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Abstract. Existing dialog systems are all monolingual, where features
shared among different languages are rarely explored. In this paper, we
introduce a novel multilingual dialogue system. Specifically, we augment
the sequence to sequence framework with improved shared-private mem-
ory. The shared memory learns common features among different lan-
guages and facilitates a cross-lingual transfer to boost dialogue systems,
while the private memory is owned by each separate language to cap-
ture its unique feature. Experiments conducted on Chinese and English
conversation corpora of different scales show that our proposed archi-
tecture outperforms the individually learned model with the help of the
other language, where the improvement is particularly distinct when the
training data is limited.

Keywords: Multilingual dialogue system · Memory network · Seq2Seq
· Multi-task learning.

1 Introduction

Dialogue systems have long been an interest to the community of natural lan-
guage processing due to their width range of applications. These systems can
be classified as task-oriented and non-task-oriented where task-oriented dialogue
systems accomplish a specific task and non-task-oriented dialogue systems are
designed to chat in open domain as chatbots [1]. In particular, the sequence-to-
sequence (Seq2Seq) framework [2], which learns to generate responses according
to the given queries can achieve promising performance and grow popular [3].

Building a current state-of-the-art generation-based dialogue system requires
large-scale conversational data. However, the difficulty of collecting conversa-
tional data in different languages varies greatly [4, 5]. For example, it is difficult
for minority languages to collect enough dialogue corpora to build a dialogue
generation model as other majority languages (e.g., English and Chinese) do.
Herein, we investigate to move the frontier of dialogue generation forward from
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a different angle. More specifically, we find that some common features, e.g., di-
alogue logic, are shared in different languages but with different linguistic forms.
Leveraging a multi-task framework for cross-lingual transfer learning can alle-
viate the problems caused by the scarcity of resources [6–8]. Through common
dialogue features shared among different languages, the logic knowledge of differ-
ent languages can be transferred and the robustness of the conversational model
can be improved. However, to the best of our knowledge, no existing study has
ever tackled multilingual generation-based dialogue systems.

This paper proposes a multi-task learning architecture for multilingual open-
domain dialogue system that leverages the common dialogue features shared
among different languages. Inspired by [16], we augment the Seq2Seq frame-
work by adding a architecture-improved key-value memory layer between the
encoder and decoder. Concretely, the memory layer consists of two parts, where
the key memory is used for query addressing and the value memory stores the
semantic representation of the corresponding response. To capture both shared
and private features in different languages, the memory layer is further divided
into shared and private memory separately. Though proposed for open-domain
dialogue system, the multilingual shared-private memory architecture can be
adapted flexibly and used for other tasks.

Experiments conducted on Weibo and Twitter conversational corpora of dif-
ferent sizes show that our proposed multilingual architecture outperforms ex-
isting techniques on both automatic and human evaluation metrics. Especially
when the training data is scarce, the dialogue capability can be enhanced signif-
icantly with the help of the multilingual model.

To this end, the main contributions of our work are summarized into four
folds: 1) To the best of our knowledge, the proposed work is the first to pro-
vide a solution for multilingual dialogue systems. 2) We improve the traditional
key-value memory structure to expand its capacity, with which we extend the
Seq2Seq model to capture dialogue features. 3) Based on the memory augmented
dialogue model, a multi-task learning architecture with shared-private memory is
proposed to achieve the transfer of dialogue features among different languages.
4) We empirically demonstrate the efficiency of multi-task learning in dialogue
generation task and investigate some characteristics of this framework.

2 Related Works

2.1 Dialogue Systems

Building a dialogue system is a challenging task in natural language processing
(NLP). The focus in previous decades was on template-based models [9]. How-
ever, recent generation-based dialogue systems are of growing interest due to
their effectiveness and scalability. Ritter et al. [10] proposed a response genera-
tion model using statistical machine-translation methods. This idea was further
developed by [11], who represented previous utterances as a context vector and
incorporated the context vector into response generation. Many methods are
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applied in dialogue generation. Attention helps the generation-based dialogue
system by aligning the context and the response. [12] improved the performance
of a recurrent neural network dialogue model via a dynamic attention mech-
anism. In addition, some works concentrate on many aspects of the dialogue
generaion, including diversity, coherence, personality, knowledgeable and con-
trollability [13]. In these approaches, the corpora used are always in the same
language. These systems are referred to as monolingual dialogue systems. As far
as we know, this study is the first to explore the use of multilingual architecture
to better suit the generation-based dialogue system.

2.2 Memory Networks

Memory networks [14, 15] are a class of neural network models that are aug-
mented with external memory resources. Valuable information can be stored and
reused in memory networks through the memory components. Based on the end-
to-end memory network architecture [15], [16] proposed a key-value memory net-
work architecture for question answering. The memory stores facts in a key-value
structure so that the model can learn to use keys to address relevant memories
with respect to the question and return corresponding values for answering. [17],
[18] and [19] built goal-oriented dialogue systems based on memory-augmented
neural networks. Compared with the above models, our memory components
are not trained based on specific knowledge bases, but self-tuning in the training
process, which makes the model more flexible. We further divide each memory
module into several blocks to improve its capability.

2.3 Multi-task learning

Multi-task learning (MTL) is an approach to learn multiple related tasks simulta-
neously. It improves generalization by leveraging the domain-specific information
contained in the training signals of related tasks [20]. [21] confirmed that NLP
models benefit from the MTL approach. Many recent deep-learning approaches
to multilingual issues also used MTL as part of their model.

In the context of deep learning, MTL is usually done with either hard or soft
parameter sharing of hidden layers: hard parameter sharing method explicitly
shares hidden layers between tasks while keeping several task-specific output
layers; soft parameter sharing method usually employs regularization techniques
to encourage the parameters in different tasks to be similar [22]. Hard param-
eter sharing is the most commonly used approach to MTL in neural networks.
[7] learned a model that simultaneously translated sentences from one source
language to multiple target languages. [23] propose an adversarial multi-task
learning framework for text classification. [8] demonstrated a single deep learn-
ing model that jointly learned large-scale tasks from various domains including
multiple translation tasks, an English parsing task, and an image captioning task.
However to date, no multilingual dialogue-generation system based on multi-task
learning framework has been built.
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Fig. 1. Memory structure of MemSeq2Seq and ImpMemSeq2Seq. M represents memory
module. k and v represent input and output memory respectively.

3 Model

In this section, we first review the vanilla Seq2Seq, then propose the key-value
memory augmented Seq2Seq models, and extended them with shared-private
memory components to implement the multilingual dialogue systems.

3.1 Preliminary background knowledge

A Seq2Seq model maps input sequences to output sequences. It consists of two
key components: an encoder, which encodes the source input to a fix-sized con-
text vector using the Recurrent Neural Network (RNN), and a decoder, which
generates the output sequence with another RNN based on the context vector.

Given a source sequence of words (query) q = {x1, x2, ..., xnq
} and a target

sequence of words (response) r = {y1, y2, ..., ynr
}, a basic Seq2Seq based dialogue

system automatically generates response r conditioned on query q by maximizing
the generation probability p(r|q). Specifically, the encoder encodes q to a context
vector c, and the decoder generates r word by word with c as input. The objective
function of Seq2Seq can be written as

ht = f(xt, ht−1), c = hnq
, (1)

p(r|q) = p(y1|c)
nr∏
t=2

p(yt|c, y1, ..., yt−1), (2)

where ht is the hidden state at time t and f is a non-linear transformation.
Moreover, gated recurrent units (GRU) and the attention mechanism proposed
by [24] are used in this work.

3.2 Key-Value Memory Augmented Seq2Seq

Inspired by the end-to-end memory network[16], we introduce the MemSeq2Seq

model which adds a key-value memory layer between the encoder and decoder
to learn dialogue features, and the ImpMemSeq2Seq which divides the memory of
MemSeq2Seq into blocks to expand model capacity.
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MemSeq2Seq The MemSeq2Seq augments the Seq2Seq with a key-value mem-
ory layer between the encoder and decoder. The memory component consists
of two parts: input (key) and output (value) memorys. The input memory is
used for query representation addressing, while the output memory stores the
representation of the corresponding response information. The model retrieves
information from the value memory with the weights computed as the similarity
between the query representation and the key memory, with the goal of selecting
values that are most relevant to the query.

Formally, we first encode a query q to a context vector c, and then calculate
the similarity p = {p1, ...pt} between c and each item of the key memory using
softmax weight. Later, the model computes a new context vector c∗, which is a
weighted sum of the value memory according to p.

pj = softmax(c · kj), (3)

c∗ =

t∑
j=1

pjvj (1 ≤ j ≤ t), (4)

where kj and vj are items in the key and value memory, and t is the number
of key and value items. During training, all items in memory and parameters
in the Seq2Seq are jointly learned to maximize the likelihood of generating the
ground-truth responses conditioned on the queries in the training set.

ImpMemSeq2Seq In the MemSeq2Seq, the key-value pairs in memory are lim-
ited, which are linear with the number of items in memory. To expand capacity,
we further divide the entire memory into several individual blocks and accord-
ingly split the input vector into several segments to compute the similarity scores.
After division, similarity to multi-head attention mechanism [25], different rep-
resentation subspaces at different positions are individually projected and the
number of key-value pairs becomes the number of slot combinations in these
blocks, while one key still corresponds to one value.

The model first split a context vector c into n segments, then compute new
context segments c∗i by memory blocks independently, and the final new context
vector c∗ is the concatenation of c∗i . The formula is as follows.

c1, ...cn = split(c), c∗i = Mi(ci), (5)

c∗ = concat(c∗1, c
∗
2, . . . , c

∗
n), (6)

where Mi represents the calculation in ith memory block.
The ImpMemSeq2Seq calculates the weight p with a finer granularity, which

makes the addressing more precise and flexible. Besides, with a parallel imple-
mentation, the memory layer becomes more efficient.

3.3 Seq2Seq with Shared-Private Memory

The models introduced in the previous sections can be extended for monolin-
gual tasks. Specifically, we augment the MemSeq2Seq and ImpMemSeq2Seq for
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Fig. 2. SPImpMem model for multilingual dialogue system. Mglobal represents the shared
memory. Superscript lang1, lang2 represent two different languages respectively.

multilingual tasks and named the extensions SPMem and SPImpMem, respectively.
According to multi-task learning, dialogue systems in two different languages
can be simultaneously trained. By sharing representations between two dialogue
tasks, the model facilitates the cross-lingual transfer of dialogue capability.

Our multilingual model consists of four modules: an encoder, decoders, a pri-
vate memory for each language and shared memory occupied by all languages.
Figure 2 gives an illustration of SPImpMem. The SPMem is a special case where the
number of memory blocks n is set to 1. More specifically, given a input query q,
the encoder of its language first encode it into a context vector c, and then the
model feeds c to both its private and shared memory. The private memory is
occupied by the language corresponding to the input. The shared memory is ex-
pected to capture common features of conversations among different languages.
By matching and addressing the shared and private memory components, we
obtain two output vectors that are then concatenated as a new context vector
c∗. The returned vector is supposed to contain features from both its own lan-
guage and other languages involved in the multilingual model, which is then fed
to the decoder of its language.

Given the first language conversational corpus (q1
i , r1i )T1

i=1 and the second

language conversational corpus (q2
i , r2i )T1

i=1, the parameters Θ are learned by
minimizing the negative log-likelihood between the generated r̃ and reference r,
that is equivalent to maximizing the conditional probability of responses r1 and
r2 given Θ, q1 and q2:

J =
1

T1

T1∑
i=1

log p(r1i |q1
i , Θs1 , ΘM1

, ΘMg
) +

1

T2

T2∑
i=1

log p(r2i |q2
i , Θs2 , ΘM2

, ΘMg
),(7)

where ΘS is a collection of parameters for the encoders and decoders; ΘM is the
parameters of memory contents; T is the size of corpus; and subscriptions 1, 2
and g represent lang1, lang2, and global in Figure 2 respectively.
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4 Experimental Settings

4.1 Datasets

We conducted experiments on open-domain single-turn Chinese (Zh) and En-
glish (En) conversational corpora. The Chinese corpus consists of 4.4 million
conversations and the English corpus consists of 2.1 million conversations [10].
The conversations are scraped from Sina Weibo1 and Twitter2 respectively.

The experiments include two parts: balanced and unbalanced tests, which
are discriminated by the relative size of training data for each language. In the
balanced tests, the sizes of the Chinese and English corpus are comparable.
We empirically set the dataset size to 100k, 400k, 1m and the whole (4.4m-
Zh, 2.1m-En) to evaluate the model performance in different data scales. The
unbalanced tests consist of training data of (1m-Zh, 100k-En) and (100k-Zh,
1m-En) respectively. Subsets used are sampled randomly. All the experiments
have the same validation and testing data with size 10k.

4.2 Evaluation Metrics

Three different metrics are used in our experiments:

– Word overlap based metric: Following previous work [11], we employ
BLEU [26] as an evaluation metric to measure word overlaps in a given
response compared to a reference response.

– Distinct-1 & Distinct-2: Distinct-1 and Distinct-2 are the ratios of distinct
unigrams and bigrams in generated responses respectively [27] which measure
the diversity of the generated responses.

– Three-scale human annotation: We adopt human evaluation following
[28]. Four human annotators were recruited to judge the quality of 500 gen-
erated responses from different models. All of the responses are pooled and
randomly permuted. The criteria are as follows: +2: the response is relevant
and natural; +1: the response is a correct reply, but contains little errors;
0: the response is irrelevant, meaningless, or has serious grammatical errors.

4.3 Implementation Details

The Adam algorithm is adopted for optimization during training. All embeddings
are set to 630-dimensional and hidden states 1024d. Considering both efficiency
and memory size, we restrict both the source and target vocabulary to 60k
and the batch size to 32. Chinese word segmentation is performed on Chinese
conversational data. For the single block memory components, the number of
cells in the memory block is set to 1024 empirically, and the dimension of each
cell is adjusted according to the encoder. The memory block is further divided

1 http://weibo.com
2 http://www.twitter.com
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into 32 parts in our improved memory model. In multilingual models, the number
of blocks for shared and private memory component are the same. To prevent the
multilingual model from favoring one certain language, we switched sentences of
different languages individually by batch during training.

4.4 Comparisons

We compare our framework with the following methods:

– Seq2Seq. A Seq2Seq model with attention mechanism.
– MemSeq2Seq. The key-value memory augmented Seq2Seq model in Section 3.2.
– ImpMemSeq2Seq. The improved memory augmented Seq2Seq model with the

memory block decomposed into several blocks as in Section 3.2.
– SPMem. The proposed multilingual model with shared-private memory which

is extended from MemSeq2Seq. It is a special case of SPImpMem where the
number of memory blocks n is set to 1.

– SPImpMem. The proposed multilingual model with shared-private memory
component which is extended from ImpMemSeq2Seq as in Section 3.3.

5 Results and Analysis

We present the evaluation results of balanced test and unbalanced test in Table
1 and 2 respectively. Table 1 contains evaluation results of monolingual dialogue
systems with Seq2Seq, MemSeq2Seq and ImpMemSeq2Seq as baseline. Table 2 can
be viewed in conjunction with the data in Table 1.

5.1 Monolingual Models

From Table 1, we observe that the performance of the MemSeq2Seq model only
slightly outperforms the Seq2Seq model. However, with memory decomposed
into several parts, the ImpMemSeq2Seq model surpasses the basic Seq2Seq model.
Therefore, we conclude from the comparisons that our modification of the mem-
ory components improves the capability of the model. Another observation is
that in English a good conversation model can be trained with less data. Hence
it does not get a significant performance gain in English as the size of data
increases.

5.2 Multilingual Models

Balanced Test From the experimental results shown in Table 1, we observe
that the proposed multilingual model outperforms the monolingual baselines on
English corpus of different sizes. For the Chinese corpus, the promotion decreases
when the size of training data increases, and thus it can only be seen on data
of small sizes (i.e., 100k and 400k). Similar results can also be observed in [29].
There are several interpretations of the phenomena: 1) By the shared memory
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Datasets
Monolingual (baseline) Multilingual

Seq2seq MemSeq2Seq ImpMemSeq2Seq SPMem SPImpMem

100k
Zh 0.485 0.478 0.492 0.524 0.549
En 0.779 0.780 0.825 0.831 0.805

400k
Zh 2.024 2.144 2.142 2.565 2.317
En 1.001 0.937 0.974 0.976 1.034

1m
Zh 3.135 3.131 3.268 2.732 2.827
En 1.027 1.100 1.099 1.135 1.146

all (4.4m-Zh, 2.1m-En)
Zh 3.600 3.383 3.755 2.955 2.765
En 1.082 1.140 1.208 1.254 1.336

Table 1. BLEU-4 scores of the balanced test. The results of monolingual experiments
are included for comparison.

Datasets
Multilingual

SPMem SPImpMem

100k-Zh, 1m-En
Zh 1.442 1.484
En 1.083 1.075

1m-Zh, 100k-En
Zh 2.607 2.690
En 0.800 0.839

Table 2. BLEU-4 scores of the unbalanced test. Numbers in bold mean that it
achieves the best performance among all models trained with this dataset.

component in the proposed multilingual model, common features are learned
and transferred through both languages. Thus, when one language corpus is
insufficient, some common features from other languages are helpful. 2) With
the scale of corpus increasing, the monolingual model is already capable enough
so that noisy information from other languages may hinder the original system.

Nevertheless, the contrary behaviors of the multilingual model on Chinese
and English corpus remain suspended. As the scale of training data grows,
the performance of SPMem and SPImpMem on English corpus outperforms the
monolingual baselines while the performance decreases on Chinese corpus. This
may result from the various qualities of different corpora which further influ-
ence the features in the shared memory blocks. The Chinese monolingual model
whose parameters are originally well estimated are hindered by the noise from
the shared memory. However, the English monolingual model that is relatively
poorly trained benefit from the shared features. In a word, the higher quality
corpus needs multilingual training less. Our model focuses on the scenario that
the corpus of one language is scarce.

Unbalanced Test Since models benefit a lot from the multilingual model when
training data is scarce in Table 2, we present more detailed evaluation results
of models trained with the 100k datasets in Table 4 and Table 3. It is clear
that, with the help of another rich resource language corpus, the multilingual
model improves the performance of language with limited training data on au-
tomatic evaluation metrics except for Distinct-1. The improvements remain true
even when comparing the unbalanced test results with the balanced test results,
which are strengthened by the other language corpus with the same size. Ac-
cording to the human evaluation results, SPMem and SPImpMem generate more
informative and interesting responses (+2 responses) but perform much worse



10 Chen et al.

Dataset (100k-En) BLEU-1 BLEU-2 BLEU-3 BLEU-4 Distinct-1 Distinct-2 0 +1 +2 Kappa
Seq2Seq 8.513 3.331 1.566 0.779 0.019 0.077 0.36 0.60 0.04 0.54
MemSeq2Seq 8.613 3.378 1.576 0.780 0.017 0.061 0.38 0.59 0.03 0.58
ImpMemSeq2Seq 9.178 3.623 1.682 0.825 0.018 0.070 0.37 0.58 0.05 0.47
SPMem (with 100k-zh) 8.844 3.520 1.651 0.831 0.017 0.071 0.56 0.41 0.03 0.43
SPImpMem (with 100k-zh) 9.048 3.573 1.637 0.805 0.020 0.080 0.52 0.44 0.04 0.58
SPMem (with 1m-zh) 10.669 3.686 1.580 0.800 0.007 0.124 0.31 0.62 0.07 0.46
SPImpMem (with 1m-zh) 9.118 3.648 1.701 0.839 0.025 0.103 0.52 0.33 0.15 0.51

Table 3. Evaluation results of models trained with the 100k English dataset.

Dataset(100k-Zh) BLEU-1 BLEU-2 BLEU-3 BLEU-4 Distinct-1 Distinct-2 0 +1 +2 Kappa
Seq2Seq 9.463 3.035 1.168 0.485 0.026 0.113 0.47 0.45 0.08 0.74
MemSeq2Seq 9.210 2.859 1.101 0.478 0.018 0.073 0.43 0.43 0.14 0.74
ImpMemSeq2Seq 9.682 3.041 1.164 0.492 0.021 0.094 0.54 0.34 0.12 0.65
SPMem(with 100k-en) 10.329 3.132 1.213 0.524 0.026 0.114 0.52 0.33 0.15 0.70
SPImpMem(with 100k-en) 9.978 3.136 1.242 0.549 0.026 0.114 0.32 0.53 0.15 0.76
SPMem(with 1m-en) 11.940 4.193 2.211 1.442 0.017 0.148 0.55 0.27 0.18 0.82
SPImpMem(with 1m-en) 11.991 4.179 2.236 1.484 0.019 0.164 0.53 0.23 0.24 0.85

Table 4. Evaluation results of models trained with the 100k Chinese dataset.

Fig. 3. The figure shows a 2-dimensional PCA projection of the input block in the
memory networks. The two private memory blocks are differently oriented, and the
shared memory block tends to be the mixture of them. The curves located above and
right show more details of the distributions along two axes.

on +1 responses for grammatical errors. Fleiss’ Kappa on all models are larger
than 0.4, which proves the correlation of the human evaluation. Therefore, some
features captured by the shared memory from one language can be efficiently
utilized by other languages.

5.3 Model Analysis

To illustrate the information stored in the memory components, Figure 3 visu-
alizes the first input block of each memory, namely two private and one shared
memory components. From the scatter diagram and the fitting results of the
Gaussian distribution, we observe some characters in the memory layer. Tuned
explicitly by each separate language, the two private memory blocks learn and
store different features that appear to distribute differently in the two dimen-
sions after principal component analysis (PCA) projection. Nevertheless, the
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shared memory that is jointly updated by the two languages is likely to keep
some common features of each private memory block.

6 Conclusion

This paper proposes a multi-task learning architecture with share-private mem-
ory for multilingual open-domain dialogue generation. The private memory is
occupied by each separate language, and the shared memory is expected to
capture and transfer common dialogue features among different languages by
exploiting non-parallel corpora. To expand the capacity of vanilla memory net-
work, the entire memory is further divided into individual blocks. Experimental
results show that our model outperforms separately learned monolingual models
when the training data is limited.
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