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Abstract. Recent end-to-end encoder-decoder neural models for data-to-text gen-
eration can produce fluent and seemingly informative texts despite these models
disregard the traditional content selection and surface realization architecture.
However, texts generated by such neural models are often missing important
facts and contradict the input data, particularly in generation of long texts. To
address these issues, we propose a Fact Guided Training (FGT) model to im-
prove both content selection and surface realization by leveraging an information
extraction (IE) system. The IE system extracts facts mentioned in reference data
and generates texts which provide fact-guided signals. First, a content selection
loss is designed to penalize content deviation between generated texts and their
references. Moreover, with the selection of proper content for generation, a con-
sistency verification mechanism is designed to inspect fact discrepancy between
generated texts and their corresponding input data. The consistency signal is non-
differentiable and is optimized via reinforcement learning. Experimental results
on a recent challenging dataset ROTOWIRE show our proposed model outper-
forms neural encoder-decoder models in both automatic and human evaluations.

Keywords: generation · information extraction · reinforcement learning.

1 Introduction

Data-to-text generation, a classic task of natural language generation, aims to generate
descriptions that describe structured input data (e.g., tables) adequately and fluently
[12, 19, 3, 1, 11]. Data-to-document generation is a more challenging setting in which
a system generates multi-sentence summaries based on input data [26]. Traditionally,
it is divided into content selection (i.e., what to say) and the surface realization (i.e.,
how to say) [19, 9]. Recent neural generation systems ignore the distinction of these
two subtasks using a encoder-decoder model [23] with attention mechanism [2, 16, 8].

Although neural network models are capable of generating fluent text [26], they tend
to generate irrelevant descriptions (e.g., missing essential contents in generated texts)
and hallucinated content (e.g., text that contradicts the input structured data). As shown
? Equal Contribution, work was done when the first and second author internships at Microsoft.
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Input Data
Name PTS AST REB FGM FGA
E. Mudiay 25 9 6 10 17
Kyle Lowry 18 13 6 6 15

Generated: Kyle Lowry went 10 - for - 17 from the field
to score 18 points while also adding 13 assists ...
Reference:

:
E.
::::::
Mudiay

::::
had

:::
one

::
of

::
his

:::
best

:::::
games

::
of
:::
the

::::::
season,

:
as
:::

he
:::::
tallied

::
25

:::::
points,

:::
six

:::::::
rebounds ...

Table 1: A generated description from baseline model based on its paired input data. The
underlined texts are words contradicted with input data and

:::::
waved texts highlights the missing

informative content in the reference data.

in Table 1, the generated text by a neural model does not mention the facts about one
of the point leader “Emmanuel Mudiay” (e.g., “Emmanuel Mudiay tallied 25 points”).
Such mistakes happen as most of current neural based methods is optimized word by
word which ignores coverage of facts and implicitly model the content selection by
solely relying on word level attention. Moreover, the neural methods also produce con-
tradictory fact (e.g., “Kyle Lowry went 10 - for -17 from field”), as it is trained with
maximum-likelihood (MLE) objective, which can only measure the generated texts with
reference data word by word (i.e., on lexical level).

In this paper, we propose a Fact Guided Training (FGT) framework for data-to-text
generation which measures content selection by penalizing content deviation between
generated texts and references and measures consistency of generated texts by inspect-
ing fact discrepancy between generated texts and input. In the scenario of data-to-text,
the training data consists of loosely aligned structured input facts and unstructured de-
scription pairs, which do not have alignments between each token mentioned in the de-
scription to its corresponding input facts. To provide fact signals, a simple information
extraction (IE) system is applied to collect the facts in the reference and the generated
text [26]. E.g., (Emmanuel Mudiay, 25, PTS) is a fact in Figure 1.

To incorporate collected fact signals to improve both content selection and surface
realization, we first design a simple yet effective content selection loss to penalize con-
tent deviation between generated texts and references, which encourages our model to
learn the ability of selecting essential input facts with the fact signals. Moreover, with
the selected facts, a consistency model is designed to inspect the contradictions between
the generated text and its input data and between the generated text and its reference.
Specifically, we apply the above IE system to extract facts from the generated texts, then
compare the facts with its reference and its input data to produce reward signals. The
non-differentiable consistency reward signals are incorporated into the training proce-
dure via a reinforcement learning approach. In this way, the fact inconsistency can be
treated as negative signals to guide a encoder-decoder network.

We evaluate the proposed method, FGT, on the ROTOWIRE dataset [26], which
targets at generating multi-sentence game summaries. The experimental results show
that FGT outperforms a encoder-decoder neural generation baseline in terms of BLEU
and extractive metrics proposed by [26].
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Harden scored 40 and Gordon scored 15 …

Input & Reference
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Harden 40 10 15

Gordon 15 0 5
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Fig. 1: Neural generation model with fact guided content selection and consistency verification .

2 Background

In this section, we briefly introduce the architecture of the attention-based sequence-to-
sequence (Seq2Seq) [6, 2] model with copy mechanism [21], which is the basis of our
proposed model.

The goal of data-to-text generation is to generate a natural language description
y = y1, ..., yT consists of T words for a given set of records S = {rj}Tj=1. Firstly,
each input record rj is encoded into a hidden vector hj with j ∈ {1, ..., T} using a
bidirectional RNN. Then the decoder generates the description y by maximizing the
conditional probability as:

P (y|S) =
T∏
t=1

P (yt|y<t, S) (1)

where yt is the t-th word in the description and T is the length of the description. The
conditional probability P (yt|y<t, S) is computed as:

P (yt|y<t, S) = softmax(f(dt, yt−1, ct)) (2)

where f(.) is a non-linear function, dt = LSTM(dt−1, yt−1, ct−1) is the hidden state
in the decoder at time step t, and ct =

∑T
j=1 αt,jhj is the context vector at time step

t, αt,j is computed by the attention model [2]. We also adapt the conditional copy
mechanism [10, 21] into the Seq2Seq models.

3 Our Approach

As shown in Figure 1, our model contains two parts, an encoder plugged with a pre-
selector module, where a subset of the input records are selected for decoding, and
an attention-equipped decoder. To ensure that generated texts describe the same set of
records with its corresponding reference, we collect factual information by applying
an information extraction (IE) system, where the information acts as a pseudo con-
tent selection supervision to guide the pre-selector to choose relevant input information
for generation. Moreover, to avoid the contradictions between the generated texts and
the input information, a consistency verification procedure is applied to inspect fac-
tual information overlap between the generated texts and its paired input table and the
corresponding reference via a reinforcement learning approach.
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3.1 Record Encoder

Given a set of input records S = {ri}Ki=1, each record r is a triple (re, rf , rv), where
re, rf and rv refer to the entity (e.g. Harden), the field name (e.g. column PTS) and
value (e.g. cell value 40), respectively. We map each record r ∈ S into a vector r by
concatenating the embedding of re, rf and rv , denoted as r = [ee, ef , ev]>, where
ee, ef , ev are trainable word embeddings of re, rf and rv , similar to [27]. We feed
a set of record vectors r1, ..., rK to a bidirectional LSTM and yield the final record
representations h1, ...,hK as introduced in Section 2.

3.2 Information Extraction

To enable fact measurement for content selection and surface realization in data-to-text
generation, we employ an information extraction (IE) system to extract relevant input
information from the description.

We build a simple IE system based on input and description pairs similar to [26].
Given a generated text ŷ1:T , we first extract all possible candidate entity e (team, player
and city) and value r (number) pairs from the text, and then predict the field name rf of
each candidate pair. For the example in Figure 1, (“Harden”, “40”) is a possible (entity,
value) pair in the generated texts, and its corresponding field is “PTS”. In this way, the
relation extraction is simplified to multi-class classification , formulated as follows:

p(rf |e, v, x) ∝ s>x [W
class]rf (3)

where x is the sentence which entity e and value v lie in, sx is the learned sentence
representation, and Wclass refers to classification embedding matrix, and [Wclass]rf is
the column vector that contains the embedding of class rf . Note that rf = ε indicates
unrelated (entity, value) pair. Given an input and description pair (S, y), e extract a set
of records Û = {ûj}|û|j=0 from the generated text using the trained IE system. For the

records set mentioned in reference U = {ui}|U |i=0, we use the pseudo label which is
constructed for training the IE system, instead of extracting that from the reference.

3.3 Content Selection

Given a set of input records, one core step in data-to-text generation is to decide what
to say by selecting a small subset of salient records that are relevant to the output de-
scription. Most of the neural methods rely on the attention mechanism to select input
content by scanning the entire input records during decoding at each time step t, while
the search space for attention mechanism is large. Following [16], it is reasonable to use
a content selection model to first capture the prior pj for each record rj and re-weight
the attention probability αt,j to recalculate the context vector ct as follows:

pj = σ(q>tanh(P[hj , rj ]>)) (4)

αt,j = softmax(v>tanh(Wdt−1 + Hhj)) (5)

βt,j = pjαt,j/
∑
j

pjαt,j (6)

ct = βt,jhj (7)
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where rj and hj represent the record embedding and the hidden units in RNN layer
for record rj respectively, P, H, W, q and v are learned parameters. In this way, the
attention mechanism is affected by the prior probability pj , where a large pj represents
the current record is salient.

In data-to-text scenario, the given references are unstructured text where the align-
ments of each token to its corresponding input record is not provided. Learning the
prior probability pj automatically from such loosely aligned input and description pairs
is difficult. To derive direct training signals for content selection, we collect an approx-
imate supervision by taking the advantage of the IE systems. Specifically, an additional
loss based on the records extracted from the reference (i.e., U ) is constructed to guide
the content selection:

Lcs = −
∑
i

(
1cs(ri) log pi (8)

+ (1− 1cs(ri)) logmin(1 + η − pi, 1)
)

where 1cs(ri) is the indicator function which produces 1 when the input record ri
appears in U , otherwise 0. η is a hyper-parameter to control the tolerance on negative
labels, as the pseudo label constructed for training the IE system may contains mistakes
in which some records that are mentioned in the reference can not be extracted. We set
η to 0.5 according to the validation set.

3.4 Consistency Verification

The approximate content selection supervision enforces the model to choose relevant
input information for generation. However, a more critical problem for neural genera-
tion models is producing facts contradict its paired input table. We therefore propose
a novel verification mechanism to inspect the discrepancy between generated texts and
its paired input data to guide the training.

Specifically, we first collect the facts from the generated texts by using the IE system
introduced above, and then examine the overlap with its paired input records and its
reference. Since only a subset of words in the generated text are describing facts, we
design two word-level rewards to encourage words that are consistent with the input
table and penalize those containing mistakes.

Consistency Rewards To measure the consistency of the generated texts, we design
two rewards based on the reference and the input data respectively. Note that the consis-
tency is designed on the fact level, and we will make use of the record set U = {ui}|U |i=0

and Û = {ûj}|û|j=0 which extracted from the reference y1:N and the generated text ŷ1:T .
We define the first reward to check whether the records extracted from the generated

text match those from the input data. Specifically, reward for each word ŷt in ŷ1:T :

RS(ŷt, S) =
∑

ûi∈Sub(Û,ŷt)

(
1S(ûi)− bs

)
(9)
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where Sub(Û , ŷt) returns a subset of Û in which the word ŷt equals to one of the
elements in each record, bs is set to 0.5, and 1 is the indicator function defined as:

1S(ûi) =

{
1, if ûi ∈ S
0, if ûi /∈ S

Similarly, we define the second reward for each word ŷt to inspect the consistency
between the generated text Û and its corresponding reference data U :

RU (ŷt, S) =
∑

ûi∈Sub(Û,ŷt)

(
1U (ûi)− bu

)
(10)

where bu is set to 0.5, and

1U (ûi) =

{
1, if ûi ∈ U
0, if ûi /∈ U

To integrate the consistency measurement from both input and reference data, the final
consistency reward R(ŷt|S) is calculated by combining these two rewards as follows:

R(ŷt, S) = λ1R
U (ŷt, S) + λ2R

S(ŷt, S) (11)

where λ1 and λ2 are hyper parameters to control the scale for each reward. We set both
λ1 and λ2 to 0.5 according to the validation set.

Policy Gradient Reinforce The consistency reward introduced above is non-differentiable
for end-to-end training. One way to remedy this is to learn a policy that maximizes the
consistency reward instead of minimizing the maximum-likelihood loss, which is made
possible with reinforcement learning. We use the REINFORCE algorithm [25, 28] to
learn a policy pθ, where pθ refers to the distribution produced by the encoder-decoder
model introduced in Eq. 1. The training objective is formulated as follow:

J(θ) = E(ŷ1:T )∼pθ(.|S)R(ŷ1:T , S) (12)

where R(ŷ1:T , S) is the reward function of the sequence of words Ŷ = (ŷ1, ..., ŷT )
sampled from the policy. Unfortunately, computing the expectation term is prohibitive,
since there is an infinite number of possible sequences. In practice, we approximate this
expectation with a single sample from the policy distribution pθ. The gradient of the
JRL is:

∇JRLZ ≈
T∑
t=1

∇θ log pθ(ŷt|ŷ1:t−1, S)[R(ŷ1:T , S)− bt] (13)

where bt is a baseline estimator to reduce the variance, and defined as bt =
∑T
t=1R(ŷ1:T , S)/T .

Moreover, our proposed reward can only affect a subset of words related to the input
data. Therefore, our word-level reward function can be formulated as R(ŷ1:T , S) =
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t=1Rt(ŷt|ŷ1:t−1, S). Therefore, we can have word level feedback as [24]:

∇JRL ≈
T∑
t=1

∇θ log pθ(ŷt|ŷ1:t−1, S)(Qt − bt)

where Qt =
T∑
k=t

γk−tRt(ŷk|ŷ1:k−1, S)

(14)

with γ denoting a discount factor ∈ [0, 1]. The original REINFORCE algorithm starts
learning with a random policy, which can make the model training for generation tasks
with large vocabularies a challenge. We therefore conduct pre-training on our policy
with the maximum likelihood (MLE) objective prior to REINFORCE training.

4 Experiments

4.1 Datasets & Evaluation

Data: We use ROTOWIRE dataset [26], which is a collection of articles summarizing
NBA basketball games, paired with their corresponding box- and line-score tables. The
average number of input records and article length is 628 and 337 respectively. It con-
sists of 3,398, 727, and 728 summaries for training, validation and testing respectively.
Evaluation: For automatic evaluation metrics, we use BLEU-4 [17] and the extractive
evaluation metrics proposed by [26] for evaluation. The extractive evaluation metrics
are based on relationship classification techniques introduced in Section 3.2. Following
[26], we evaluate our proposed method on these three criteria: a) Relation Generation
(RG): precision (P%) and number (#) of unique records correctly reflected in the gener-
ated text; b) Content Selection (CS): precision (P%) and recall (R%) of unique records
correctly reflected in the generated text that are also appear in its paired reference; c)
Content Ordering (CO): normalized Damerau-Levenshtein Distance (DLD%) between
the sequence records extracted from generated text G and reference text R. Among

Dev Test
RG CS CO BLEU RG CS CO BLEU

P% # F1% P%/R% DLD% P% # F1% P%/R% DLD%
Ref 95.98 16.93 100 100/100 100 100 96.11 17.31 100 100/100 100 100
Template 99.93 54.21 35.42 23.42/72.62 11.30 8.97 99.95 54.15 35.75 23.74/72.36 11.68 8.93
Wiseman 75.74 16.93 34.64 31.20/38.94 14.98 14.57 75.62 16.83 36.02 32.80/39.93 15.62 14.19
Seq2Seq 74.80 19.62 34.47 28.90/42.71 15.18 14.19 74.18 19.75 33.92 28.44/42.03 14.71 14.55
PreSel 77.15 17.97 35.22 31.10/40.62 15.59 14.40 77.03 18.45 34.65 30.51/40.10 15.68 14.27
+ CS 78.75 19.16 36.73 31.83/43.43 15.70 15.19 79.17 19.65 36.32 31.50/42.88 16.41 14.95
+ CV 78.33 19.59 36.53 31.21/44.05 15.39 15.49 77.46 19.62 35.67 30.53/42.90 15.28 14.94

FGT 82.22 22.36 37.90 31.30/48.04 15.46 15.62 82.99 23.17 38.09 31.19/48.90 15.58 15.73

Table 2: Results of different methods on ROTOWIRE dataset, where the best performance of
neural based methods on each metric is in bold.

these three criteria, the RG metric directly evaluates the data fidelity of the system and
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thus is the most crucial evaluation metric, and we argue that CO metric does not re-
ally reflect the quality of generation, as there are different ways to describe the same
information of a game.

4.2 Experimental Setup

In the main experiments, we compare our model with : (a) Template: a problem-
specific, template-based generator similar to [26]4, (b) Wiseman: an encoder-decoder
neural method with conditional copy mechanism (c) Seq2Seq: Seq2Seq model with
pointer network copy mechanism introduced in the background section. It is one of the
state-of-the-art neural systems, (d) PreSel: Seq2Seq method plus the content selec-
tion introduced in Eq.4-7. For ablation study, we provide the results of (e) PreSel+CS:
PreSelwhen adding our proposed content selection loss for training and (f) PreSel+CV:
PreSel with consistency verification. All the experiments use beam size of 5 in de-
coding. Training: For MLE training, we use the SGD optimizer with starting learning
rate as 1. For REINFORCE training, we continue from MLE training with the same
optimizer and learning rate. The dimension of trainable word embeddings and hidden
units in LSTMs are all set to 600 and both encoder and decoder share the same word
embedding. As the length of generated text is more than 300 words on average, we
apply the truncated back propagation with window size 100. For REINFORCE train-
ing, we set the sample size to 1, γ to 0 according to the validation set5, and limit the
consistency reward for each word to be within the range [-1, 1].

4.3 Main Results

Experimental results with comparisons to the previous work on this dataset are shown
in Table 26. We apply MLE training on our baseline model and achieve comparable
results on ROTOWIRE dataset w.r.t. the previous work [26]. The differences between
our method and [26] is that we adopt a LSTM for the encoder, while [26] uses a table
encoder similar to [27]. Template based method performs poorly than all neural based
method in terms of BLEU score, but it performs quite well on the extractive metrics,
as input data is directly feed into placeholders of template by rules, which provides
the upper-bound for how domain knowledge could help content selection and con-
sistency for generation. For neural based methods, the PreSel shows improvement
over Seq2Seq method in the precision of RG and CS metrics, as well as achieves
comparable performance in terms of BLEU score, which indicates the importance of
content selection for generation. Our proposed method FGT which incorporates fact-
guided content selection loss and the consistency verification into training outperforms
PreSel in terms of both BLEU and extractive metrics. Notably, for the recall of CS
metric which directly measures the content overlap with reference texts, we observe

4 A template example, where the players and scores are emitted in the sentence. <player>
scored <pts> points (<fgm>-<fga> FG, <tpm>-<tpa> 3PT, <ftm>-<fta> FT)

5 We do not apply dropout in RL training
6 Wiseman17 have recently updated the dataset to fix some mistakes. We cannot directly use the

results which is reported in their paper and rerun the author’s code.
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RG CS CO BLEU
Acc% # F1% P%/R% DLD

Linear
Classifier

Precision Recall PreSel+CV 78.12 12.64 35.27 37.34/33.41 16.72 12.03
0.460 0.322 FGT 75.76 11.76 34.52 37.43/32.03 17.01 12.04

CNN+LSTM
Classifier

Precision Recall PreSel+CV 79.17 19.65 36.32 31.50/42.88 16.41 14.95
0.947 0.753 FGT 82.99 23.17 38.09 31.19/48.90 15.58 15.73

Table 3: Performance of our framework over different RE models in ROTOWIRE test dataset.

6.87% improvements over PreSel, and the result shows that our proposed method
is able to generate more relevant information which is also selected by the reference.
Moreover, the precision and average number of relations in RG metric increases 5.96%
and 4.72 respectively which proves that FGT produces less contradicted facts than base-
line methods. The result confirms that our proposed method is helpful for both content
selection and fidelity of generation when incorporating fact-level training objectives.

4.4 Ablations

To investigate the effect of content selection training objective and the consistency ver-
ification individually, we report the results of ablations of our model in Table 2 by
disabling some components in our proposed method. The results show that incorpo-
rating content selection loss is helpful for the recall of CS metric. This suggests that
injecting an additional content selection loss for content selection enables the model to
generate more input records which also selected by the reference. Interestingly, we also
observe the improvement on RG, which explains the necessity of content selection to
reduce the influence of irrelevant information for neural generation models. Similarly,
our proposed method yields performance boost in precision of RG and CS metric by
incorporating consistency verification, as the fidelity of generation is guaranteed by us-
ing consistency constraints to guide the training. The results illustrate the effectiveness
of using fact-guided training objectives for data-to-text generation.

4.5 Effect of Information Extraction
As the IE system is the core component to improve both content selection and surface
realization from fact aspect, we investigate the affect brought by different IE models.
Table 3 shows the performance on two relation classifiers with different methods to
learn the sentence representation sx introduced in Eq. 3. The Linear Classifier
refers to use a simple linear layer with average pooling method to learn the sentence
vector, and the CNN+LSTM Classifier refers to the ensemble method of using
both convolutional neural network and LSTM to represent the sentence. As shown in
in Table 3, Linear Classifier has only 46% precision and 32% recall on ex-
traction. This means that it extracts a large portion of incorrect records from the gen-
erated texts and misleads the rewards, as performances decrease compared to baseline
method PreSel and PreSel+CS. In contrast, a relatively strong relation classifier
CNN+LSTM Classifier is helpful for consistency verification and achieves much
better performance over Linear Classifier. The results also suggest that po-
tential improvements for our framework are available if better relation classifiers are
incorporated.
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Seq2Seq: ... The Raptors were led by DeMar DeRozan, who went 12-for-25 from the field and
0-for - 6 from the three-point line to score a game-high of 30 points, ... Kyle Lowry also had a
strong showing as well. He went 10-for-17 from the field and 0-for-6 from the three-point line
to score 18 points, while also adding 13 assists ...
FGT: ... DeMar DeRozan led the way for Toronto, as he tallied 30 points, five rebounds and
four assists on 12-of-25 shooting. Kyle Lowry was second on the team, with his 18 points,
six rebounds and 13 assists on 6-of-15 shooting. Jonas Valanciunas was the only other starter
in double figures ... Emmanuel Mudiay finished second on the team, totaling 25 points, six
rebounds and nine assists.
Ref: ... Emmanuel Mudiay had one of his best games of the season though, as he tallied 25
points, six rebounds and nine assists. Wilson Chandler continues to dominate off the bench, as
his 25 points and 10 rebounds add to his averages of 24 points and 9 rebounds over his last three
games...

Table 4: Example output from Seq2Seq, FGT and Reference. Text in red is inconsistent with
input, text in blue are consistent with input.

#Supp. #Contra. Error ratio(%)
Seq2Seq 3.65 1.15 23.96

FGT 5.02 1.22 19.55

Table 5: Average number of supported and contradicted words describing input records in the
generated text per sentence.

4.6 Qualitative Analysis

Case Study: We provide an example of generated text by our model, together with
the generation result by baseline model Seq2Seq and its corresponding reference text
in Table 47. It is clear to see that our proposed method FGT is able to generate more
facts that are also mentioned in the reference, such as one leading player “Emmanuel
Mudiay”. Moreover, our proposed method is less likely to produce mistakes describ-
ing the player scoring points and the number of shooting goals when compared to the
baseline method Seq2Seq (e.g. a large portion of content describing “Kyle Lowry” is
wrong). However, we notice that our method produces mistakes when requiring calcu-
lation among the input data (e.g. “Jonas was the only starter in double figures”). Such
information cannot be extracted by IE systems, therefore FGT made mistakes describ-
ing them. The results also suggest the limitation of the simple IE system.
Human Evaluation: We also conduct human evaluation to examine the words describ-
ing input records in generated texts. We randomly sampled 50 games from the test set
and randomly select one sentence from each game. Each sentence is rated by three
annotators who are familiar with NBA games. They are first required to identify text
spans which contain facts from generated texts and then check whether the text spans
are consistent or contradicted with the input data. Results in Table 5 show that our pro-
posed method generate more facts than vanilla sequence-to-sequence model and make
less mistakes in generation (i.e. the error ratio decrease absolute 4.38% compared to the
baseline method).

7 The complete game summary is relatively long, we presents a part of summary for brevity.
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5 Related Work

Data-to-text generation is a task of natural language generation (NLG) [9]. Previous
research has focused on individual content selection [12, 19, 7] and surface realization
[22]. For neural based methods, mei2016 uses a neural encoder-decoder approach with
a coarse-to-fine aligner for end-to-end training. Some have focused on conditional lan-
guage generation based on tables [27], short biographies generation from Wikipedia
tables [13, 5, 15]. duvsek16 use a neural encoder-decoder for generation and applies a
DA reranker to choose the most appropriate sentence. Chisholm17 uses a table-text and
text-table auto-encoder framework for Wikitext generation. Wiseman17 generate game
summaries and use the information extraction model as evaluation. Perez-Beltrachini18
model content selection explicitly using multi-instance learning to improve the gen-
eration quality. liunian propose a two stage method that first uses neural network to
generate template and then rewrite the content for generation. Most recently, ratish18
propose an end-to-end system that incorporate content selection and content planning
in generation. The difference of their work and ours lies in that our methods consid-
ers fact-level training objectives to improve the content selection and fidelity during
generation, while their work explicitly models the content selection and planning using
specific neural modules.

Our work is also related to use specialized rewards to improve specific tasks such
as dialogue [14], image captioning [20], simplification [29], summarization [18] and
recipe generation [4]. Our work first considers the consistency reward in generation by
making use of information extraction system.

6 Conclusion and Future Work

In this paper, we propose a new training framework to improve both content selec-
tion and surface realization from fact aspect by using information extraction (IE) based
methods. After extracting fact-guided signals from reference data, we propose a loss
function to directly optimize content selection with these signals. Moreover, to avoid
factual contradictions between the generated texts and its pairing input data, a novel
IE based verification module is incorporated into the training framework. Experimental
results show that our method outperforms the state-of-the-arts neural encoder-decoder
models in both automatic and human evaluations. In the future, we will generalize our
model to other domains.

References

1. Angeli, G., Liang, P., Klein, D.: A simple domain-independent probabilistic approach to
generation. In: EMNLP (2010)

2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align
and translate. ICLR (2015)

3. Barzilay, R., Lapata, M.: Collective content selection for concept-to-text generation. In:
EMNLP (2005)
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