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Abstract. Character-based Chinese dependency parsing jointly learn-
s Chinese word segmentation, POS tagging and dependency parsing to
avoid the error propagation problem of pipeline models. Recent work-
s on this task only rely on a local status for prediction at each step,
which is insufficient for guiding global better decisions. In this paper, we
first present a sequence-to-action model for character-based dependency
parsing. In order to exploit decision history for prediction, our model
tracks the status of parser particularly including decision history in the
decoding procedure by employing a sequential LSTM. Additionally, for
resolving the problem of high ambiguities in Chinese characters, we ad-
d position-based character embeddings to exploit character information
with specific contexts accurately. We conduct experiments on Penn Chi-
nese Treebank 5.1 (CTB-5) dataset, and the results show that our pro-
posed model outperforms existing neural network system in dependency
parsing, and performs preferable accuracy in Chinese word segmentation
and POS tagging.

Keywords: Character-based Chinese dependency parsing · Decision his-
tory · Character information.

1 Introduction

Character-based Chinese dependency parsing is a joint model for Chinese word
segmentation, POS tagging and dependency parsing, which aims to prevent the
error propagation problem of pipeline models [1]. The model is usually imple-
mented using transition-based framework and is viewed as a transition sequence
decision task [2]. Existing approaches for joint model are categorized into two
types: conventional discrete feature-based approaches[1, 3, 4] and neural network-
based models[5, 6]. Feature-based models tackle the effort in hand-crafting effec-
tive feature combination and define large feature templates to capture features,
and maintain state-of-the-art performance. Neural network-based models uses
dense vectors and LSTM to reduce the cost of feature engineering, and achieves
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competitive performance in all three tasks when using very few features. Despite
of existing approaches success, there are still two problems.

The first problem is insufficient history information. In transition-based frame-
work, these transition actions modify the current parser state after each deci-
sion, and the previous parser state is discarded. Recent evidence on word-level
dependency parsing [7] and natural language inference [8] reveals that history
information of actions taken and parser state is of crucial important. However,
feature-based joint models and neural network-based joint models rely on local
parser state for the action prediction at that point in transition sequence. This
prevents model from exploring sufficient context information of parser state for
making better decisions.

The second problem is the ambiguity of Chinese character. A Chinese sim-
plified character may be derived from two traditional characters and therefore
becomes more ambiguous. For example, the character ”u” in the ”Þu” (hair)
and ” uã” (make a fortune) has different meanings that are the ” ç” (hair)
and ”�” (make) respectively. It is worth noting that when representing the
meaning of ”ç” (hair), the character ”u” is located at the end of the word as
an object, while when representing the meaning of ”�” (make), the character
”u” is located at the beginning of the word as a verb. Most previous models
rely on single one-hot representation [1, 3, 4] or distributed representation [5, 6]
of character. However, existing character embedding did not catch such position
information for disambiguation.

In order to address these two problems, we take advantage of the seq2seq [9]
to capture history information and propose a sequence-to-action joint model.
In the encoder of the model, we use attention mechanism and position-based
character embeddings to capture character information with specific contexts.
In the decoder, a sequential LSTM is used to track history information, including
previous transition actions taken by the parser and all other previous parser state
in the decoding procedure. We evaluate our model on CTB-5 dataset, and find
that it significantly outperforms the bi-LSTM [5] joint model in each task and
compares favorably with the state-of-the-art feature engineering joint models.

Our contributions are summarized as follows:

– We first conduct encoder-decoder architecture for Character-based Chinese
dependency parsing, which allows the model to track the history of decision
taken by parser.

– The sequence-to-action joint model incorporates position-based character
embedding to capture more exact meanings of a character within specific
contexts.

– We evaluate our model on CTB-5 dataset and the results show that our
model outperforms existing bi-LSTM joint model.

2 Sequence-to-Action Joint Model

This section describes our proposed model. Transition-based parsing is a task
of predicting a series of transition actions y ∈ Y for a given sentence, where
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Y = {SH, AP, RR, RL}. Following the arc-standard algorithm [10], our model
consists of one buffer and one stack. The buffer contains character in the input
sentence, and the stack contains partially-built dependency subtrees.

The subtrees in the stack are formed by the following transition actions:

– SH(pos): Shift the first character of the buffer to the top of the stack as a
new word, and the POS tag (pos) is attached to the word.

– AP: Append the first character of the buffer to the end of the top word of
the stack.

– RR: Reduce the right word of the top two words of the stack, and make the
right child node of the left word.

– RL: Reduce the left word of the top two words of the stack, and make the
left child node of the right word.

Given one sentence S = (c1, ..., ci, ..., cn), the aim of the model is to predict
the groundtruth of actions:

y∗ = arg maxΠ
|y|
t=1P (yt|parsert) (1)

where P(.) is the sequence-to-action joint model here. yt and parsert are the
action and parser state at time step t respectively. |y| is the action number.

The sequence-to-action architecture we proposed for Chinese parsing is il-
lustrated as in Figure 1, which consists of two components: an encoder layer
converts the input sentence into distributed representation; a decoder layer
captures parser state and tracks history information to make decisions.

2.1 Encoder Layer

Given input sentence S = (c1, ..., ci, ..., cn), the encoder layer first converts them
into vectors (v1, ..., vi, ..., vn) by looking up M and the corresponding position-
based character vectors (vsi , v

b
i , v

m
i , v

e
i ) are retrieved by looking up PM, where M

and PM are the embedding tables. b, m, e and s are the position of character
within a word, representing begin, middle, end and single respectively.

In the work of Chen et al. [11], one of position-based character vectors is
selected according to the position of character in word. However, in our work
the position of character is unknown before parsing. Different from their work,
we calculate the character vector from all of the position-based character vectors
by using the attention mechanism and taking a context of K length window as
attention. Formally, the contextual character vectors could be computed as:

wi =
1

2K + 1

k=i+K∑
k=i−K

vk (2)

upi = wT
i Wvpi + 〈UT , wi〉+ 〈V T , vpi 〉 (3)

api = softmax(upi ) (4)
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v′i =
∑

p∈{b,m,e,s}

api · v
p
i (5)

where wi is the context embedding, considering a local window of character em-
beddings. We adopt the biaffine attention mechanism for attention score func-
tion [12]. Here, W, U, V are trainable parameters, and p is the position of
character.
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Fig. 1. Our sequence-to-Action Architecture for character-based Chinese dependency
parsing. The dashed box is the feature extractor, capturing parser state. The encoder
uses position-based embedding and bidirectional LSTM to produce the semantic repre-
sentation. After that, the decoder captures parser state and tracks history information
to predict transition actions.

Then four bidirectional LSTMs are used to capture uni-gram, bi-gram, tri-
gram and four-gram character strings in the input sentence respectively. All
n-gram inputs to bidirectional LSTM are given by looking up M or character
string embeddings [5] by contextual character vectors. The hidden outputs of four
bidirectional LSTMs are concatenated to produce the semantic representation
for each character in S.

2.2 Decoder Layer

In order to capture all of the state information and all previous decisions taken
by the parser, we employ a sequential LSTM to maintain a history of the portion
of the sentence that has been processed so far. In this layer, a feature function
is used to extract the feature representations of characters from the encoder and
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built subtrees, including n-gram features, POS features and dependency struc-
ture features (encoded by using Tree-LSTM [13]) of the top three items of the
stack, and n-gram feature of first item of the buffer. The feature representations
extracted by feature function is a local state. The sequential LSTM takes inputs
from the local state and previous decision at each time step. It can be formulated
as:

ht = LSTM(parsert, yt−1, ht−1) (6)

P (yt|parsert) = softmax(W1ht + b1) (7)

where W1, b1 are trainable parameters, yt−1 is the transition action at the last
time step.

2.3 Training

We train the sequence-to-action joint model with the objective function for
greedy training, which can be formulated as:

J(θ) = − 1

N

t=N∑
t=1

logP (yt|parsert) +
λ

2
‖ θ ‖2 (8)

where N is the number of actions in one sentence, θ denotes all the trainable
parameters of our model. Adam [14] is adopted as optimizer.

3 Experiments

3.1 Experiment Settings

In this section, we evaluate our parsing model on the Penn Chinese Treebank
5.1 (CTB-5), following the splitting of Jiang et al. [15]. The dataset statistic is
shown in Table 1. All word and character embeddings are initialized with 200-
dimension word2vec vectors [16]. The POS and action embeddings are initialized
to random values with 200 dimensions. The bidirectional LSTMs’ hidden states
is 200 dimensions and LSTM’s hidden state is 400 dimensions. We set the win-
dow size K=2 and the initial learning rate is 0.001. We also employ a dropout
strategy [17] to avoid over-fitting and the dropout rate is set to 0.33. The batch
size is set to 32.

Table 1. Statistics of dataset.

sentence word oov

Training 18k 494k *
Development 350 6.8k 553
Test 348 8.0k 278
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3.2 Results

We use word-level F1 score to evaluate word segmentation, POS tagging and
dependency parsing, following previous works [1, 3–6]. Dependency parsing task
is evaluated with the unlabeled attachment scores excluding punctuation. The
output of POS tags and dependencies cannot be correct unless the corresponding
words are segmented correctly.

Table 2 lists the comparison results of our joint model compared with other
state-of-the-art joint models. We can see that out proposed model can significant-
ly outperform the basic bi-LSTM joint model with 0.1%(word segmentation),
0.7%(POS) and 1.44%(dependency) respectively for improvements. This demon-
strates the effectiveness of our proposed sequence-to-action architecture for neu-
ral character-based Chinese dependency parsing. Besides, our model achieves
better F1 score than the neural joint models of Kurita17 and Li18 on depen-
dency parsing. Although the performance is slightly lower than those of fea-
ture engineering-based models, like Hatori12, Zhen14 and Zhang14, our model
achieves competitive performance. The performance improvement of our model
is due to make full use of context features and parser state by employing en-
coder and decoder. It also suggests that our model can combines with feature
engineering for better performance.

Table 2. Comparison with previous models on the CTB dataset.

Models Method Representation Seg POS Dep

Hatori12 [1] beam large feature set(66, sparse) 97.75 94.33 81.56
Zhang14 [3] beam large feature set(101, sparse) 97.67 94.28 81.63
Zhen14 [4] beam large feature set(53, sparse) 97.52 93.93 79.55
Kurita17 [5] greedy large feature set(50, dense) 98.24 94.49 80.15
Li18 [6] greedy 3LSTM vectors 96.64 92.88 79.44

bi-LSTM [5] greedy 4LSTM vectors 97.72 93.12 79.03
Our greedy (4LSTM, 3POS, 3subtree) vectors 97.88 93.82 80.47

3.3 Effect of Components

Table 3. Effects of the different components.

Models Seg POS Dep

bi-LSTM joint model 97.72 93.12 79.03
+decoder LSTM 97.51 93.53 79.62
+position embedding 97.82 93.42 80.02
+POS,subtree 97.88 93.82 80.47
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We perform some ablation experiments to analyze the effect of the differ-
ent components on our models. As illustrated in Table 3, the first row is the
baseline bi-LSTM joint model [5]. Compared to the baseline model, we use se-
quential LSTM as decoder instead of MLP for prediction, and F1 score increases
by 0.41% and 0.59% on POS and dependency parsing respectively. It proves the
decoder with LSTM can capture the helpful information from previous state and
decisions, which is more effective for POS and dependency parsing. By adding
the position-based character embedding, the word segmentation and dependen-
cy parsing performances are increased to 97.82% and 80.02% respectively. It is
because the character representation is more accurate by capture meanings of
character within specific local contexts. Elmo [18] and Bert [19] have been well
known as pre-trained language model for acquiring contextual character vectors.
However, our current condition of computing power could not support such com-
plicated training task. We will conduct the comparison with them in the future.
In this paper, we evaluated the contribution of position embedding to our model.
Besides, our model achieves further improvement in each task by additionally
adopting POS features and subtree features.

4 Related Work

Transition-based joint model for Chinese word segmentation, POS tagging and
dependency parsing was proposed by Hatori et al. [1]. Zhang et al. [3] and Zhen
et al. [4] extended this work by adding word-structure features to extract intra-
word dependencies. Kurita et al. [5] proposed the first embedding-based joint
parsing model and used the character string embeddings to replace incomplete
or unknown words embeddings. All above mentioned works relied heavily on
handcrafted features and it was a hard and time consuming task to define a
good feature-set. In contrast to these, the neural parsing model we presented
in this work only used a little feature and achieves comparable performance.
Besides, Kurita et al. [5] also explored bi-LSTM models to avoid the detailed
feature engineering, but they only extracted local state to make decisions and
neglected parser history information. Li et al. [6] provided rich character-level
POS and dependency annotations to better understanding deeper structure of
Chinese words.

5 Conclusion

In this paper, we propose a novel sequence-to-action joint model for character-
based dependency parsing to track history information of parser in the decoding
procedure. Besides, we use position-based character embeddings to capture exact
character meanings within specific contexts. Experimental results demonstrate
that our proposed model significantly outperforms the existing neural models
for joint paring, and achieves comparable performance with the state-of-the-art
joint models.
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In the future, we will expand the scale of the experiment and further verify
the effectiveness of the proposed method. In addition, we further explore better
way to learning character representations, such as Elmo and Bert.
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