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Abstract. Question Generation (QG) aims to generate a question based
on the context. Given the intrinsic connections between QG and QA
(Question Answering), we focus on training a joint model for both QG
and QA, and take one step further to integrate one more context self-
encoding (CSE) task into the joint model, as a junction auxiliary task to
better integrate QG and QA. In particular, our model employs a cross-
task autoencoder to incorporate QG, QA and CSE into a joint learning
process, which could better utilize the correlation between the contexts of
different tasks in learning representations and provide more task-specific
information. Experimental results show the effectiveness of our triple-
task training model for QG, and the importance of learning interaction
among QA and CSE for QG.
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1 Introduction

Question Generation (QG) is an important task in machine comprehension and
perception of knowledge, which has also aroused a lot of attention in cognitive sci-
ence and artificial intelligence during the last decade. Recently, some studies [17,
15] consider the interaction between QG and QA, leveraging their probabilistic
correlation to guide the learning process. Among them, [15] uses the “duality”
between QA and QG as a regularization term to influence the learning of QA
and QG models. Both [17,15] report that the co-training models could improve
both QA and QG performance. But in most cases, existing work on joint learning
for QG and QA which learns the correlation between two uni-task models with
a shared encoding layer [17]. However, a shared encoding layer tends to learn
common information between tasks, but might ignore those information that is
only useful for one task, which we call as task-specific information.

In this paper, we take one step further to integrate one more context self-
encoding (CSE) task into the joint model, as a junction auxiliary task to better
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integrate QG and QA. CSE is an autoencoder, which could provide more com-
plete information(i.e., both common information and task-specific information)
for QA and QG. In particular, our model incorporates QG, QA and CSE into
a single learning process with a so-called cross-task autoencoder. The proposed
cross-task autoencoder reconstructs one input from the middle representations
of other different tasks. For example, it reconstructs context from the intermedi-
ate representations of QG and QA task, that could better utilize the correlation
between the context of different tasks in representation learning and provide
more task-specific information. Experimental results show that our Triple-Joint
Model yields much better performance over several state-of-the-art models.

2 Related Work

Typically, QG could be processed by transforming input text into symbolic rep-
resentation, which then will be transformed into a question. The traditional
methods for QG are either based on rules [1], or slot-filling with question tem-
plates [7], which often involve pipelines of independent components that are
difficult to be tuned for final performance measures. sTo address the weak-
nesses above, some end-to-end neural models are proposed. For example, [4]
use a sequence-to-sequence model with an attention mechanism derived from
the encoder states.

Given the intrinsic connections between QA and QG, some recent efforts
propose to train a joint model for both QA and QG. [17] take both QA and QG
as generation tasks and adopt an attention-based sequence-to-sequence archi-
tecture. Alternatively, [15] use the “duality” between QA and QG as a regular-
ization term to influence the learning of QA and QG models. They implemente
simple yet effective QA and QG models, both of which are neural network based
approaches.

As stated by [12], the objective and its importance are the two core aspects of
a question. We could hardly judge the quality of a question without knowing the
context of the question. Thus, people tend to introduce context information into
a QG system to guide the generation of questions, instead of using the input
answer only. To the best of our knowledge, we are the first to do triple-joint
learning for QA and QG models by introducing one more task, that is, context
self-encoding (CSE).

3 Basic Uni-Task Model

In this section, we first give a general definition of the QG task, then introduce
our uni-task model that could be applied for QG task alone.

3.1 Tasks Definition

The primary task in this paper is QG, which can be formally defined as follows:
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Given an answer A = (w{,w§s, ...w%A), and relevant sequential sentences
C = (wf,ws,...,ws,) as input context, the task is to generate a sequential

text, say question Q = (w{, wi, ..., w%@)7 that could be answered by the answer

A according to C, where T, denotes the length of z (z € {C,Q, A}).
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Fig. 1. Uni-Task Model Overview Fig. 2. Triple-Joint Model Overview

3.2 Overview of Uni-Task Model

Figure 1 depicts the overview of our uni-task model for QG task, which can
be separated into three parts: encoder layer, dot-product matching layer and
decoder layer.

3.3 Encoder Layer

We first convert the words x; into continuous representations with an embed-
ding matrix W,. After that, the input sequence is processed by a bidirectional
recurrent network [8].

By = (@ ki), (1)

E = ?(xt, hit1) (2)
he = [y b (3)

where h; € R” is a hidden state at time ¢. f(-) is LSTM.
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3.4 Dot-product Matching Layer

In order to incorporate answer information into context representation, We in-
troduce a match mechanism to decide the importance of each individual rep-
resentation automatically, using Dot-Product to calculate a pair-wise matching
matrix M which indicates the pair-wise matching degree of one context word
and one answer word.

Formally, when given context and answer representation h¢ and h%, we can
compute a context and answer pair representation hP as follows:

hf = f(hfflv [hg’ Ct]) (4)

where ¢; is an attention-pooling vector of the whole answer, which can be com-
puted as a weighted sum of the sequence of annotations (h{,--- , h. ) to which
an encoder maps the answer, that is,

o Soie ) exp(M(t,i))hg
Sty eap(M(t, k))

where M (t,1) is the weight of annotation h¢ in time step ¢, which is the pair-wise
matching degree of one context word and one answer word, i.e.,

()

M(t,i) = ——=—=— (6)

where dj, is the dimension of h°.

3.5 Decoder Layer

We implement a attention-based LSTM decoder to read the context-answer pair
representation AP and generate question word by word. At each time step, the
decoder generates a question word y; by sampling from a distribution of the
target vocabulary until sampling the token representing the end of sentence.
The hidden state of the decoder s; and the pair representation h? at each time
step i of the encoding process are computed with a weight matrix W, to obtain
the global attention «; ; and the context vector c;. It is described below:

pgen(yi|y17 ooy yi—lax) = g(yi—h Sis Ci) (7)
si = f(8i—1,Yi-1,¢i) (8)

Ty
C; = Z Oéz'jh? (9)

j=1

exp(€ij)
Q5 = T, / (10)
Zkzl efﬂp(@ik)

eij = CL(SZ',17 h?) (11)

where f(-) is LSTM, g¢(-) is a nonlinear, potentially multi-layered function that
outputs the probability of y;, and a(-) is a feedforward neural network.
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3.6 Training and Inference

Given the context ¢ and answer a, our uni-task model for QG can be trained end-
to-end using stochastic gradient descent by minimizing the negative conditional
log likelihood of the reference y with respect to 6:

T
Esingle = - Z logp(yt|y<t> ¢, a; 9) (12)

t=1

where 6 represents the trainable model parameters.

4 Triple-Joint Modeling using Cross-Task Autoencoder

There are some existing work on joint learning for QG and QA which learns the
correlation between two uni-task models through a shared encoding layer [16,
17]. However, a shared encoding layer tends to learn common information be-
tween tasks, but might ignore the task-specific information.To address above
limitations, we propose a Triple-Joint model for QG by integrating with QA and
CSE. In particular, our joint model incorporates QG, QA and CSE into a single
training process with a cross-task autoencoder.

4.1 Cross-Task Autoencoder

Autoencoder is able to encode texts in a way to better preserve syntactic, se-
mantic, and discourse coherence [5]. However, the basic autoencoder model is
not suitable for exploiting the complex correlations of representations from dif-
ferent tasks, given that it will learn different level representation for inputs with
different reconstruction losses.

Meanwhile, considering that the context is the core junction to connect QG
and QA task, while QG and QA tasks are good choices to guide the autoen-
coder to learn the context representation, we integrate a context self-encoding
task(CSE) into QA&QG joint model and propose a cross-task autoencoder to
learn complete context information (i.e., both common information and task-
specific information) for different task in order to alleviate the weak point of
shared layer in traditional joint learning. Unlike the basic autoencoder which re-
constructs the input itself, this cross-task autoencoder reconstructs input from
the intermediate representations of different tasks. It incorporates representation
learning and correlation learning into a single process, thus some correlations of
QG, QA and CES could be captured in the reconstruction loss.

As illustrated in Figure 2, our triple-joint model with cross-task autoencoder
can be viewed as a combination of three sub-networks, each of which is a basic
uni-task model. Among them, CSE task is the core junction to connect QG task
and QA task. These sub-networks are connected by the intermediate represen-
tation of context. Each sub-network in the triple-joint model is responsible for a
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task. In the learning process, the three sub-networks are coupled at their inter-
mediate representation of matching layer. After learning, the three sub-networks
could exhibit the corresponding complete representation.

For our triple-joint cross-task autoencoder, both the input z1, x2, x3 and
output y1, y2, y3 are the same context, question and answer. The model first
encoding context, question and answer into vector representation h¢, h? and h®,
then reconstructs question based on the match representation h?(c, a) of h¢ and
h*, as well as the answer based on match representation hP(c,q) of h¢ and h9.
Meanwhile, the match representation h”(a,q) of h?(c,a) and hP(c,q) is used to
reconstruct context, different from h?(c,a) and h?(c, q), h*(a, q) is computed as
follows:

hP(a,q) = tanh([hP (¢, a); hP (¢, ¢)]W;.) (13)
gate = o([h¥(c, a); hP(c, q)]Wy) (14)
hP(a,q) = gate - hP(a, q) + (1 — gate) - h® (15)

where the projections are parameter matrices W, € R2dmodetXdmoder W, €
R2dmodet Xdmodel o(-) denotes the sigmoid activation function, the output vec-
tor hP(a,q) is a linear interpolation of the input A° and the intermediate vector
hr(a,q). A gate is used to control the composition degree to which the interme-
diate vector is exposed.

4.2 Training and Inference

Given a training corpus include context ¢, question ¢ and answer a, the Cross-
Task Autoencoder can also be trained end-to-end. The loss function consists
three parts: the loss computed by QG task, QA task and CES task respectively.
To simplify the notations, the network parameters are grouped as 6.

»C.Joint = Alﬁsingle (ql7 C, a; gq) + )\2£single(al; G q; ga)

16
+ (1 - >\1 - /\2)£single(cl; C,a,q; 00) ( )

where A1 and Ao are hyper-parameters to tune the impacts of the QG and QA
tasks. Meanwhile, it is trade off between two groups of objectives: correlation
losses and reconstruction losses. An appropriate value for A\; and A\ are crucial.

5 Experiments

5.1 Experimental Settings

The experimental settings include dataset, hyper-parameters and evaluation
metrics.

Dataset. We mainly focus on the the Stanford Question Answering Dataset
(SQuAD) [11] processed by [4] to train and evaluate our model. Since the dataset
proessed by [4] lacks the answer corresponding to the question, we seek the
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Table 1. Automatic Evaluation Results of Different Models

Model |BLEU 1 BLEU 2 BLEU 3 BLEU 4| METEOR| ROUGE-L
Seq2seq 3134 1379 736 4.26 9.88 29.75
Att-Seq2seq 43.09 2596  17.50 1228 | 16.62 39.75
MPQG - - - 12.84 | 18.02 41.39
MPQG+R - - - 13.98 | 18.77 42.72
JointQA 44.72 2721 1843  13.05 | 17.94 42.76

Triple-Joint CAE | 46.72 29.34 20.40 14.76 | 19.12 | 44.05

corresponding document of question from document-list provided by [4], which
is used to find the corresponding answer to expand the dataset.

Hyper-paramters. We implement our experiments in PyTorch on an NVIDIA
Tesla V100 GPU. For word embedding, we use pre-trained case-sensitive GloVe
embeddings [10] for both contexts, questions and answers. The number of LSTM
hidden units (hnoder) is 600 and we set the number of LSTMs layers to 2 in both
the encoder and the decoder. Ay = Ay = 0.4

Evaluation Metrics. Following the previous studies [4], we choose the eval-
uation package released by [2] to evaluate the performance of our model, which
was originally used to score image captions. The package includes BLEU 1,
BLEU 2, BLEU 3, BLEU 4 [9], METEOR [3] and ROUGE-L [6] evaluation
scripts.

5.2 Comparison with Baselines

To evaluate the performance of our model, we compare our model with several
state-of-the-art QG methods as listed below, where we directly adopt the ex-
perimental settings and results reported by [4] for the first 5 baselines in the
list.

— Seq2seq [14] is a basic encoder-decoder sequence learning system.

— Att-Seq2Seq [4] using a conditional neural language model with a global
attention mechanism, they entirely ignored the answer.

— MPQG [13] follows the classic encoder-decoder framework. The encoder
takes a passage and an answer as input then performs answer understanding
by matching the answer with the passage from multiple perspectives.

— MPQGH+R [13] is the model developed from MPQG. Here the model is fine-
tuned with the policy gradient reinforcement learning algorithm after pre-
training.

— JointQA [17] is a QG and QA joint model, which encodes the document and
generates a question (answer) given an answer (question).

Table 1 shows automatic metric evaluation results for our models and base-
lines. As can be observed, our triple-joint model with cross-task autoencoder
(Triple-Joint CAE for short in the tables) reaches better performances on
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Table 2. Influence of Different Auxiliary Tasks

Model |BLEU 1 BLEU 2 BLEU 3 BLEU 4| METEOR| ROUGE-L
Uni-Task Model 4511 27.89 1921  13.76 | 18.41 43.61
QG&CES-Joint Model | 4532  28.14  19.32  13.88 | 1851 43.72
QG&QA-Joint Model | 45.78  28.62 19.71  14.18 | 18.73 43.85
Triple-Joint CAE | 46.72 29.34 20.40 14.76 | 19.12 | 44.05

Table 3. Examples of generated questions, where the golden answers are underlined,
and the text copied from context are in italian style in the generated questions.

Context  In the First World War, Devonport was the headquarters of Western
Approaches Command until 1941 and Sunderland flying boats were
operated by the Royal Australian Air Force.

Golden What force used Sunderland flying boats out of Devonport?

Uni-Task Who operated the Sunderland boats?

Triple-Joint Who operated the Sunderland flying boats?

QG tasks than the baseline models. In particular, compared with the JointQA
model, our model has 1.71, 1.18 and 1.29 relative gain in BLEU4, METEOR
and ROUGE-L respectively, which proves that our auxiliary task CSE makes
some contributions to our primary tasks, and the effectiveness of the employed
cross-task autoencoder in joint learning.

5.3 Influence of Different Auxiliary Tasks

We compared the performance of our proposed model with Uni-Task Model and
Joint model to further illustrate the influence of the QA task and CSE task for
QG task.

The experimental results are shown in Table 2. We can observe that: (1) Our
Uni-Task model could outperform the state-of-the-art MPQG model and the
JoinQA model, which demonstrates that our dot-product matching strategy,
although simple, works effectively in the model. (2) Both the QG&CES-Joint
model and QG&QA-joint model outperform the Uni-Task model, which proves
that joint models can utilize the intrinsic connections between the two tasks, and
learn more useful information. (3) Compared with the Uni-Task model and the
Joint models, our Triple-Joint CAE model performs better. This indicates that
cross-task autoencoder could better utilize the correlation between the context
of different tasks in representation learning, so this CSE task could provide more
complete information for QG.

5.4 Discussion and Analysis

In this subsection, we provide an examples and analyze the performance of dif-
ferent question types.
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Fig. 3. Comparison by question types.

Case Study. Table 3 lists an example for case study. Basically, our model
could generate questions that are semantically similar to the golden questions.
For example, it can be observed that our model tends to use the text related to
the answer from the context to generate questions, which are more semantically
consistent with the context and the target answers.

Analysis on Type of Generated Questions. We classify the questions
into different types, i.e., WHAT, HOW, WHO, WHEN, WHICH, WHERE,
WHY and OTHER, and evaluate the generated questions and answers for each
question type. Figure 3 shows the automatic metric evaluation results of differ-
ent question types. As can be seen, the Triple-Joint CAE model always performs
better than the Uni-Task model, while the best performance can be observed on
the WHEN problems. For the majority question types, WHAT, HOW, WHO and
WHEN;, our model performs well. For type WHICH, it can be observed that nei-
ther precision nor recall are acceptable. The reason may cause this: WHICH-type
questions account for about 7.2% in training data, which may not be sufficient
to learn to generate this type of questions.

6 Conclusion

This work incorporates QG, QA and CSE into a single training process with
cross-task autoencoder for joint representation learning. Experiments conducted
on processed SQuAD dataset show that our triple-joint model outperforms sev-
eral state-of-the-art QG models we compare with in this paper. As a future
work, we will consider using Variational Autoencoder (VAE) to generate more
semantically reasonable questions, which has been shown successful on several
areas such as image generation.
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