are the regularization terms i.e. Equation 9, 10 and 11. The final 
loss function is expressed as: 𝐽(𝜃) = ℒ௥௘௚ − ෍ ℒா௅஻ை(𝑟)௥∈஽  (13) 

ℒ௥௘௚ = 𝜏 ∙ 𝑟𝑒𝑔௪ + 𝜑 ∙ 𝑟𝑒𝑔ௗ+𝜔 ∙ 𝑟𝑒𝑔௛ (14) 

Where 𝜏,𝜑 and 𝜔 are hyper-parameters to control the weight of regularization terms. 

3 Experiment Setup 

3.1 Dataset 

We evaluate our model on two datasets of user-generated-reviews. Preprocessing of 
two datasets involves tokenization, removal of stop words, punctuation symbols and 
illegal characters. Besides, we only retain the reviews containing 10~100 words of 
both datasets as our training set. The vocabulary size of two datasets are truncated by 
word frequency. The detail statics of two datasets are summarized in table 1. 
1) Restaurant Corpus: This is an English dataset composed of over 50,000 unla-

belled restaurant reviews collected from CitySearch and 3400 labelled reviews, 
which is widely used by previous works (Ganu et al., 2009; Brody and Elhadad, 
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2010; Zhao et al., 2010; He et al., 2017). The six pre-defined aspect categories 
are: {Food, Staff, Price, Ambience, Anecdotes, Miscellaneous} 

2) Mobile Game Corpus：This is a Chinese dataset composed of 128, 977 re-
views of a popular mobile game 王者荣耀(Arena of Valor) collected from social 
network and app. The five pre-defined aspect categories are: {英雄(Hero), 皮肤
(Skin), 装备(Item), 排位(Rank), 社交(Sociality)}. We manually annotated 1500 
reviews as its test set. 

Table 1. statics of datasets 

Datasets #Reviews #Vocab #Aspects categories 
Restaurant 52, 574 10, 000 6 

Game 12, 8977 15, 000 5 
 
3.2 Baseline methods 

1) LocLDA: The standard implementation of LDA (Brody and Elhadad, 2010). 
2) BTM (Yan et al., 2013): Biterm Topic Model directly models the generation 

process of word-pair to alleviate the sparsity problem.  
3) ABAE (He et al., 2017): This approach uses Neural Bag of Words (NBOW) as 

sentence representation and learns aspect embedding in a reconstruction process, 
where attention mechanism is used to filter non-aspect words. This baseline has 
achieved state-of-the-art results on restaurant corpus. 

4) NVDM (Miao et al., 2016): This is a general framework which employs the 
vanilla VAE framework with a Gaussian encoder to model document.  

 
3.3 Experimental Settings 

Hyper-parameters  
The aspect numbers K is a part of our experiment and described in each evaluation 
task. Other hyper-parameters are described as follows. For LocLDA, we use the open-
source implementation GibbsLDA++ and set Dirichlet priors α = 10/K and β = 0.1. 
For BTM, we use the implementation released by (Yan et al. 2013) and set α = 50/K 
and β = 0.1. Two topic models are run 1,000 iterations of Gibbs sampling. For ABAE, 
we use the code released by (He et al. 2017) and the settings in its reference. For 
NVDM, we re-implemented the model and set dimension of Gaussian variables to K. 
For MS-NTM, the dimension of aspect variables is equal to K, the dimension of the 
auxiliary variables and that of aspect vectors are both set to 128. The prior parameter 𝛼 = 1/𝐾 representing the fully unsupervised version. τ, ω and φ are set to 1, 2 and 
0.5 respectively. The Gumbel temperature is set to 0.1. The parameters of all neural 
models are randomly initialized and optimized using Adam (Kingma and Ba, 2014). 
Both neural models are trained with initial learning rate 0.001 for 50 epochs and batch 
size of 32. 
Training Strategies 
We separately trained two encoders of MS-NTM. In the first 25 epochs we fix the 
parameters of auxiliary encoder. In the second 25 epochs, we trained both encoders 
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together with different learning rates, which are 0.0001 for aspect encoder and 0.001 
for auxiliary encoder. Meanwhile the parameters of decoder are trained with the same 
learning rate 0.001 in all epochs. This training method is an empirical choice to alle-
viate the entanglement of two encoders during training process. 

4 Evaluation Results 

This section reports the experimental results of MS-NTM. We evaluated its capacity 
in modeling text and its performance on aspect extraction. 
4.1 Text Modelling 

Perplexity is a standard measure for evaluating topic models derived from the likeli-
hood of unseen test data. 

Fig. 2 presents the perplexity of each method on two datasets under different K 
value, which start from golden-standard aspect numbers of respective dataset. Note 
that perplexity of ABAE is intractable. Considering that approximate approaches may 
bring bias to evaluation., so we did not evaluate the performance on perplexity of 
ABAE.  

We can have the following observations from Fig. 2: (1) MS-NTM outperforms 
previous models for all values of K. (2) LDA performs worst, it may be because that 
most of the reviews are relative short. (3) NVDM performs better than traditional 
topic models especially for higher K, implying the effectiveness of VAE framework 
for text modelling. 

 

Fig. 2. results of Perplexity 

4.2 Aspect Extraction 

Aspect Coherence 
We manually mapped each inferred aspect to gold-standard aspects as previous work 
(Brody and Elhadad, 2010; He et al., 2017). In order to compare with previous work, 
we set K=14 for subsequent evaluation tasks of aspect extraction.Table 2 presents 
representative words (k=6) selected from 𝑊௔. As can be seen from table 2, the aspects 
inferred by MS-NTM are quite coherent and informative. 

To evaluate the quality of inferred aspects, one metric is coherence score, which 
has been used by previous work (Mimno et al., 2011; Chen et al., 2014; He et al., 
2017) to judge whether an aspect is coherent. Given an aspect z and a set of top N 
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related words of z, 𝑤௭ = ሼ𝑤ଵ௭, … , 𝑤ே௭, ሽ. The coherence score of aspect z is calculated 
as follows: 

S(z, 𝑤௭) = ෍ ෍ log 𝑇ଶ(𝑤௡௭, 𝑤௟௭) + 1𝑇ଵ(𝑤௟௭)௡ିଵ
௟ୀଶ

ே
௡ୀଶ  

 
(15) 

Where 𝑇ଵ(𝑤௟௭) is the document frequency of 𝑤௟௭ and 𝑇ଶ(𝑤௡௭, 𝑤௟௭) is the co-document 
or co-review frequency of word 𝑤௡௭ 𝑎𝑛𝑑 𝑤௟௭.  

Table 2. representative words of inferred aspects. 

Food Staff Ambience Price Anecdotes Miscellaneous 
beef manager  atmosphere charge travel location 
pork wait music bill party experience 

Pancake pleasure room dollar evening kid 
duck server ambience value tourist taxi 

noodle waitress come walk sahara weather 
appetizer waiter lighting waste date rock 

steak behavior bar tax christmas bravo 
cocktail rudeness space buck wedding reservation 

salad people area fee alien app 
 

 

Fig. 3. Average coherence score under different terms N 

Fig. 3 presents the coherence score on two datasets of all methods with different N, 
from which we can see that MS-NTM outperforms baseline models for all ranked 
buckets and the gap increases with the increasing of N. Besides, although NVDM 
performs well in perplexity, NVDM performs not well in coherence score. We raise 
the hidden size of NVDM to be the same as that of MS-NTM and our model still per-
forms better and maintains good interpretability of latent representation, which prove 
the effectiveness of the collaborative learners of MS-NTM. 

 
Aspect Identification 
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We then evaluated the performance of MS-NTM on aspect category identification 
task. Given a review, we assign it aspect label corresponding to the highest value of 𝛼௥ in Eq. 4. In order to compare with previous work, we follow their settings (Brody 
and Elhadad, 2010; Wang et al., 2015; He et al., 2017) to remove the multi-labeled 
reviews and only evaluated on three major aspects for restaurant dataset, which are 
food, staff, and Ambience. 

Table 3. Results of aspect identification, P, R and F1 represent precision, recall and F1 
score, respectively. The results of LocLDA are from Zhao et al (2010), the results of BTM 
and ABAE are from He et al (2017), the results of SERBM are from Wang et al (2015) 

 Restaurant Corpus Mobile Game Corpus 
 Aspect P R F1 Aspect P R F1 
 
LocLDA 

Food 
Staff 

Ambience 

0.898 
0.804 
0.603 

0.648
0.585
0.677

0.753
0.677
0.638

Hero 
Item 

Social

0.872
0.692
0.694

0.614 
0.512 
0.504 

0.705 
0.589 
0.584 

 
BTM 

Food 
Staff 

Ambience 

0.933 
0.828 
0.813 

0.745
0.579
0.599

0.816
0.677
0.685

Hero 
Item 

Social

0.850
0.700
0.670

0.702 
0.533 
0.475 

0.769 
0.605 
0.599 

 
ABAE 

Food 
Staff 

Ambience 

0.953 
0.802 
0.815 

0.741
0.728
0.698

0.828
0.757
0.740

Hero 
Item 

Social

0.902
0.711
0.711

0.701 
0.517 
0.501 

0.789 
0.599 
0.588 

 
NVDM 

Food 
Staff 

Ambience 

0.741 
0.701 
0.620 

0.662
0.497
0.543

0.699
0.582
0.579

Hero 
Item 

Social

0.766
0.614
0.652

0.571 
0.487 
0.448 

0.654 
0.543 
0.531 

 
SERBM 

Food 
Staff 

Ambience 

0.891 
0.819 
0.805 

0.854
0.582
0.592

0.872
0.680
0.682

Hero 
Item 

Social

- 
- 
-

- 
- 
-

- 
- 
- 

 
MS-NTM 

Food 
Staff 

Ambience 

0.942 
0.833 
0.819 

0.818
0.730
0.701

0.873
0.778
0.755

Hero 
Item 

Social

0.884
0.719
0.720

0.709 
0.594 
0.504 

0.787 
0.651 
0.593 

 
Table 3 presents precision, recall and F1 score of two datasets. We also compare 

our model with SERBM (Wang et al., 2015) for restaurant corpus, one of the art-of-
state models. Results show that MS-NTM substantially outperforms previous meth-
ods. For some frequent aspects (Food, Hero), ABAE slightly outperforms our model. 
A possible reason is that the word embedding quality of frequent words is higher 
(Bojanowski and Grave; 2016), which also indicates that the performance of ABAE 
may depend on the word embedding model, while our model has better robustness. 

5 Conclusion 

In this paper, we have presented a neural topic model based on variational auto-
encoder for aspect extraction from opinion texts. In comparison to previous models, it 
can learn multiple semantic representations by choosing appropriate priors and intui-
tive regularization terms. Experimental results have demonstrated that our model not 
only has better ability of text modelling, but also outperforms previous art-of-state 
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unsupervised methods for aspect extraction task. Further explorations of VAE-based 
techniques for modelling contextual semantic, and neural topic model for solving 
more downstream NLP tasks will be addressed in our future research. 
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