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Abstract. Shared-private models can significantly improve the performance of
cross-domain learning. These methods use a shared encoder for all domains and
a private encoder for each domain. One issue is that domain-specific knowledge
is separately learned, without interaction with each other. We consider tackling
this problem through a shared-private LSTM (SP-LSTM), which allow domain-
specific parameters to be updated on a three-dimensional recurrent neural net-
work. The advantage of SP-LSTM is that it allows domain-private information to
communicate with each other during the encoding process, and it is faster than
LSTM due to the parallel mechanism. Results on text classification across 16
domains indicate that SP-LSTM outperforms state-of-the-art shared-private ar-
chitecture.
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1 Introduction

When faced with multiple domains datasets, multi-task learning, as an effective ap-
proach to transfer knowledge from one text domain to another [1,2,3,4,5,6,7], which
can improve the performance of a single task [8], has been paid much attention by re-
searchers. In recent years, with the rise of deep learning, the neural-based model for
multi-task learning has been widely applied as a common technique in many tasks
of natural language processing. Such as, sequence tagging [9,10], syntactic parsing
[6,11,12,13,14], named entity recognition [7,15], text classification [8,16,17], etc. Com-
pared with discrete representations, the neural-based model can allow efficient knowl-
edge sharing across more than two domains.

It has been shown that, however, the vanilla multi-task learning does not always
yield benefit between different NLP tasks [21,22]. And even sometimes, the optimiza-
tion of one task can reduce the performance of other tasks. There has been an investi-
gation into which tasks are more “compatible” with each other in a multi-task learning
environment, therefore, the transfer learning can only be conducted between selected
tasks [23,24]. Another different line of work tries to solve the problem from a modeling
perspective, which is to learn common knowledge to share between tasks while keeping
task-specific knowledge private [12,25,26,27].
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Fig. 1: Shared-private models.

As shown in Fig. 1(a), multi-domains training model [18,19] is introduced. A set
of shared parameters are used as a general extractor, followed by an output layer of
each domain. Given an input, a shared representation is generated, which is passed a
private output layer with domain-specific parameters. And in the work of [20] (Fig. 1
(b)), a self-attention of each domain is used to learn domain descriptor vectors based
on the general representation. Connecting domain descriptor vectors and the shared
representation as the final sentence representation for each sentence. These models take
a set of parameters for a general extractor, and a set of parameters of each domain is
used to distinguish private information. However, a limitation is that they only use an
output layer for each domain, and sentence vectors are from the same domain-agnostic
representation, resulting in weak utilization of domain knowledge. Therefore, under the
circumstances, it is hard to ensure that the shared extractor can fully extract domain
knowledge, the final outputs thus are difficult to complete the task.

One state-of-the-art system for multi-task learning, shown in Fig. 1 (c), is a standard
shared-private network [8] with common parameters shared across domains, as well as
a set of private parameters for each domain. Given an input, both the shared and the
private parameters are used for predicting the output. The set of shared parameters are
regularized to remove domain-dependent information. To this end, adversarial training
is typically used, by maximizing the cross-entropy in predicting the input domain with
the shared parameters.

This method separates domain-specific information from domain-common informa-
tion by adding model parameters. The approach, however, transfers knowledge across
domains mainly through shared parameters that represent common knowledge across
all domains but do not represent more fine-grained similarities across certain subsets of
domains. Furthermore, multiple sets of LSTM are used, which not only has a number
of model parameters that scale with the number of domains but also its computation is
non-parallel because of the inherent sequential nature endows of LSTM. Accordingly,
the method may be less useful when the number of domains is very large. Besides that,
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these models do not dynamically model domain-specific and domain-common infor-
mation inside the encoder.

As Fig. 1 (d) draws, we consider a new solution for addressing these issues, that is,
by using a shared-private LSTM (SP-LSTM) to extract both the domain-specific and
the shared representation simultaneously, which allows domain-private and domain-
common representations dynamically interact with each other during the encoding pro-
cess. Given an input, SP-LSTM can internally compute both shared and private repre-
sentations owing to the shared-private paradigm [8]. The main idea is to model hidden
states of all words with the domain knowledge at each recurrent step, and the state is
able to get the knowledge from domain-private and domain-common. At each step, each
sentence has a single state, which is composed of word-level states and two sentence-
level states. And each state is updated recurrently by exchanging information between
respective contexts for learning knowledge of local and non-local contexts. Therefore,
all states can be computed in parallel as drawn Fig. 2.

The results on a 16-domain classification task show that our method is superior
to the standard shared-private model, and gives the best accuracy compared with other
methods in the literature. Our code is released at https://github.com/haiming-wu/
SP-LSTM.

2 Related Work

Multi-domain Learning The work of jointly learning multiple domains can improve
generalization proposed by [18,19]. A general encoder is used for all domain, and mul-
tiple output layers for prediction. Another work [20] adopts a general network with
shared sentence representation, and multiple sets of parameters of attention to better
capture domain characteristics. Our work is similar to theirs, but we have a set of
shared word-level parameters for computing each word-level state, and multiple sets
of domain-specific parameters are used to exchange sentence-level states. And domain-
specific sentence state is used to update word-level states within a sentence.

Adversarial training Adversarial network is first used for generative model [28],
and in the work [8], they take adversarial training to separate domain-common features
from separate domain-specific features. A task discriminator is used to map the shared
representation of sentence to a probability distribution, and estimate the task label of
the sentence. Nevertheless, the shared representation from the shared encoder does not
want to be identified. Formally, it is transformed into a minimax problem. Finally, the
shared domain information is stored in the shared parameters that do not contain any
domain-specific knowledge. In similar spirits, we adopt adversarial training to ensure
the shared sentence-level parameters do not store domain-specific information.

Sentence-state LSTM Sentence-state LSTM [31](SLSTM) is an alternative re-
current neural network structure. SLSTM views the whole sentence as a single state,
which consists of sub-states for individual words and a whole sentence-level state. And
states can be updated recurrently by exchanging information between their contexts.
SP-LSTM adopts the same calculation mechanism as SLSTM, and captures the shared
and domain-specific information by setting two sentence-level states.

https://github.com/haiming-wu/SP-LSTM
https://github.com/haiming-wu/SP-LSTM
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3 Setting

Task Input a sentence s = {w1, w2, ..., wn}, where wi is the i-th word, n is the number
of words and all word comes from a vocabulary V . The goal is to build a model F ,
which can predict the sentiment label y ∈ {0, 1} as a binary classification task.

Text Classifier Firstly, We map wordwi to an embedding xi by a embedding matrix
R|V |×h, where |V | is the size of vocabulary V , h is the hidden size, the sentence is
thus mapped into x = {x1, x2, ..., xn}. Then, encoder is used to represent the sequence
x as a representation, which can be expressed as follows:

h = Encoder(x,θ) (1)

where h denotes the representation of output, θ denotes parameters.
Secondly, the representation h is passed into a softmax classification layer:

ŷ = softmax(Wch+ bc) (2)

where ŷ is the prediction probability distribution, Wc, bc are weight and bias term,
correspondingly.

Training We train the model on a specified training corpusDtra by minimizing the
cross-entropy between the predicted distribution ŷ and the true distribution y:

Lloss = −
|Dtra|∑
i=1

yi log(ŷi) (3)

where |Dtra| is the size ofDtra, yi and ŷi are distributions about i-th sample.
Multi-domain Learning Setting: Given datasets with multiple domains, multi-

tasking learning attempts to investigate the correlation between these related domains
to improve the performance of each dataset. Suppose there are m domains {Di}mi=1,
and each of them comes from a domain i. Dk contains |Dk| data points (skj , dk, y

k
j ),

where j ∈ {1, 2, ..., |Dk|}, skj is a sequence includes
∣∣sij∣∣ words {w1, w2, ..., w|si

j|},
dk is a domain label (since we use 1 to m to number each domain, dk = k) and ykj
indicates the sentiment label (e.g. ykj ∈ {0, 1} for binary sentiment classification). The
task is to learn a classification function F trained on multiple source domain which will
be used for each domain.

4 Method

In this paper, we propose a novel recurrent neural network for multi-task learning,
namely, shared-private LSTM (SP-LSTM). As the name suggests that shared param-
eters are learned through all domains, while private parameters for their own domain.
The architecture of our proposed model is illustrated in Fig. 2, which shows that the
model mainly has two parts: encoding network of SP-LSTM, regularizer by adversarial
training. In the following sections, we will describe each part in detail.
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Fig. 2: Shared-private LSTM.

4.1 Shared-private LSTM

Shared-private LSTM (SP-LSTM) is designed for multi-task learning, which has three
parts at each recurrent step t: hidden vectors of word-level, domain-specific and the
shared sentence states. When calculating each state, word hidden state hi extracts syn-
tactic and semantic information for word wi under the sentential context, private state
gk extracts knowledge for the whole sentence from domain k and shared state gc ex-
tracts the common knowledge for all the whole sentence. Based on the previous work,
we set < s >,< /s > at both ends of each sentence. The hidden state at time step t
thus can be denoted by:

Ht = 〈ht0,ht1, ...,htn+1, g
t
k, g

t
c〉 (4)

where hti denotes the hidden state for each word wi and gtk, g
t
c are sentence hidden

states, the former denotes domain-specific for domain k, the latter is common represen-
tation.

SP-LSTM updates all states with a recurrent state transition process, which enriches
the state representations incrementally. Then we set h0

i = xi, and g0k, g
0
c all are the

average of h0. At the recurrent step from time t − 1 to t, the state transitions of word-
level from ht−1i to hti, and the exchange of the sentence-level from gt−1k to gtk and
gt−1c to gtc. Besides that, current cell cti, c

t
k, c

t
c are used to complete this transition of

wi, g
k, gc respectively as simple as LSTM.

Word-level hidden As shown in Fig. 2, the solid green lines identify that each hid-
den vectorhti is computed based on the vector of xi, the hidden vectorsht−1i−1,h

t−1
i ,ht−1i+1

under the sentential context and sentence hidden vectors gt−1k , gt−1c . At the same time,
seven gates are utilized to balance the knowledge: iti is a input gate to restrict the orig-
inal information of wi, lti,f

t
i , r

t
i are gates that control information flow from hidden

vectors ht−1i−1,h
t−1
i ,ht−1i+1 . kti is a gate controlling information flow from sentence hid-

den vector gt−1k of domain k. sti is a gate that controls information flow from gt−1c ,
which denotes the influence of common information on hti. o

t
i is an output gate from

the cell state cti to hidden state hti.
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The process can be formally expressed as follows:

ξti = [ht−1i−1,h
t−1
i ,ht−1i+1]

îti
l̂ti
f̂ ti
r̂ti
k̂ti
ŝti
ôti


= σ




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Ws

Wo
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ξti +


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Or
Ok
Os
Oo


xi +



Ui
Ul
Uf
Ur
Uk
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Uo


gt−1k +



Vi
Vl
Vf
Vr
Vk
Vs
Vo


gt−1c +



bi
bl
bf
br
bk
bs
bo




uti = tanh(Wuξ

t
i +Ouxi +Uug

t−1
k + Vug

t−1
c + bu)

iti,l
t
i,f

t
i , r

t
i ,k

t
i , s

t
i = softmax(̂iti, l̂

t
i, f̂

t
i , r̂

t
i , k̂

t
i , ŝ

t
i)

cti = l
t
i � ct−1i−1 + f

t
i � ct−1i + rti � ct−1i+1 + k

t
i � ct−1k

+ sti � ct−1c + iti � ut−1i

hti = o
t
i � tanh(cti)

(5)

where ξti is the concatenation of hidden vectors of a context window. The values of
iti, l

t
i,f

t
i , r

t
i ,k

t
i and cti are normalized so that the sum of them is 1. θw = {Wx,Ux,Vx,

bx}(x ∈ {i, l, f, r, k, s, u, o}) are model parameters that will be shared by all domains.
σ is the sigmoid function.

Note that the representation gt−1k of private is used to update the state of each word,
so that domain-specific knowledge is allowed to be captured during encoding. Further-
more, all the parameters θw are shared across all domains.

Domain-specific Sentence State Thereafter, gtk, g
t
c are domain-private and shared

hidden representation. As Fig. 2 draws, blue dashed lines denote the calculation process
from gt−1k to gt−1c . Besides that, the values of gtk, g

t
c both are computed based on the

values of ht−1i for all i ∈ [0, n+ 1]. The formulas are formally presented as follows:

h̄ = avg(ht−10 ,ht−11 , ...,ht−1n+1)

f̂ tki = σ(Wfkg
t−1
k +Ufkh

t−1
i + bfk)[̂

itk, ô
t
k

]
T = σ(

[
Wik,Wok

]T
gt−1k +

[
Uik,Uok

]T
h̄+

[
bik, bok

]T
)

f tk0, ...,f
t
k(n+1), i

t
k = softmax(f̂ tk0, ..., f̂

t
k(n+1), î

t
k)

ctk = itk � ct−1k +

n+1∑
i=0

f tki � ct−1i

gtk = otk � tanh(ctk)

(6)

where f tk0,f
t
k1, ...,f

t
k(n+1) and itk are gates that control the information from ct−10 , ct−11 ,

..., ct−1n+1 and ct−1k , respectively, and they are normalized. otk is an output gate of gtk. The
parameters θk = {Wxk, Uxk, bxk, x ∈ {i, f}} are private of the domain k.
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Shared Sentence State Subsequent to that, gtc is calculated with the calculation
process is similar to that of gtk, which denoted by green dashed lines of Fig.2.

f̂ tci = σ(Wfcg
t−1
c +Ufch

t−1
i + bfc)[̂

itc, ô
t
c

]
T = σ(

[
Wic,Woc

]T
gt−1c +

[
Uic,Uoc

]T
h̄+

[
bic, boc

]T
)

f tc0, ...,f
t
c(n+1), i

t
c = softmax(f̂ tc0, ..., f̂

t
c(n+1), î

t
c)

ctc = i
t
c � ct−1c +

n+1∑
i=0

f tci � ct−1i

gtc = o
t
c � tanh(ctc)

(7)

where f tc0, ...,f
t
c(n+1) and itc are gates, and they are normalized. otc is the output gate

for gtc. θc = {Wxc, Uxc, bxc, x ∈ {i, f}} are model parameters shared with all domains.
At last, we take the tuple (gTk , g

T
c ) as the output of SP-LSTM at the last time step

T . Then, we adopt SP-LSTM to encode a sequence xkj , which is described as follows:

(hkj , s
k
j ) = (gTk , g

T
c )j = SP-LSTM(xkj ,θw,θk,θc) (8)

where hkj and skj are the final representations of domain-specific and the domain-
common.

The difference between SP-LSTM and other RNNs (LSTM, Bi-LSTM, GRU) is
due to their different recurrent states. The traditional model RNNs only uses one state
to represent the sequence from the beginning to a certain word, While SP-LSTM uses
a structural state to represent the full sentence, which consists of two sentence-level
states and n+ 2 word-level states, simultaneously. Different from RNNs, hti is used to
represent wi at each step t. As t increases from 0, each word-level and sentence-level
states are enriched with increasingly deeper context information.

From the perspective of multi-task learning, RNNs transfers knowledge from one
end of the sentence to the other. Accordingly, on the one hand, the number of time steps
scales with the size of the input, and on the other hand, RNNs can not capture shared
and private knowledge simultaneously. In contrast, SP-LSTM we proposed not only
allows bi-directional information flow at each word simultaneously, but also allows it
between sentence-level state and every word-level state. At each step, each hi captures
an increasingly larger n-gram context, and they will be used for communication between
gk and gc. So that SP-LSTM is able to dynamically capture the shared and private
knowledge. Then, the number of recurrent steps of SP-LSTM is decided by the end-task
performance rather than the sentence size, and it is more suitable for the representation
of multi-domain.

4.2 Regularizer: ADV

Adversarial Training Inspired by the generative adversarial networks (GAN) [28], we
incorporate adversarial networks as a regularizer to maintain the common information
which is stored by common parameters θc.
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In theory, GAN is used to simulate a distribution Pg(x) that is similar to the real data
distribution Pdata(x), GAN thus builds a generative network G and a discriminative
model D that check whether the input is real data, and then, the generative network
G will be trained to generate better samples that are similar to the real data, which
indicates that the data distribution Pg(x) generated by the generative network tends to
be consistent with the distribution Pdata(x) of the real data. It is formally expressed as:

LAdv = min
θG

max
θD

(Ex Pdata
[logD(x)] + Ez p(z)[log(1−D(G(z))]) (9)

where θG, θD are parameters of generative network and discriminative model respec-
tively. From the optimization formula, the negative cross-entropy is used as a loss func-
tion. And the aim of G is generating a sample that D do not know whether it is real
data, so the output from the maximum optimizer is minimized.

Therefore, adversarial training can be applied in our model to optimize parameters
θc and θk. So a softmax function is used as task discriminator to estimate which
domain the input data comes from. Formally:

D(skj ,θD) = softmax(WDs
k
j + bD) (10)

where D(skj , θD) is the prediction probability distribution of domain label, θD =
{wD, bD} are model parameters.

Then, we define an adversarial loss Ladv with minimax optimization function:

Ladv = −max
θc

(min
θD

m∑
k=1

|Dtra
k |∑
j=1

dk log[D(skj , θD)]) (11)

where Ladv is minimized the cross-entropy of domain label to fine-tune discriminative
model, but maximized for θc of the common model parameters. In our implementation,
we use the control gradient method to complete the above calculation.

The Loss Function of Model Considering that knowledge of each sentence is dis-
tributed between the shared and private representations, so the private vectors are joined
by the common one as the final representation. Then, we take a softmax function to
predict the probability distribution ŷkj of input skj likes Equation (2):

ŷkj = softmax(Wtk[h
k
j , s

k
j ] + btk) (12)

The loss Ltext of text classification can be computed as:

Ltext = −
m∑
k=1

|Dtra
k |∑
j=1

ykj log(ŷ
k
j ) (13)

where, ykj denotes the real probability distribution.
To sum up, the training of Ltext is straightforward, its goal is to perform better

within its own domain. The adversarial loss Ladv has two targets: not only helps the
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Fig. 3: Average accuracies with various window sizes and steps on four review development datas

main task achieve higher accuracy, but also keeps the common features away from
across private features of each domain. Thus, the total loss function as:

L = Ltext + λLadv (14)

where λ is the hyper-parameter of the regularizer Ladv .

5 Experiments

5.1 Datasets and Settings

Datasets. In this experiment, we compare the SP-LSTM with state-of-the-art multi-task
methods of text classification on FDU-MTL [8]. FDU-MTL is composed of reviews
from different domains, in which there are 14 Amazon domains and two movies review
domains from the IMDB and the MR datasets. And we use the original split [8]. All
experiments are conducted using a GeForce GTX 1080ti GPU with 11GB memory.

Hyperparameters Glove 200-dimensional embeddings are adopted to initialize the
word embeddings for all of the models, and embeddings are fine-tuned during model
training for all tasks. Dropout [29] is applied to embedding hidden states and the output
of all encoder model, with a rate of 0.7. The Adam optimizer [30] is selected for all
models during the training process, with an initial learning rate of 0.0005. The batch
size is set to 4. The hyper-parameters λ and β are 0.05.

5.2 Development Experiments

We choose four development data (MR, books, camera, magazines) to investigate the
effect with different configurations of SP-LSTMs on average accuracies. Fig. 3 draws
average accuracies of SP-LSTMs with three kinds of window sizes against the number
of recurrent steps. As can be seen from Fig. 3, when the number of steps increases from
1 to 12, accuracies are subject to certain fluctuations, and generally increase before

https://nlp.stanford.edu/projects/glove/
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Table 1: Results on the FDU-MTL dataset: the training corpus contains all domains
Model LSTM LSTM LSTM+ DSAM SP-LSTM+ SP-LSTM SP-SLSTM

+DO +ADV ADV+Diff ADV+Diff +ADV
Apparel 83.50 86.00 87.25 85.00 88.00 89.50 88.75

Baby 86.75 88.00 87.00 90.00 89.75 89.75 90.75
Books 85.75 84.50 86.25 84.50 88.25 88.50 89.00

Camera 89.25 89.00 88.25 89.50 91.00 91.00 91.50
Electronics 84.75 85.75 85.75 86.25 88.25 87.75 89.75

DVD 85.25 85.75 86.00 87.25 87.50 88.50 88.75
Health 88.75 88.00 87.50 89.25 87.25 90.75 90.00
IMDB 85.25 83.00 86.25 86.75 87.00 85.75 85.75

Kitchen 84.25 85.50 87.25 90.00 90.75 88.50 88.50
Magazines 90.50 92.25 93.25 93.50 94.25 94.00 94.00

MR 74.75 74.75 74.75 77.25 76.50 74.00 76.25
Music 82.75 84.25 83.25 82.25 85.25 84.75 85.25

Software 86.50 87.50 83.75 86.75 90.00 89.75 90.75
Sports 86.50 85.50 86.00 89.25 90.25 89.50 90.00
Toys 86.00 85.75 89.75 89.25 89.00 91.00 88.75
Video 84.00 85.50 83.75 87.00 89.50 88.75 88.75

Avg Acc. 85.28 85.69 86.00 87.11 88.28 88.23 88.53

reaching a maximum value, and then shows a downward trend. It indicates that the
effectiveness of recurrent information exchange in SP-LSTM state transition.

Besides, there are no significant differences in the peak accuracies given by different
window sizes. Considering efficiency, we choose a window size of 1 and set the number
of recurrent steps to 10 according to Fig. 3.

5.3 Results & Analysis

Table 1 shows the final results using different multi-task learning strategies. LSTM+DO
denotes the model adopts a general encoder with LSTM, and multiple output layers for
prediction. We reproduce it with an average accuracy of 85.28%.

LSTM+ADV denotes the adversarial shared-private model [8]. they use multiple
LSTM to encode sentence from different domains, adversarial training (ADV) is adopted
to model parameters. And LSTM-ADV-Diff is their model by adding orthogonality con-
straints (Diff) that maximizes the difference between shared and private parameters. Our
implementation of LSTM-ADV+Diff gives an averaged accuracy of 86.00%, which is
comparable to 86.10% reported by themselves.

MSAM denotes the method [20] of learning domain descriptor vectors for multi-
domain training. Which learns a general sentence-level vector by Bi-LSTM, and adopts
self-attention to learn a domain-specific descriptor vectors. Then, the connecting of the
general and domain-specific vectors is passed domain-specific output layers. We rework
it with our dataset, and an average accuracy of 87.11% is given.

SP-LSTM+ADV+Diff represents the model of [8], but instead of multiple LSTM,
it encodes the sentence only with an SP-LSTM we proposed, which adds orthogonality
constraints as regularizer. As can be seen from Table 1, the average accuracy of 88.28%
is given, which significantly outperforms LSTM+ADV+Diff, indicating that SP-LSTM
is better at encoding in multi-task learning environment. Therefore, We take this method
as our baseline.

SP-LSTM denotes our method, which is utilized to represent sentence and give the
shared and domain-specific vectors. It gives an average accuracy of 88.23%, which
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significantly outperforms existing methods. This shows that SP-LSTM is suitable for
the encoding of multi-domain.

By further adding the adversarial training regularizer, the performance of SP-LSTM+
ADV increases to 88.53%, which shows the effectiveness of adversarial training under
our framework. However, the orthogonality constraints are not still useful since the
average accuracy of SP-LSTM+ADV+Diff model is 88.28%, which indicates that SP-
LSTM and orthogonality constrains are incompatible, and Diff can not help improve the
performance of SP-LSTM. Meanwhile, SP-LSTM+ADV gives the best reported results
in the literature.

In addition, the advantage of our method is that it runs faster. Under the same model
parameters as LSTM+ADV, the test time of our model was 8.30 seconds, while that of
LSTM+ADV was 9.62 seconds.

6 Conclusion

We investigate SP-LSTM for multi-domain text classification, which separates the domain-
specific and domain-common knowledge by using a set of shared word-level parame-
ters to encode word hidden states with domain knowledge, and using a set of shared
sentence-level parameters to extract the common information, using a set of domain-
specific parameters for storing private knowledge. Results on 16 domains show that our
method significantly outperforms traditional shared-private architectures for transfer
learning.
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2. Daumé III H. Frustratingly easy domain adaptation[J]. arXiv preprint arXiv:0907.1815, 2009.
3. Blitzer J, McDonald R, Pereira F. Domain adaptation with structural correspondence learn-

ing[C]//In Proc.EMNLP, 2006: 120-128.
4. Chen M, Weinberger K Q, Blitzer J. Co-training for domain adaptation[C]//Advances in neural

information processing systems. 2011: 2456-2464.
5. Blitzer J, Foster D P, Kakade S M. Domain adaptation with coupled subspaces[J]. 2011.
6. McDonald R, Petrov S, Hall K. Multi-source transfer of delexicalized dependency

parsers[C]//In Proc.EMNLP, 2011: 62-72.



12 F. Author et al.

7. Lin B Y, Lu W. Neural adaptation layers for cross-domain named entity recognition[J]. arXiv
preprint arXiv:1810.06368, 2018.

8. Liu P, Qiu X, Huang X. Adversarial multi-task learning for text classification[J]. arXiv preprint
arXiv:1704.05742, 2017.

9. Alonso H M, Plank B. When is multitask learning effective? Semantic sequence prediction
under varying data conditions[J]. arXiv preprint arXiv:1612.02251, 2016.

10. Ruder12 S, Bingel J, Augenstein I, et al. Sluice networks: Learning what to share between
loosely related tasks[J]. stat, 2017, 1050: 23.

11. McDonald R, Petrov S, Hall K. Multi-source transfer of delexicalized dependency
parsers[C]//In Proc.EMNLP, 2011: 62-72.

12. Braud C, Plank B, Søgaard A. Multi-view and multi-task training of RST discourse
parsers[C]//In Proc.COLING 2016, 2016: 1903-1913.

13. Rasooli M S, Tetreault J. Yara parser: A fast and accurate dependency parser[J]. arXiv
preprint arXiv:1503.06733, 2015.

14. Goodman J, Vlachos A, Naradowsky J. Noise reduction and targeted exploration in imitation
learning for abstract meaning representation parsing[C]//In Proc.ACL, 2016, 1: 1-11.

15. Cao P, Chen Y, Liu K, et al. Adversarial Transfer Learning for Chinese Named Entity Recog-
nition with Self-Attention Mechanism[C]//In Proc.EMNLP, 2018: 182-192.

16. Li S, Zong C. Multi-domain sentiment classification[C]//In Proc.ACL, 2008: 257-260.
17. Chen X, Cardie C. Multinomial adversarial networks for multi-domain text classification[J].

arXiv preprint arXiv:1802.05694, 2018.
18. Liu P, Qiu X, Huang X. Recurrent neural network for text classification with multi-task

learning[J]. arXiv preprint arXiv:1605.05101, 2016.
19. Nam H, Han B. Learning multi-domain convolutional neural networks for visual track-

ing[C]//In Proc.CVPR. 2016: 4293-4302.
20. Liu Q, Zhang Y, Liu J. Learning domain representation for multi-domain sentiment classifi-

cation[C]//In Proc.ACL, Volume 1 (Long Papers). 2018: 541-550.
21. Mou L, Meng Z, Yan R, et al. How transferable are neural networks in nlp applications?[J].

arXiv preprint arXiv:1603.06111, 2016.
22. Bingel J, Søgaard A. Identifying beneficial task relations for multi-task learning in deep

neural networks[J]. arXiv preprint arXiv:1702.08303, 2017.
23. Bollmann M, Søgaard A, Bingel J. Multi-task learning for historical text normalization: Size

matters[C]//Proceedings of the Workshop on Deep Learning Approaches for Low-Resource
NLP. 2018: 19-24.

24. Augenstein I, Ruder S, Søgaard A. Multi-task learning of pairwise sequence classification
tasks over disparate label spaces[J]. arXiv preprint arXiv:1802.09913, 2018.

25. Shi P, Teng Z, Zhang Y. Exploiting mutual benefits between syntax and semantic roles using
neural network[C]//In Proc.EMNLP. 2016: 968-974.

26. Søgaard A, Goldberg Y. Deep multi-task learning with low level tasks supervised at lower
layers[C]//In Proc.ACL. 2016, 2: 231-235.

27. Zhang M, Zhang Y, Fu G. End-to-end neural relation extraction with global optimiza-
tion[C]//In Proc.EMNLP, 2017: 1730-1740.

28. Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Advances in
neural information processing systems. 2014: 2672-2680.

29. Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural net-
works from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-
1958.

30. Kingma D P, Ba J. Adam: A method for stochastic optimization[J]. arXiv preprint
arXiv:1412.6980, 2014.

31. Zhang Y, Liu Q, Song L. Sentence-state lstm for text representation[J]. arXiv preprint
arXiv:1805.02474, 2018.


	Shared-private LSTM for Multi-domain Text Classification

