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Abstract. Spoken Language Understanding (SLU) is a critical compo-
nent in spoken dialogue systems. It is typically composed of two tasks: in-
tent detection (ID) and slot filling (SF). Currently, most effective models
carry out these two tasks jointly and often result in better performance
than separate models. However, these models usually fail to model the
interaction between intent and slots and ties these two tasks only by a
joint loss function. In this paper, we propose a new model based on bidi-
rectional Transformer and introduce a padding method, enabling intent
and slots to interact with each other in an effective way. A CRF layer
is further added to achieve global optimization. We conduct our exper-
iments on benchmark ATIS and Snips datasets, and results show that
our model achieves state-of-the-art on both tasks.
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1 Introduction

Spoken language understanding (SLU) is an important part of a dialogue system.
An utterance of a user is often first transcribed to text by an automatic speech
recognizer (ASR) and then converted by the SLU component to the structured
representations. The result of SLU is passed to dialogue management module to
update dialogue state and make dialogue policy. Therefore, the performance of
SLU is critical to building an effective dialogue system [24].

SLU usually involves intent detection (ID) and slot filling (SF). Typically,
ID is regarded as a semantic utterance classification problem and different clas-
sification methods can be applied [3, 6]. Meanwhile, SF is usually treated as a
sequence labeling problem. that maps a word sequence x = (x1, ..., xT ) to the
corresponding slot label sequence y = (y1, ..., yT ). Popular approaches to per-
form SF include conditional random fields (CRFs) [13], support vector machines
(SVMs) [12] and maximum entropy Markov models (MEMM) [16].

In recent years, neural network approaches have demonstrated outstanding
performance in a variety of NLP tasks, and RNN-based methods have been
widely applied in the SLU area. [17, 5]. Despite the success they have achieved,
the sequential nature of RNNs precludes any parallelization. Besides, in SLU,
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Utterance show flights from Seattle to San Diego tomorrow

Slots O O O B-fromloc O B-toloc I-toloc B-departdate

Intent Flight

Fig. 1. An example of ATIS sentence with annotated slots using the IOB scheme and
intent. The B- prefix before a tag indicates that the tag is the beginning of a chunk,
and an I- prefix before a tag indicates that the tag is inside a chunk. An O tag indicates
that a token belongs to no chunk.

slots are determined not only by the associated items, but also by context. As
shown in Figure 1, the corresponding slot label for city name Seattle is B-fromloc,
but it could also be B-toloc, if the utterance is show flights from San Diego to
Seattle tomorrow. Note that this is different from Named Entity Recognition
(NER), which in general has less dependency on context than SF task (in the
above example, Seattle can be simply recognized as a Location). Compared to
RNNs, we believe that Transformer, which is based on self-attention mechanism
and capable of learning the internal structure of a sentence [20], is better at
capturing such dependency. Besides, it allows for more parallelization within the
sentences.

CRF has long been known to be able to explicitly model the dependency
among the output labels, which is a very advantageous feature for sequence
labeling task [15]. It has been widely used in sequence labeling tasks like named
entity recognition and Chinese word segmentation [10]. In SLU areas, it has also
been exploited [21, 25]. In this work, we add a CRF layer for SF to achieve global
optimization.

ID and SF are traditionally treated separately. In recent years, joint models
have been proposed and lead to better performance [14, 7]. The main rationale of
such methods is that these two tasks are not independent but intrinsically linked.
For example, an utterance is more likely to contain departure and arrival cities
if its intent is to find a flight, and vice versa [25]. To perform these two tasks
jointly, we first pad the input sequence with a special token BOS at the beginning
and use the representation of this token learned by bidirectional Transformer to
predict the intent of the whole sentence. We argue that this method is especially
suitable for joint ID and SF due to its ability to allow intent and slots to directly
attend to each other. Previous work links these two tasks only by a joint loss
function, thus may fail to make full use of the interaction between these two
tasks. [5] tackles this problem via slot-gated mechanism, leveraging intent vector
to influence slots prediction. However, this kind of influence is only one way.

Our contributions are three-fold:

1)We analyze and highlight the advantageous features of bidirectional Trans-
former when applied to SLU. To the best of our knowledge, this is the first
attempt to introduce the Transformer architecture into this area.

2)We propose a padding method that allows slots and intent to interact with
each other in an elegant and effective way.
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3)Experiments demonstrate that our new model achieves state-of-the-art for
both ID and SF. Specifically, on ATIS, our model achieves 97.2% accuracy on ID
and 95.1% F1 score on SF. On snips, the performance boost is more significant,
with ID accuracy of 98.9% and SF F1 score of 93.3 %.

The rest of the paper is organized as follows. In Section 2 we introduce our
proposed model. We give our experiment settings and results in section 3. The
related work is surveyed in Section 4. The conclusion is given in the last section.

2 Model

Figure 2 gives an overview of our proposed model. The input is a sequence of
words in an utterance, and the output is the annotated slots using IOB scheme,
plus the intent of the whole utterance. A detailed description is given below.

...show flights from Seattle tomorrowBOS

               Transformer encoder

FC layerFC layer

CRF layer

......O O O B-fromloc B-departdateFlight

Fig. 2. The architecture of the proposed model. We pad the input utterance with a
BOS symbol, and use the representation of this symbol to perform ID. For SF, we
utilize a CRF layer to perform global optimization.

2.1 Word Representations

We first convert the input word sequence (w1, ..., wT ) to a sequence of word
embeddings (ê1, ..., êT ) and use these embeddings as model input.

Given the limited size of the ATIS dataset, one may assume that using pre-
trained word embeddings to initialize the embedding layer may lead to better
performance. We examine this idea with GloVe vectors [18], and did not no-
tice any improvement in performance. We instead employ a simple randomly
initialized embedding layer.
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Fig. 3. The structure of Transformer encoder [20], which is composed of a stack of N =
6 identical layers. Each layer has two sub-layers. The first is a multi-head self-attention
mechanism, and the second is a fully connected feed-forward network. Residual con-
nection [8] and layer normalization [2] are employed around each of the two sub-layers

Following [17], we use a context word window as the input to our model.
Given d the window size (which is a hyperparameter), we define the d-context
window as the ordered concatenation of 2d+ 1 word embeddings,i.e. d previous
word embeddings followed by the word of interest and next d word embeddings.
Formally,

et = [ ˆet−d, . . . , êt, . . . , ˆet+d] (1)

Our model input is these concatenated word embeddings (e1, ..., eT ). In this
window approach, one might wonder how to build a d-context window for the
first/last words of the sentence. We adopt a simple approach to replicate their
word embeddings several times, depending on the exact positions of the words
and the window size d, and then perform the concatenation.

2.2 Transformer and Self-Attention Mechanism

The Transformer was first proposed in [20] for the task of Neural Machine Trans-
lation (NMT). It consists of a bidirectional Transformer (“Transformer encoder”)
and a left-to-right Transformer (“Transformer decoder”). The encoder first maps
an input of symbol representations (x1, ..., xn) to a sequence of continuous rep-
resentations (z1, ..., zn), which is later used by the decoder to generate an output
sequence (y1, ..., yn) of symbols one at a time. Note that in our model only the
Transformer encoder is employed.
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As shown in Figure 2 The Transformer encoder is composed of N identical
layers, each of which consists of two sub-layers, namely the self-attention layer
and the position-wise fully connected layer. The core idea behind the Trans-
former encoder is the self-attention mechanism, which relates different positions
of a sentence in order to compute a representation of it. Given Q, K, V the
packed queries, keys and values respectively and dk the dimension of keys, The
attention mechanism used in Transformer can be formally put as:

Att(Q,K) = softmax(
QKT

√
dk

) (2)

Vatt = Att(Q,K)V (3)

[20] find that multi-head attention perform better than a single attention func-
tion. The intuition behind is that if we only computed a single attention weighted
sum of the values, capturing different aspects of the input would be difficult. To
learn diverse representations, the multi-head attention applies different linear
transformations to the values, keys, and queries for each “head” of attention.
Following their approach, we first project the queries, keys and values h times
with different linear projections to dk, dk and dv dimensions respectively. We
then perform the attention function on each of these projected vectors, result-
ing in dv-dimensional output values, which are concatenated and once again
projected, yielding the final values. Formally,

Multi(Q,K, V ) = [head1, . . . , headh]WO (4)

headi = Attn
(
QWQ

i ,KW
K
i , V WV

i

)
(5)

where the projections are parameter matricesWQ
i ∈ Rdmodel×dk ,WK

i ∈ Rdmodel×dk ,WV
i ∈

Rdmodel×dv and WO ∈ Rhdv×dmodel .
While in a self-attention layer, Q, K and V are from the same place, namely

the previous layer in the encoder. Thus each position in the encoder can attend
to all positions in the previous layer. This feature allows the Transformer to ig-
nore the distance between words and directly compute dependency relationships,
making it especially suitable for tasks like SF that depends heavily on context.

Apart from attention sub-layers, each of the layers in the Transformer encoder
contains a fully connected feed-forward network, which consists of two linear
transformations with a ReLU activation in between (see Figure 3).

2.3 Padding Method for Joint ID and SF

To carry out SF and ID jointly, we propose a simple yet highly effective method.
We first pad the input sequence with a special token BOS at the beginning
and use the representation of this token learned by bidirectional Transformer to
predict the intent of the whole utterance. The new input and output sequences
for our model are:
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X = BOS, x1, ..., xn (6)

Y = intent, y1, ..., yn (7)

In Subsection 2.2, we mention that the self-attention mechanism of Trans-
former allows each position in the encoder to attend to all positions in the
previous layer. Combined with our padding method, intent and slots can now
directly interact with each other. Most of the previous joint models model the
relationship between intent and slots implicitly by a joint loss function [25, 14,
7], or, by mechanisms like “slot-gated” [5], leveraging intent vector to influence
slots prediction (note that this kind of influence is one way). Our model, on the
other hand, allows intent and slots to influence each other in both directions
while maintains simplicity. By considering the cross-impact between intent and
slots, both ID and SF get improved.

2.4 Task Specific Layers

Given dm the dimension of bidirectional Transformer and l the length of input
sentence (including the padding in the beginning), the output of bidirectional
Transformer is a matrix T ∈ Rl∗dm . To perform ID, we extract the first row of
T (named as T 0), and apply the softmax function to the linear transformation
of T 0 to get the probability distribution yi over all intent labels:

yi = softmax(W iT 0 + bi) (8)

where Wi and bi are model parameters.
The remaining part of T (named as T− ∈ R(l−1)∗dm) is used for SF, with

each row corresponding to a position to be labeled (l − 1 in total). We then
perform a linear transformation:

Ss = W sT− +Bs (9)

where Ws and bs are model parameters.
Similar to Equation 8, we can then directly apply a softmax function in

order to get the final probability distribution over all the slot labels. However,
this method has the disadvantage of allowing illegal label combinations to be
outputted. For example, an I-fromloc after a B-toloc is clearly invalid and yet
could be potentially created by such a method.

To address this problem, we feed Ss into a CRF layer, which can add some
constraints to the final predicted labels to ensure that they are valid. These
constraints are learned by the CRF layer automatically from the training data.

The loss function of the model is the sum of negative log-probability of the
correct tag sequence for both intent and slot.

L(θ) = Σ(ls,li,U)∈D (αLs(θ) + Lu(θ)) (10)

where D is the dataset. Lu(θ) and Ls(θ) are loss for ID and SF respectively. We
use a weighted factor α to adjust the importance of the two tasks.
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Table 1. Statistics of the ATIS and Snips dataset.

ATIS Snips

#Slots 120 72

#Intents 21 7

Vocabulary Size 722 11241

Training Set 4478 13084

Dev Set 500 700

Test Set 893 700

Table 2. Intents and examples of the Snips dataset.

Intent Utterance Example

SearchCreativeWork Find me the I, Robot television show
GetWeather Is it windy in Boston, MA right now?
BookRestaurant I want to book a highly rated restaurant tomorrow night
PlayMusic Play the last track from Beyonc off Spotify
AddToPlaylist Add Diamonds to my roadtrip playlist
RateBook Give 6 stars to Of Mice and Men
SearchScreeningEvent Check the showtimes for Wonder Woman in Paris

3 Experiment

3.1 Datasets

To fully evaluate the proposed model, we conducted experiments on two datasets:
ATIS and Snips. The details of these two dataset are given below:

ATIS The Airline Travel Information Systems (ATIS) [9] dataset has long
been exploited in SLU. There are some variants of the ATIS dataset. In this
work, we use the same one as used in [17, 25, 14]. There are 4,978 utterances in
the training set and 893 in the test set. There are in total 127 distinct slot labels
and 17 different intent types.

The ATIS dataset also has extra named entity (NE) features marked via
table lookup, which are utilized by many of the previous researchers [4, 17, 25].
For the sake of generalization, we did not utilize these features in our study.

Snips We obtain this dataset from [5]. It is in the domain of personal assistant
commands. Compared to the ATIS corpus, the Snips dataset is more complicated
in terms of vocabulary size and the diversity of intent and slots. There are
13,084 utterances in the training set and 700 utterances in the test set, with a
development set of 700 utterances. There are 72 slot labels and 7 intent types.
As shown in Table 2, the diversity of intents and slots is an important feature of
Snips dataset. Slots of places in ATIS are generally limited to American cities
and intents are all about flight information, while Snips contains intents like
RateBook and GetWeather that come from total different topics.
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Table 3. Intent accuracy and slot filling F1 scores on ATIS and Snips datasets(%).
The reported results are from [5].

Model
ATIS Snips

ID SF ID SF

Bi-LSTM [7] 92.6 94.3 96.9 87.3
Attention-Based RNN [14] 91.1 94.2 96.7 87.8
Slot-Gated(Full Attn.) [5] 93.6 94.8 97.0 88.8
Slot-Gated(Intent Attn.) [5] 94.1 95.2 96.8 88.3

Our model 97.2 95.1 98.9 93.3

Table 4. Comparison between joint and separate models on the Snips dataset. Joint
model is our proposed model in Figure 2. Separate-ID model only contains the shared
layer and ID specific layer, and it is the same way for Separate-SF model.

Model ID SF

Separate-ID 96.4 -

Separate-SF - 92.8

Joint 98.9 93.3

3.2 Training Procedure

We trained our models on a single NVIDIA GeForce GTX 1080 GPU. The
dimension of word embedding is set to 80 and 120 for ATIS and Snips dataset
respectively. The context window size is 1 for both datasets. Dropout layers are
applied on both input and output vectors during training for regularization; the
dropout rate is set to 0.5. The number of layers of bidirectional Transformer is
set to 6. The batch size is set to 32. We use Adam optimizer for the training
process. All these hyperparameters are chosen using the validation set.

We use Adam [11] for the training process to minimize the cross-entropy loss,
with learning rate = 10−3 β1 = 0.9, β2 = 0.98 and ε = 10−9. The CRF layer
is implemented with AllenNLP, which is an open-source NLP research library
built on PyTorch.

3.3 Experimental Results

Overall Performance We use F1 score and accuracy as evaluation metrics for
SF and ID respectively. Note that some utterances in ATIS corpus have more
than one intent labels. Following [5], we require that all of these intent labels
have to be correctly predicted if a sentence is counted as a correct classification.

We compare our model against some baselines and the results are demon-
strated in Table 3. We here use the scores reported in [5] since we use the same
dataset and evaluation settings.
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Fig. 4. Influence of the number of layers of Transformer encoder on F1 score.

On the ATIS dataset, we achieve the state-of-the-art for SF and outperform
the best reported results for ID by a large margin. On the Snips dataset, the
performance boost is more significant, with 1.9% and 4.5% absolute improve-
ment for ID and SF respectively. We contribute the improvement to the follow-
ing reasons: 1)All but a few previous works are RNN-based, and Transformer
has recently shown its superior fitting ability in many other NLP areas. 2)Our
padding method allows intent and slots to interact with each other in a simple
and effective way.

Generally speaking, our model performs better on the Snips dataset, which
is larger and more diverse. This difference shows the potential for our model to
be applied in an open domain area.

Joint vs Separate To further assess the effectiveness of our padding method,
we compare our joint model with separate models on the Snips dataset, and the
results are shown in Table 4. Apparently, the joint model outperforms the sepa-
rate models on both tasks (0.5% and 2.5% absolute improvement for SF and ID
respectively). The results suggest that the correlation between slots and intent
is learned by our joint model and contributes to both tasks.

Layers of Transformer In the experiments, we also notice that the layer
of Transformer influences the final performance a lot. As shown in Figure 4, we
achieve the best F1 score with 3 layers of Transformer. When the number of
layers grows larger than 3, the performance drops significantly. We also notice
that simple concatenation of representations from different layer can lead to
better performance, and we leave this to future work.
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4 Related Work

Historically, SF task originated mostly from non-commercial projects such as
the ATIS project, on the other hand, ID emerged from the call classification
systems after the success of the early commercial interactive voice response (IVR)
applications used in call centers. Many traditional machine learning approaches
have since been used in this area [6, 19, 12] .

In recent years, RNN-based methods have defined the state-of-the-art in SLU
research. [23] adapted RNN language models to perform SLU, outperforming
previous CRF result by a large margin. They attribute the superior performance
to the task-specific word representations learned by the RNN. [17] investigated
different kinds of RNNs for slot filling and shown that Elman RNN performed
better than Jordan RNN. [22] used a deep LSTM architecture and investigated
the relative importance of each gate in the LSTM by setting other gates to a
constant and only learning particular gates.

There have been many attempts to learn ID and SF jointly. [21] first proposed
a joint model for ID and SF based on convolutional neural network (CNN). [14]
proposed an attention-based neural network model and beat the state-of-the-
art on both tasks. [25] used a GRU-based model and max-pooling method to
jointly learn these two tasks. [7] proposed a multi-domain, multi-task sequence
tagging approach. Despite their success, these models did not explicitly model
the interaction between ID and SF and only tied these two tasks through a
joint loss function. [5] pointed this problem out and tackled this with gated
mechanism, leveraging intent vector to influence slots prediction. [1] extended
this idea by combining the intent vector with self-attention representations.

Self-attention is an attention mechanism relating different positions of a sin-
gle sequence in order to compute a representation of the sequence, it is especially
efficient at learning long-range dependencies. Based on the self-attention mech-
anism. The Transformer was first proposed in [20] for NMT and achieved huge
improvement on BLEU scores. Some researches have successfully adapted this
architecture to other tasks like sentence simplification [26] and video caption-
ing [27]. However, to the best of our knowledge, this architecture has not been
applied in the SLU area.

5 Conclusion

Most previous works for ID and SF are RNN-based. In this paper, we analyze and
highlight the advantageous features of bidirectional Transformer when applied
to SLU. To our knowledge, this is the first attempt to introduce the Transformer
architecture into this area. Using a simple padding method, we jointly perform
SF and ID and boost the performance for both tasks. Experiments show that our
model outperforms the state-of-the-art results by a large margin. We encourage
more researches in this direction.
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