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Abstract. Transformer based encoder has been the state-of-the-art model for
the latest neural machine translation, which relies on the key design called self-
attention. Multi-head attention of self-attention network (SAN) plays a significant
role in extracting information of the given input from different subspaces among
each pair of tokens. However, that information captured by each token on a specific
head, which is explicitly represented by the attention weights, is independent from
other heads and tokens, which means it does not take the global structure into
account. Besides, since SAN does not apply an RNN-like network structure, its
ability of modeling relative position and sequential information is weakened.
In this paper, we propose a method named Cross Aggregation with an iterative
routing-by-agreement algorithm to alleviate these problems. Experimental results
on the machine translation task show that our method help the model outperform
the strong Transformer baseline significantly.

Keywords: Machine translation · Attention mechanism · Information aggrega-
tion.

1 Introduction

Traditional attention mechanism was first introduced in the field of neural machine
translation by Bahdanau et al. [1] and then its variants quickly become the essential
technique in achieving promising performances in various of tasks such as document
classification [45], speech recognition [6] and many other applications. Although the
neural machine translation has witnessed a revolutionary performance improvement
with the use of attention mechanism, most work focused on a recurrent neural network
(RNN) structure e.g. LSTM [12] or GRU [5] which cannot support parallel computation
conveniently.

In order to address the problem, Vaswani et al. [32] proposed a multi-head attention
mechanism in SAN, which can on one hand support efficiently parallel computation and
on the other hand further improve the performance of neural machine translation. The
? Corresponding author. This paper was partially supported by National Key Research and
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basic idea of multi-head attention is to parallelly capture linguistic information which
have been transformed intomultiple distinct subspaces with simple linear transformation
functions.

Most existing work based on multi-head attention tend to obtain a better partial
representation on different heads [23], some other studies focus on the information
aggregation across the SAN, e.g. Dou et al. [7] aggregate the hidden states output
in different layers of Transformer encoder as partial input of the decoder. While the
existing methods of information aggregation of SAN do not pay much attention to the
lack of positional information, and that is an obvious limitation of SAN’s performance,
which it has to implement a positional embedding method to alleviate. Besides, since
the input sequence is transformed into multi-dimensional space, aggregating method
should naturally conducted from different directions, which is not seen in the previous
work.

In this paper, we propose a method named Cross Aggregation to aggregate global
context information in two directions cross with each other. We choose to leverage
the basic algorithm framework of routing-by-agreement [28] with some multi-head-
attention-based features to solve the problemsmentioned above. Basically, the algorithm
is to address the problem of assigning different parts different weights to construct a final
whole output. It is implemented in an iterative way to dynamically update all the weights
with quite simple parallel computations which can benefit from GPU acceleration.

We evaluate the performance of our proposed aggregating method on two widely-
used translation tasks: WMT17 Chinese-to-English and WMT14 English-to-German.
Experimental results demonstrate that our method have better performance over the
strong Transformer baseline [32] and other existing NMT models.

2 Background

Attention mechanism was designed to model the different weights between an output
representation and multiple input representations, which reflects the relevance between
the output and each part of input. Recently, Vaswani et al. [32] proposed a multi-
head attention mechanism, which benefits from capturing context relevance information
in multiple subspaces with different heads, where each head represents an individual
transformation function.

Formally, given the input of query Q = [q1, . . . ,qL], key-value pairs {K,V} =
{(k1,v1), . . . , (kM ,vM )}, where Q ∈ RL×d, {K,V} ∈ RM×d. d denotes the dimen-
sionality of the hidden states. The output is mapped from Q, K and V. In multi-head
attention, if there are H heads, the Q, K and V will be transformed into H subspaces
by individual learnable linear transformation matrix:

Qh,Kh,Vh = QWQ
h ,KWK

h ,VWV
h (1)

where Qh, Kh, and Vh are the transformed representations of h-th head of query, key
and value. The transformation matrices {WQ

h ,W
K
h ,W

V
h } ∈ Rd× d

H . On each head,
it will apply a attention function Att(·) over the query and the key, then calculate the
weighted average on the value to obtain the partial output:

Oh = Att(Qh,Kh)Vh (2)
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Fig. 1. Vertical and horizontal capsules. This illustration shows the matrix form of the attention
results onH heads. The red block represents the vertical capsuleE

l
h, and the blue block represents

the horizontal capsule E↔l . The shadowed orange part is their overlapping attention vector el,h.

where Oh ∈ RL× d
H . In this paper, we apply the scaled dot-product attention [24] which

achieves promising performance and suitable for parallel computing in practice [32]:

Att(Qh,Kh) = softmax(Eh) (3)

Eh =
QhKT

h√
d

= [e1,h, . . . , eL,h] (4)

el,h =
qlW

Q
h KT

h√
d

∈ RM , l = 1, . . . L (5)

where el,h is the attention vector of the l-th query token on the h-th head.

3 Approach

3.1 Information Aggregation with Capsule Routing

The goal of our work is to aggregate information of other heads and tokens onto each
specific attention vector so that the attention weights can be further adjusted according
to the global structure and sequential information. Therefore, an iterative algorithm
called routing-by-agreement applied in the capsule network [28] is suitable for the goal.
Concretely speaking, The basic idea of that algorithm is to iteratively decide the weight
of each part which will be gathered as the final whole output.

In capsule network, one capsule means a group of neurons, and different capsules
can be viewed as the representations of one single entity individually from multiple
perspectives or directions. It was first proposed and applied in the field of computer
vision and it is intuitively for us to find that the multi-head attention mechanism has a
similar structure.We can therefore view any specific attention vector el,h as a part of two
separate capsules: 1) capsule that consists of all the attention vectors on the h-th head,
2) capsule that consists of attention vectors of l-th token on all the H heads. Thus, as
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Algorithm 1 Iterative Simple Routing
Require: L×N vote vectors Vl→n, iteration times T
Ensure: N output capsules Ωn

1: function SimpleRouting(V, T )
2: ∀Vl→n: initialize Bl→n

3: for T iterations do
4: ∀(l→ n): Cl→n ← softmax(B∗→n)
5: ∀Ωn: compute Ωn by Eq. 7
6: ∀(l→ n): Bl→n += Ωn ·Vl→n

7: end for
8: return Ω
9: end function

shown in Figure 1, in a matrix way, we call these two types of capsules vertical capsules
E
l
h ∈ RL×M and horizontal capsules E↔l ∈ RH×M according to their arrangement

directions, repectively.

3.2 Routing-by-Agreement

In this work, we apply the routing-by-agreement algorithm proposed in paper [28] named
simple routing for the information aggregation task.

Formally, the routing algorithmhas two layerswhich called input capsules and output
capsules. Given N output capsules, each input capsule should have exactly N corre-
sponding vote vectors to measure the relevance between input capsule and the associated
output capsule. More specifically speaking, given L input capsules {H1, . . . ,HL}, we
have L×N vote vectors calculated by:

Vl→n = HlWl→n (6)

For each vote vector Vl→n, we maintain a dynamically updated weight Cl→n. The final
output capsule Ωn is calculated by:

Ωn =
‖Sn‖2

1 + ‖Sn‖2
Sn

‖Sn‖
(7)

Sn =

L∑
l=1

Cl→nVl→n (8)

where Eq. 7 is a non-linear function called “squashing” function in paper [28].
Algorithm 1 shows the detail of iterative simple routing mechanism. Bl→n are set

to measure the degree in which one input capsule participates in the constructing of the
final output capsule, and they are initialized as all zero (line 2). To update the dynamic
weightCl→n, it computes the softmax of all theBl→n associated with Ωn in the current
iteration.
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3.3 Cross Aggregation

As shown in Figure 1, each specific attention vector el,h belongs to two groups of
neurons, i.e., capsules which are cross with each other. And cross aggregation aims to
aggregate information in these two dimensions onto their overlapping attention vector
with simple routing algorithm. Formally, we add the vertical and horizontal output
capsules to the original attention matrix E, i.e., Ê = E + Ωl + Ω↔. so that the Eq. 3
is rewritten as:

Âtt(Q,K) = softmax(Ê) (9)

And we argue that in the scenario of multi-head attention, each el,h itself can naturally
be the so-called vote vector so that we do not apply a learnable linear transformation
matrices as in the vanilla algorithm.

Vertical Capsule E
l
h Since one vertical capsule has L vote vectors when the input

query has that length, we will therefore obtain L output vertical capsules through the
simple routing algorithm:

V
l
h→l = el,h (10)

Ω̃l = SimpleRouting({Elh}, T ) ∈ RL×M (11)

In previous work [26, 27], the multi-layer SAN was found having a hierarchical
feature that it captures lexical information in the lower layers while higher layers tend
to learn semantical information. Therefore we consider that the same head in different
layers will accept the global information in different degrees. To measure the acceptance
extent we simply assign a learnable weight for each head in each layer based on their
voting weights on the final iteration stage:

Ωl = [λ
l
1Ω̃
l, . . . , λ

l
HΩ̃l] (12)

Λl = softmax(Wl[

L∑
l=1

B1→l, . . . ,

L∑
l=1

BH→l]) (13)

Horizontal Capsule E↔
l Basically, the processing method of L horizontal capsules

{E↔l } can be similar with that of the vertical capsules, i.e., assign V↔l→h = el,h for
each horizontal capsule E↔l and apply the simple routing algorithm.

However, in this way it will omit some essential features that are not owned by
vertical capsules. Therefore we here propose two methods: positional capsule routing
and self initialization.

Positional Capsule Routing Different from vertical capsules which are order inde-
pendent, the position arrangement of L horizontal capsules contains the sequential
information of the input hidden states. Therefore, simply aggregating all the horizontal
capsules without considering the inner order of the sequence will only make it become
a complicated bag-of-words model. To let the model be aware of that inner order, we
propose the positional capsule routing method.
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Fig. 2. Positional Capsule Routing

As shown in Figure 2, for each token of the input query hidden states we apply a
partial simple routing algorithm to obtain the corresponding Ω̃↔. Concretely speaking,
for each specific horizontal capsule, we only apply the aggregation on the capsule set
that excludes the capsules below itself, which means the tokens appear relative later in
the input sequence will not be aggregated:

Ω̃↔l = SimpleRouting({E↔t≤l}, T ) ∈ RH×M

Ω↔ = [Ω̃↔1 , . . . , Ω̃
↔
L ]

(14)

Here the reason we do not further apply a similar “backward” positional routing on
those horizontal capsules is that if we calculate both the forward and backward output
capsules, it would be confused for the network to determine the real token order. Since
each final output capsule Ω̃↔l would therefore come from two sources, forward and
backward, and for the corresponding l-th token, it would be hard to tell which part some
other token belongs to.

Self Initialization In the vanilla version of simple routing, the weights of vote vectors
are all assigned zero at the initialization phase of the algorithm. One explanation for
doing so is that for a general aggregation task, we do not have prior knowledge about
the possible weight distribution of the aggregated parts, otherwise we could initialize
them with different values. Here in the situation of SAN, we expect it would be naturally
that each element of the attention vector el,h measures the prior voting weight for each
token pair. More specifically, in the multi-head attention network of encoder, where the
Q = K = V, the attention weight of the l-th token to the m-th token on the h-th head
αh
l,m itself, which we think, can be the initialization weight when computing the output

capsule for the l-th token. Therefore the initialized weight is calculated by:

Binit
t→h = αh

l,t, t ≤ l

αh
l,t =

qlW
Q
h (ktW

K
h )T√

d

(15)

when applying Eq. 14.
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# Model BLEU ∆

1 Transformer-Base 24.28 -
2 + Horizontal w/ Zero Initialization 24.76 +0.48
3 + Horizontal w/ Self Initialization 24.88↑ +0.60
4 + Vertical + Horizontal w/ Zero Initialization 25.02⇑ +0.74
5 + Vertical + Horizontal w/ Self Initialization 24.68 +0.40

Table 1. Translation performances of model variations on WMT17 Chinese-to-English (Zh⇒En)
task. “↑ / ⇑”: significantly better than the baseline counterpart (p < 0.05/0.01).

4 Experiment

4.1 Setup

We conduct experiments on widely-used WMT17 Chinese-to-English (Zh⇒En) and
WMT14 English-to-German (En⇒De) datasets. For Zh⇒En task, the parallel corpus
dataset contains total 20.6M sentence pairs, but we only keep those with the sentence
length less than 50. The newsdev2017 is used as the validation set and the newstest2017
as the test set through the training process.While for En⇒De task, the dataset consists of
4.6M sentence pairs, and we choose newstest2013 as the validation set and newstest2014
is used to test the model performance. We employ byte-pair encoding (BPE) [29] and
set the merge operations as 32K for both WMT17 and WMT14 in order to reduce the
vocabulary size.

We implement our proposed approach on the Transformer model [32]. The model
Transformer-Base and Big differ at word embedding size (512 vs 1024), feed-forward
network dimensionality (2048 vs 4096) and the number of attention heads (8 vs 16).
The dropout rate is changed from 0.1 to 0.3 when training the Big model compared to
the Base one. We follow their parameter configuration of the Base model to train our
baseline on both Zh⇒En and En⇒De tasks. We set batch size to 2048 tokens and the
gradient accumulation times to 12 before the back-propagation. We use the OpenNMT-
py framework [14] to implement our method and use the case-sensitive 4-gram NIST
BLEU score [25] as the metric to evaluate our models. All the model trainings are on
two NVIDIA GeForce GTX 1080 Ti GPUs.

Empirically, we set the parameter iteration times T of all the models using the
aggregation method with the number 3. In previous work [7, 16], researchers find that
the overall performance of the model can achieve the best when iteration times T is set
to 3. This result is also consistent with the findings in paper [28]. In this work, we find
that over half of the vote vectors’ weights come out to be zero which causes a worse
performance when we set the iteration times to 4 or 5.

4.2 Results

Model Variations Table 1 shows the translation results on the WMT17 Chinese-to-
English task. From the table we can see that all the models that apply the aggregation
methods we propose in this paper consistently outperform the baseline model, which
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System Architecture Zh⇒En En⇒De
Existing NMT Systems

Wu et al. [40] RNN with 8 layers N/A 26.30
Gehring et al. [8] CNN with 15 layers N/A 26.36

Vaswani et al. [32] Transformer-Base N/A 27.30
Transformer-Big N/A 28.40

Hassan et al. [10] Transformer-Big 24.20 N/A
Li et al. [16] Transformer-Base + Effective Aggregation 24.68 27.98

Our NMT Systems

this work Transformer-Base 24.28 27.43
+ Cross Aggregation 25.02 28.04

Table 2. Comparing with existing NMT systems on WMT17 Chinese-to-English (Zh⇒En) and
WMT14 English-to-German (En⇒De) tasks.

demonstrates the effectiveness of the cross aggregation mechanism. Frow row 2 we can
see that simply applying the positional horizontal routing will improve the performance
up to +0.48 BLEU points, showing that the SAN benefits from capturingmore sequential
information. Comparing with the row 2 and 3, the +0.12 BLEU points improvement
indicates that our approach of self initialization does help the horizontal aggregation to
calculate assigned weights more reliably.

The cross aggregation with zero initialization (Row 4) achieves the highest score
with a +0.74 BLEU points improvement while the self initialization counterpart (Row
5) the lowest. On one hand it does demonstrate the superiority of our cross aggregation
mechanism, on the other hand it also indicates that the self initialization method and the
vertical routing will influence each other in bad way.

We here try to give an explanation about why the self initialization and the vertical
routing fail to be complementary to each other (Row 5). Before we introduce the vertical
routing into the attention process, the weights which are used to initialize the horizontal
routing on higher layers partially might model the context information among the heads
on the lower layers, which means it could roughly play the role of vertical routing and
help improve the model performance (Row 3). While with the introduction of vertical
routing, the simplicity of self initialization might on the contrary affect the model’s
capability of capturing context information.

Main Results Table 2 lists the overall result on both WMT17 Chinese-to-English
(Zh⇒En) and WMT14 English-to-German (En⇒De) tasks. As shown in the table,
cross aggregation approach consistently improves the performance on this two language
pairs. For WMT17 Chinese-to-English task, our approach outperforms all the other
models above, and for WMT14 English-to-German task, we only inferior to the vanilla
Transformer-Big model whose number of parameters is three times more than ours. This
shows the effectiveness of our proposed method.
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5 Related Work

With the development of research of neural network recently, this advanced method has
been applied to several tasks in the field of natural language processing with impressive
results e.g. semantic role labeling [4, 20, 11, 9, 22], sentence parsing [15, 39, 18, 52, 19,
21], word segmentation [2, 3, 37], reading comprehension [48, 51, 50], relation extrac-
tion [17], IME [13, 49], and researchers also reaches huge success when it comes to
NMT [41, 47, 38, 33, 35, 36, 34, 46].

Basically our work is related to the attention optimization of SAN in Transformer.
More specifically, the NMT model leverages some extra information to help reach out
a better attention value distribution. To alleviate the weakness of Transformer caused
by the lack of positional information, it is natural to make the model be aware of the
relative position of source input [31, 30, 43]. According to [42], context information
through all the layers can help improve the performance of SAN. Combining the layer-
and sentence-level information to sharpen the attention result has been proved effective
in the final performances [44]. All these work above show that optimizing the attention
result with extra information is promising in further research.

6 Conclusion

Inspired by the idea of routing algorithm in capsule network, in this paper we propose
a cross aggregation method aiming to capture the global context in two dimensions
for the attention score to enhance the state-of-the-art neural machine translation. Our
study shows aggregating information from all the heads and tokens is an effective way
to improve the attention results and beside the conventional head-wise pattern, provide
a novel way to understand the multi-head attention network. Our work also proves that
adding positional information into the self-attention network can efficiently strengthen
the model ability of capturing relative sequential relationship. Experimental results on
two widely-used datasets demonstrate the superiority of our proposed approach.
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