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Abstract. Recent dominant approaches for abstractive text summarization are
mainly RNN-based encoder-decoder framework, these methods usually suffer
from the poor semantic representations for long sequences. In this paper, we pro-
pose a new abstractive summarization model, called RC-Transformer (RCT). The
model is not only capable of learning long-term dependencies, but also addresses
the inherent shortcoming of Transformer on insensitivity to word order informa-
tion. We extend the Transformer with an additional RNN-based encoder to cap-
ture the sequential context representations. In order to extract salient information
effectively, we further construct a convolution module to filter the sequential con-
text with local importance. The experimental results on Gigaword and DUC-2004
datasets show that our proposed model achieves the state-of-the-art performance,
even without introducing external information. In addition, our model also owns
an advantage in speed over the RNN-based models.

Keywords: Transformer · Abstractive summarization.

1 Introduction

Automatic text summarization is the process of generating brief summaries from input
documents. Having the short summaries, the text content can be retrieved effectively
and easy to understand. There are two main text summarization techniques: extractive
and abstractive. Extractive models [6] extract salient parts of the source document. Ab-
stractive models [10] restructure sentences and may rewrite the original text segments
using new words. As the abstractive summarization is more flexible and the generated
summaries have a good matching with human-written summaries, we focus on abstrac-
tive text summarization.

Recently, most prevalent approaches for abstractive text summarization adopt the re-
current neural network (RNN)-based encoder-decoder framework with attention mech-
anism [7, 8]. The encoder aims to map the source article to a vector representation and
the decoder generates a summary sequentially on the basis of the representation. The
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encoder and the decoder are both based on the RNN structure, such as long-short-term
memory (LSTM) and gated recurrent unit (GRU).

However, the training of RNN-based sequence-to-sequence(seq2seq) models is s-
low due to their inherent sequential dependence nature. Another critical problem of
RNN-based models is that they can not capture distant dependency relationships for
long sequences. Vaswani et al. [16] construct a novel encoder-decoder architecture with
strong attention, namely Transformer, which is capable of learning long-term dependen-
cies and has advanced the state-of-the-art on machine translation.

The Transformer has demonstrated to be effective for capturing the global contextu-
al semantic relationships and parallel computing. The self-attention mechanism is able
to learn the “word-pair” relevance. The word order information is accessed by position-
al encoding. However, for the reason that position information is important in natural
language understanding, the positional encoding is only approximate to sequence in-
formation. Therefore, there is a practical demand for modeling word-level sequential
context for the source article.

Motivated by the above observations, we propose a novel abstractive summariza-
tion model, called RC-Transformer, which improves Transformer with sequential con-
text representations. The proposed architecture consists of two encoders and a decoder.
We decouple the responsibilities of the encoder of capturing contextual semantic rep-
resentations and modeling sequential context by introducing an additional RNN-based
encoder. Since the local correlations contribute to learning syntactic information, we
further construct a convolution module to capture different n-gram features. The salient
information can be focused by filtering the sequential context with the local importance.
Furthermore, we introduce lexical shortcuts to improve the semantic representations
both in Transformer encoder and decoder.

We experimentally validate the effectiveness of our method for abstractive sentence
summarization. Our RC-Transformer achieves the state-of-the-art performance and is
able to generate high quality summaries, even without the external knowledge guidance.
Moreover, in spite of introducing a RNN-based encoder, our RC-Transformer is also
superior to the RNN-based seq2seq model in speed.

2 Related Work

2.1 Abstractive Text summarization

Abstractive text summarization has received much attention in recent years since the
seq2seq model was developed. Many neural network based models have achieved great
performance over conventional methods. Rush et al. [10] introduce a RNN-based se-
q2seq model with attention to generate summaries. In addition, intra-temporal and intra-
decoder attention mechanisms are proposed to overcome repetitions and reinforce al-
gorithm has also been used to avoid the exposure bias [8]. For sentence summarization,
Zhou et al.[20] introduce a selective gate network to filter secondary information and
Shen et al. [13] optimize model at sentence-level to improve the ROUGE score.

All the abstractive summarization models mentioned above are based on RNNs.
There are two notable problems with these models: (1) the sequential nature of RNN
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prevents the computation in parallel. (2) Suffering from the difficulty of learning long-
term dependencies, RNNs are limited to model relatively short sequences. However,
the input articles are always long text in text summarization, there is a bottleneck to
improve the performance of the RNN-based models.

Recently several encoder-decoder architectures, such as Convs2s [3] and Trans-
former [16] are exploited. For abstractive text summarization, Wang et al. [18] propose
a convolutional seq2seq model which incorporates the topic information and achieves
good performance. Liu et al. [5] alter the Transformer decoder to a language model to
create Wikipedia articles from several reference articles.

2.2 Transformers

Although Transformers are effective in machine translation, for abstractive text sum-
marization, this architecture does not behave well for its poor ability of modeling the
word-level sequential context. Recently there are some related work about modifying
positional encoding. Shaw et al. [12] extend the self-attention mechanism to efficiently
consider representations of the relative positions. Takase et al. [15] propose an exten-
sion of sinusoidal positional encoding to control output sequence length. But neither
of them is a complete strategy to tackle the insensitivity to sequential information for
Transformer. In this paper, we introduce an additional encoder based on RNN to allevi-
ate the problem in Transformer.

3 The Proposed Model

In this section, we describe (1) the problem formulation and our base model Trans-
former, (2) our proposed model, called RC-Transformer, which introduces an addition-
al encoder with a bidirectional RNN to model sequential context and a convolution
module to capture local importance.

3.1 Background

Based on the strong ability of learning the global contextual representation, we use the
Transformer[16] model as our baseline. Formally, let X = {x1, · · · , xm} denote the
source article with m words and Y = {y1, · · · , yn} denote the output sequence of n
summary words.

The Transformer follows an encoder-decoder architecture. The encoder consists of a
stack of N layers, each of them composes of two sub-layers: a multi-head self-attention
mechanism and a fully-connected feed forward network. The self-attention is defined
as:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (1)

The encoder maps the input article into a sequence of continuous representation
Z = {z1, · · · , zm}. The decoder performs encoder-decoder attention to learn the cor-
relation between the source text and the generated text.
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Fig. 1: An overview of RC-Transformer which has two encoders(left and right) and a de-
coder(middle). The model has a similar structure with Transformer [16]. We introduce an addi-
tional encoder called RC-Encoder with a Bi-RNN to model sequential context and a convolution
module upon RNN to filter the sequential context with local importance via a gated unit. A lexical
shortcut is employed between each layer and the embedding layer in both Transformer encoder
and decoder.

3.2 RC-Transformer

Although the positional encoding retains the order information, the model is still not
quite sensitive to the word order which is crucial in abstractive text summarization.
The lack of the word-level sequential information limits the model’s ability of natu-
ral language understanding in depth. The generated summaries often incorporate much
non-salient information. To alleviate the problem, we propose a RC-Transformer model
which decouples the encoder’s responsibilities of learning contextual semantic repre-
sentation and capturing the word order information by factoring it into two encoders. A
RC-Encoder based on RNN is introduced to assist in learning the word-level sequen-
tial context. Upon the RNN structure, a convolutional module is applied to filter the
sequential context with local importance. Our RC-Transformer contains three major
components: a RC-Encoder, a Transformer encoder and a decoder. The graphical illus-
tration of the RC-Transformer is shown in Fig. 1. We introduce the RC-Encoder and
decoder in detail in this section.

RC-Encoder The encoder first maps the source text into a sequence of hidden states
H = {h1, · · · , hm} via a bidirectional LSTM.
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H = BiLSTM(E) ∈ Rm×dhid (2)

where E is the embedding representation of the source article X and dhid is the output
dimension. At each time step, the output is the concatenation of two directional hidden
states (hi =

[−→
hi ,
←−
hi

]
). Since RNNs possess good capacity in modeling the word se-

quence, hence H represents the sequential context of the source article. Furthermore,
the syntactic information can be captured by n-gram features, we also extract different
n-gram features of the source article on the basis of the Bi-RNN.

H

Conv

K=1

Conv

K=3

Conv

K=5

concat

sigmoid

Fig. 2: An illustration of local convolution module with gated linear unit.

Local Convolution We further enhance the sequential context representation with a
convolutional module. We implement a convolution module of different receptive fields
to learn n-gram features with different sizes. Given the input hidden states sequence H ,
three convolution operations are applied to obtain three output vectors Dk=1, Dk=3, Dk=5,
where k is the kernel size. We concatenate the three outputs to take different n-gram
features into account.

D = [Dk=1, Dk=3, Dk=5] . (3)

Instead of taking D as the output of the RC-Encoder, we set a learnable threshold
mechanism to filter the sequential context according to the local importance. The gated
linear unit (GLU) controls information flow by selecting features through a sigmoid
function, which is demonstrated to be useful for language modeling [2]. We introduce
a similar architecture(see Fig. 2) to select how much sequential context information
should be retained as:

R = σ (WdD + bd)⊙ (WhH + bh) . (4)

The RC-Encoder assists the original encoder in modeling the word order informa-
tion and learning local interactions. We leave the Transformer encoder as it is to capture
the global semantic representation.
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Decoder The model encodes the source text into a global semantic representation and
a sequential context representation. Then the two representations are integrated in the
decoder to generates summaries. As shown in Fig. 1, we follow [16] to use a stack of
N decoder layers to compute the target-side representations. Each layer is composed
of four sub-layers. Specifically, we employ two encoder-decoder attention sub-layers,
each of which perform an attention between the encoder representation and the decoder
representation. More precisely, let C(n) be the output of the masked multi-head self-
attention at the n-th decoder layer, then the two encoder-decoder self-attention sub-
layers calculate two representations:

T
(n)
R = MultiHead(C(n);R;R), (5)

T
(n)
Z = MultiHead(C(n)Z;Z). (6)

The outputs of the two attention mechanisms are combined via a gated sum.

g = σ
(
Wg

[
T

(n)
R , T

(n)
Z

]
+ bg

)
, (7)

S(n) = g ⊙ T
(n)
R + (1− g)⊙ T

(n)
Z . (8)

Subsequently, the output S(n) is fed to the feed forward layer. In the previous work-
s, there are two other strategies for integrating two encoders and a decoder architecture,
called “Gated Sum in Encoder” and “Stacked in Decoder”. We elaborate these two
strategies in Section 4.4 and conduct experiments to demonstrate that our method per-
forms better than the two strategies in this case.

3.3 Lexical Shortcuts

Within the Transformer encoder and decoder, each sub-layer takes the output of the
immediately preceding layer as input. The lexical features are learned and propagated
upward from the bottom of the model. For the higher-level layer to learn the semantic
representation, the lexical features must be retained in the intermediate representation.
Therefore, the model is unable to fully leverage its capacity of capturing semantic rep-
resentations. To alleviate the problem, we add a gated connection called lexical shortcut
between the embedding layer and each subsequent self-attention sub-layer within the
encoder and decoder (see Fig. 1).

In each self-attention sub-layer, the K,V vectors are recalculated to carry part of
lexical features. A transform gate aims to select how much lexical features should be
carried in each dimension. Take K for illustration:

TK
l = σ (Wk [E,Kl]) , (9)

then the current features and the lexical features are combined by calculating their
weighted sum.

Knew
l = E ⊙ TK

l +Kl ⊙
(
1− TK

l

)
(10)

The equation 1 utilize the new K and V vectors to calculate the self-attention. This
method enhances the semantic representations by exposing lexical content and position
information to the following layers.
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4 Experiments

4.1 Datasets and Evaluation Metrics

We evaluate our methodology on English Gigaword and DUC-2004 datasets which
are the standard benchmark datasets for abstractive text summarization. The English
Gigaword is a sentence summarization dataset. We follow the experimental settings in
[10] to preprocess the corpus. The extracted corpus contains about 3.8M samples for
training, 8K for validation and 0.7K for testing. Each sample in the dataset is a sentence
pair, which consists of the first sentence of the source articles and the corresponding
headline. The DUC-2004 dataset is a summarization evaluation set which consists of
500 news articles. Each article in the dataset is paired with four human-written reference
summaries. Compared to [10] tuning on DUC-2003, we directly use the model trained
on the Gigaword to test on the DUC-2004 corpus.

We employ ROUGE [4] as our evaluation metric. ROUGE measures the quality of
summary by computing the overlapping lexical units between the generated summaries
and the reference summaries. Following the previous work, we report full-length F-1
scores of ROUGE-1, ROUGE-2 and ROUGE-L metrics.

4.2 Implementation Details

We implement our experiments in PyTorch on 4 NVIDIA TITAN X GPUs. In prepro-
cessing, we use the Byte pair encoding (BPE) algorithm [11] to segment words. We
set the hyper-parameter to fit the vocabulary size to 15,000. The baseline Transformer
model is trained with the same hyper-paremeters as in the base model in [16]. And our
extended RC-Transformer model uses 8 attention heads and a dimension of 1024 for
the feed forward network. We set the Transformer encoder and decoder layer number
as 4. Moreover, the RC-Encoder is implemented with a two-layer bidirectional GRU.
For convolution module, we employ three convolution layers with kernel size 1, 3, 5 re-
spectively and we keep the same output size of each convolution operation with padding
size 1, 3, 5. In training, cross entropy is used as the loss function and label smoothing
is introduced to reduce overfitting. Each model variants are trained approximately 5 e-
pochs. During test, we use beam search of size 5 to generates summaries and limit the
maximum output length as 15 and 20 for Gigaword and DUC2004 dataset respectively.

4.3 Comparison with State-of-the-Art Methods

In addition to the base model Transformer, we also introduce the following state-of-
the-art baselines to compare the effect of our approach. ABS and ABS+ [10] are both
the RNN-based seq2seq models with local attention. The difference is that ABS+ ex-
tracts additional hand-crafted features to revise the output of ABS model. RAS-LSTM
[14] model introduces a convolutional attention-based encoder and a RNN decoder.
SEASS [20] extends the seq2seq model with a selective gate mechanism. DRGD [9] is
a seq2seq model equipped with a deep recurrent generative model. RNN+MRT [9] em-
ploys the minimum risk training strategy which directly optimizes model parameters in
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Table 1: Comparisons with the state-of-the-art methods on abstractive text summarization bench-
marks.

Gigaword DUC-2004
Models ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L
ABS 29.55 11.32 26.42 26.55 7.06 22.05
ABS+ 29.76 11.88 26.96 28.18 8.49 23.81
RAS-LSTM 32.6 14.7 30.0 28.97 8.26 24.06
SEASS 36.2 17.5 33.6 29.21 9.56 25.51
DRGD 36.3 17.6 33.6 31.79 10.75 27.48
RNN+MRT 36.54 16.59 33.44 30.41 10.87 26.79
ConvS2S 35.88 17.48 33.29 30.44 10.84 26.90

using external information guidance
Feats 32.7 15.6 30.6 28.61 9.42 25.24
RL-Topic-ConvS2S 36.92 18.29 34.58 31.15 10.85 27.68
Re3Sum 37.04 19.03 34.46 - - -

our methods
Transformer 35.96 17.11 33.46 28.62 9.95 25.62
RCT 37.27 18.19 34.62 33.16 14.7 30.52

the sentence level with respect to the evaluation metrics. ConvS2S [3] is a convolutional
seq2seq model.

We also compare our model with several state-of-the-art methods utilizing external
information to guide the summaries generating. FeatS2S [7] uses a full RNN-based se-
q2seq model which enhances the encoder by adding some hand-crafted features such as
POS tag and NER. RL-Topic-ConvS2S [18] is a convolutional seq2seq model training
with reinforcement learning objective and jointly attends to topics and word-level align-
ment to improve performance. Re3Sum model [1] proposes to use existing summaries
as soft templates to guide the seq2seq model.

As shown in Table 1, our approach achieves significant improvements over the
current baseline, bettering RNN+MRT model by an absolute 2% and 8% increase in
ROUGE-1 F1 score on the Gigaword and DUC2004 dataset respectively. We also com-
pare our model with Feats, RL-Topic-ConvS2S and Re3Sum. We can see that even
without introducing external information and the REINFORCE, our model still per-
forms better. It shows that considering the sequential context representation and global
semantic representation, our model is able to capture salient information and generate
high quality summaries.

4.4 Comparison with Different Integration Strategies

In this section, we introduce different integration strategies for two encoders and one
decoder architecture. Voita et al. [17] introduce a context-aware neural machine trans-
lation model where the decoder keeps intact while incorporating context information
on the encoder side. Zhang et al. [19] employ a new context encoder which is then in-
corporated into both the original encoder and decoder with a context attention stacked
on the self-attention sub-layer. We conclude the two strategies as below:
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Table 2: Effect of different integration strategies of the two encoders and one decoder architecture.

Models ROUGE-1 ROUGE-2 ROUGE-L
Gated Sum in Encoder 36.13 17.09 33.51
Stacked in Decoder 36.33 17.28 33.63
Our Methods 37.27 18.19 34.62

Gated Sum in Encoder: Integrate the output representations of the two encoders
on the encoder side by combining the two representations via a gated sum.

Stacked in Decoder: Integrate the output representations of the two encoders into
the decoder by employing two encoder-decoder attention sub-layers stacked with the
original layers.

We conduct experiments to verify the performance of the two strategies and our
method. As shown in Table 2, it is clear that our method that combines the two encoder-
decoder attention outputs with a gated sum is effective.

4.5 Ablation Study

Table 3: Ablation study on the English Gigaword dataset. “LS” is used for the abbreviation of
lexical shortcut. RT denotes the model without convolution module.

Models ROUGE-1 ROUGE-2 ROUGE-L
Transformer 35.86 17.11 33.26
Transformer + LS 36.21 17.41 33.65
RT 36.88 17.72 34.08
RCT o/GLU 36.44 17.5 33.72
RCT w/GLU 37.27 18.19 34.62

In this section, we conduct experiments to evaluate the contributions brought by
different components. The experiments are conducted on the Gigaword test set. Exper-
imental results are presented in Table 3. The baseline is the original Transformer(base).
To validate the effectiveness of the lexical shortcut, we train a counterpart model that
only lexical shortcut is included. As the result shown in the second row, lexical shortcut
improves the performance by about 0.35 ROUGE-1 points. The third row in Table 3
corresponds the model that takes the RNN output as the encoder output without con-
volution operations. And the fourth row and the fifth row in Table 3 is the method
using RNN and convolution module, the difference between them is whether filtering
the sequential context with GLU. The results show that it is necessary to model sequen-
tial context for abstractive text summarization. The RNN makes up the shortcoming of
the Transformer on insensitivity to word order. And the convolution module captures
n-gram features which also helps boost performance. The RCT without GLU reduces
performance because the sequential information is weakened.
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4.6 Effect of different lengths of input

(a) (b) 

Fig. 3: F1 scores of ROUGE-2 and ROUGE-L on different groups of source articles according to
their length on English Gigaword test sets.

In this section we investigate how the different input lengths affect the performance
of our model. We group the input article with an interval of 10 and get 7 groups
whose length ranges from 10 to 70. We plot the performance curve of ROUGE-2 F1
and ROUGE-L F1 on our RCT model, the base Transformer and the seq2seq+attention
baseline in Fig. 3. As we can see, our model consistently improves over the other two
models for all lengths and our model is more robust to inputs of different lengths.

4.7 Speedup over RNN-based Seq2seq Model

Table 4: Speed and memory usage comparison between the proposed model and RNN-based
models, all with batch size 64.

Training Inference Memory Usage
RNN-based 15.2 hours 4.8 samples/s 10GB
RCT 10.8 hours 4 samples/s 5GB
speedup 1.4x 1.2x 0.5x

In addition to ROUGE scores, we also benchmark the speed of our model against the
RNN-based encoder-decoder model. We use the same hardware and compare the time
cost of training the same samples for one epoch between our model and the RNN-based
model with batch size 64 for a fair comparison. We mostly adopt the default settings in
the original code [10]. As Table 4 shows, our model is 1.4x and 1.2x times speedup in
training and inference. Although an additional RNN based encoder is introduced, the
model is still faster and occupies less computing resources.
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4.8 Case Study

Table 5: Examples of generated summaries on Gigaword dataset.

Examples
Article 1: the un chief of eastern slavonia , the last serb-held part of croatia , confirmed tuesday
that key elections would be held here on april ## as part of local ballots throughout croatia .
Reference: un confirms elections to be on unk ## in eastern slavonia
Transformer: eastern slavonia confirms key elections in croatia
RCT: un chief confirms key elections in croatia
Article 2: the sri lankan government on wednesday announced the closure of government schools
with immediate effect as a military campaign against tamil separatists escalated in the north of
the country .
Reference: sri lanka closes schools as war escalates
Transformer: sri lanka government closes schools
RCT: sri lanka closes schools as military campaign escalates

We present two examples in Table 5 for comparison. We can observe that: (1) our
RCT model is generally capable of capturing the salient information of an article. For
example, the subject in Article 1 is “the un chief” which is extracted correctly by our
RCT model, but the Transformer model failed. (2) When both models capture the same
topic, RCT can generate more informative summary. For Article 2, our model generates
“as military campaign escalates” incorporated in the reference, but the Transformer
model loses these information.

5 Conclusion

In this paper, we propose a new abstractive summarization model based on Transformer,
in which an additional encoder is introduced to capture the sequential context represen-
tation. Experiments on Gigaword and DUC2004 datasets show that our model outper-
forms the state-of-the-art baselines and owns an advantage in speed both on training
and inference. The analysis shows that our model is able to generate high quality sum-
maries. Note that we focus on abstractive sentence summarization in this paper. In the
future we will investigate the approach of summarizing long documents.
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