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Abstract. Traditional NLP model for readability assessment represents docu-
ment as vector of words or vector of linguistic features that may be sparse, dis-
crete, and ignoring the latent relations among features. We observe from data and 
linguistics theory that a document’s linguistic features are not necessarily condi-
tionally independent. To capture the latent relations among linguistic features, 
we propose to build feature graphs and learn distributed representation with Sta-
tistical Relational Learning. We then project the document vectors onto the lin-
guistic feature embedding space to produce  linguistic feature knowledge-en-
riched document representation. We showcase this idea with Chinese L1 reada-
bility classification experiments and achieve positive results.  Our proposed 
model performs better than traditional vector space models and other embedding 
based models for current data set and deserves further exploration. 

Keywords: Linguistic Feature Embedding, Statistical Relational Learning, 
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1 Introduction 

Document-level readability assessment is an important research aspect in linguistic 
complexity for many different languages.  It could be defined as measuring the com-
prehension difficulty perceived by humans when processing linguistic input at docu-
ment level. The majority of machine-learning assessment methods are based on the 
framework of supervised learning with human-designed linguistic features [1]. Alt-
hough such feature-driven classification models achieved some of the top performances 
that are hard to be transcended, their sparse and discrete characteristics did not take into 
consideration the latent relations among linguistic features. Recent development in 
readability assessment model learns word representation by encoding knowledge on 
word-level difficulty into word-embedding [2]. However, readability level does not re-
flect only at word-level complexity, but also at syntactic, structural, and discourse so-
phistication.  
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We propose, therefore, to learn linguistic feature embedding models that cover four 
categories (i.e. shallow features, syntactic features, POS features, and discourse fea-
tures) from their relation graphs to construct an enriched, dense, and low dimensional 
document representation for automatic readability assessment. 

In particular, based on our observation on the linguistic feature data, we hypothesize 
that the linguistic features that demonstrate high impact on readability differences con-
tain, among themselves, multiple types of correlation connected with latent linguistic 
factors. We illustrate our observation with the following examples: 

Table 1. Examples of linguistic feature relations and their latent factors. 

 Linguistic Feature 1 Linguistic Feature 2 Correlation Latent Factors 

1 Percentage of  
conjunctions 

Average height of 
parse tree Positive 

Complex parse tree 
contains more con-
junctions. 

2 Average number of 
characters per word 

Percentage of unique 
functional words Negative 

Length of Chinese 
functional word is 
short. 

3 Number of punctuation 
clauses per sentence 

Average number of 
unique idioms per  
sentence 

Neutral Unrelated 

 
In the above table, the two linguistic features and their relation form a triplet that 

could be explained with the latent factors of linguistic implications. For example, doc-
uments of low readability may have more complex discourse structures such that the 
percentage of conjunctions and the average height of parse tree are both large because 
complex parse trees may contain more conjunctions. In the second example, since Chi-
nese functional word is mostly composed of one or two characters, the higher the per-
centage of unique functional words within a document, probably the lower the average 
number of characters per word for that document.  Both features may affect document 
readability but in different directions. We propose to automatically infer these latent 
factors and the existence of relationships among linguistic features by applying the la-
tent feature model of Statistical Relational Learning (SRL) [3,4,5].   

We showcase this linguistic feature embedding (LFE) model in the area of Chinese 
L1 readability assessment.  By projecting the document representation vectors onto the 
space of linguistic feature embedding representation, we provide a linguistic 
knowledge-enriched and low-dimensional model that achieves better performance in 
readability prediction. 

2 Related Research 

In applying NLP technology for readability assessment, Sung (2015) evaluated 30 
linguistic features and classification model using primary school text books in tradi-
tional Chinese used in Taiwan [6]. Jiang et al. (2014) proposed classification model and 
feature sets for readability prediction using L1 primary school text books in simplified 
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Chinese. However, the features developed for Chinese are far from enough [7].   In 
their following work, Jiang et al. (2015) model word representation with their difficulty 
distribution in sentences and proposed a graph-based classification framework with 
coupled bag-of-word model [8]. Recently, Jiang et al. (2018) incorporated word-level 
difficulty from three knowledge source into a knowledge graph and trained an enriched 
word embedding representation [2]. However, the word-level difficulty knowledge did 
not distinguish source knowledge for L1 and L2 instruction. Besides, differences in 
document-level readability is not reflected solely on word-level complexity, but also 
contain discrepancy in syntactic, discourse, and structural sophistication. 

3 Methodology 

In this work, we propose a new linguistic feature embedding model to construct docu-
ment representation for readability assessment. Our overall research structure as illus-
trated in Figure 1 consists of four stages: feature design, feature relation graph and em-
bedding learning, document representation, and readability classification.  We discuss 
technology detail in this section.  

 
Fig. 1. Research structure 

3.1 Linguistic Features 

We designed 102 linguistic features of 4 categories: Shallow features, POS features, 
Syntactic features, and Discourse features. We cover the features used in Flesch index 
[9], Feng (2010) [10], Vajjala & Meurers (2012) [11], Todirascu (2016) [12], Qiu et al. 
(2017) [13] among many others as discussed in the Related Research section and 
adapted them for Chinese language. Please refer to Table 2 for feature descriptions. 
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For pre-processing, we use NLPIR† for word segmentation, LTP‡ platform for POS 
tagging, and named entity recognition, and NiuParser§ for syntactic parsing, grammat-
ical labeling, and clause annotation.  

 
Table 2: Summary of Linguistic Metrics 

Feature 
category Sub-category Features used in metrics 

Shallow Features 

Character common characters, stroke-counts 
Words words of different character length, 

Sentence sentence length by word count, n-gram count, and 
character count 

Document document length by character count and symbol 
count 

POS Features  adjective, functional words, verbs, nouns, content 
words, idioms, adverbs 

Syntactic Features 

Phrases noun phrases, verbal phrases, prepositional phrases 

Clauses independent clause, punctuation clause, dependency 
distance, word-count by punctuation clause 

Sentences sentence count, parse tree height, sentence depend-
ency distance 

Discourse Features Entity density entities, named entities, entity nouns, named entity 
nouns 

Coherence conjunctions, pronouns 
 

3.2 Features Graph and Translation-based Method 

In Statistical Relational Learning (SRL), the representation of an object can contain its 
relationships to other objects. Thus, the data is in the form of a graph, consisting of 
nodes (entities) and labelled edges (relationships between entities).  

A feature graph is a multi-relational graph, composed of the linguistic features as nodes 
and three types of relations as edges: the positive, negative and irrelevant correlations. 
An instance of edge is a triplet of fact (head feature, relation, tail feature). For example, 
the triplet of fact (percentage of conjunctions, positive correlation, average height of parse tree), 
represents a relation type of positive correlation between two linguistic features as head 
and tail features respectively. While the triplet of fact (average number of characters 
per word, negative correlation, percentage of unique functional words) represents a 
negative relation with the two linguistic features as head and tail connected by relation 
edge. We speculate that we could infer such a multi-relational graph for the linguistic 
features that impact document-level readability differences. 
 

 
† http://ictclas.nlpir.org/ 
‡ http://www.ltp-cloud.com/ 
§ http://www.niuparser.com/ 
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The translation-based approach has been proposed to model multi-relational data, 
which attempts to embed a multi-relational graph into a continuous vector space while 
preserving certain properties of the original graph. Generally, each entity h (or t) is 
represented as a k-dimensional vector h (or t) and relation r is characterized by the 
translating vector r. For example, in Trans E [3], given two entity vectors h,t and a 
translation vector r between them, the model requires h+r≈t for the observed triple 
(h,r,t). Hence, Trans E assumes the score function 

fr(h,t)=||h+r－t||2 

is low if (h,r,t) holds, and high otherwise. To differentiate between correct and incorrect 
triples, Trans E score difference is minimized using margin based pairwise ranking 
loss. Formally, we optimize the following function: 

 
with respect to the entity and relation vectors. The γ is a margin separating correct and 
incorrect triples. S+ is the set of all positive triples, i.e., observed triples in the graph. 
The negative set S－are randomly corrupting the correct triples, that is, for a given 
correct triplet (h,r,t), a negative triplet (h’,r,t’)is obtained by randomly sampling a pair 
of entities (h’,t’) from S+.  Then we get the set: 

 In this paper, we use Trans E to learn the linguistic feature embeddings on feature 
graphs. 

3.3 Document Representation with Linguistic Embedding 

With our hand-crafted linguistic features, we first design document representation 
model as vectors of discrete linguistic feature value. We also learn the embedding 
representation for each feature from their relation graph. Therefore, we project the 
document vectors onto the linguistic feature embedding space to obtain an enriched 
representation with linguistic feature embedding. Specifically, given a document vec-
tor 𝑑 = (𝑥%,			𝑥(,			 …	𝑥*			) where n is the number of linguistic features, 𝑥, is the value 
of the 𝑖./ feature for document d, and a linguistic feature embedding matrix L ∈ 𝑅*×4 
where m is the embedding dimension, we project the document vector d onto the lin-
guistic feature embedding space by taking a vector-matrix multiplication to form a 
new representation as: 𝑑. = (𝑙%, 𝑙(, …	𝑙4) where 𝑙, is the projected value of linguistic 
features at dimension i. 

4 Experiment 

We evaluate our proposed Linguistic Feature Embedding (LFE) model from the fol-
lowing perspectives. RQ1: Whether LFE is effective for readability assessment, com-
pared with using hand-crafted feature (HCF)? RQ2: Whether LFE can improve the 
performance of traditional readability assessment model with Bag of Word document 
representation? RQ3: Whether LFE is effective compared with other embedding-based 

max(0, ( ) ( ) ),
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representation model? We showcase our evaluation of LFE in the area of Chinese L1 
readability assessment.   

4.1 Data  

We provide a corpus for L1 readability assessment using textbooks from most 
widely used for primary school (Grades 1 through 6), secondary school (Grade 7 and 
8), and high-school (Grade 10) education from three publishers, (i.e., People’s Press, 
Jiangsu Education Press, and Beijing Normal University Press). We excluded play-
wrights, poetry, and classical literature to keep the genre of the text more simplistic and 
monotonous.  

Table 3: Data Statistics 
 

Grade 1 2 3 4 5 6 7 8 9 10 Total 
# of Docs 93 147 164 157 148 163 96 138 94 32 1232 

Percentage 7.6% 12.01% 13.4% 12.83% 12.09% 13.32% 7.84% 11.27% 7.68% 2.61% 100% 

 

4.2 Learning Linguistic Feature Embedding 

We use two types of feature graphs in the paper. The first type of feature graph is ob-
tained by learning the positive, negative and irrelevant correlations among linguistic 
features of 4 categories. We set the positive correlation between two linguistic features 
if the Pearson correlation coefficient is above 0.7, the negative correlation if the coef-
ficient is below－0.7 and the  irrelevant correlation if the coefficient is between 0.7 and 
－0.7. The second type of feature graph is obtained by using human annotation for 4 
categories linguistic features. In our experiments, we use 25 and 102 features of L1 for 
constructing the above two type of feature graphs. In training Trans E, the optimal pa-
rameters are determined by the validation set. After parameter tuning, we use the learn-
ing rate α for stochastic gradient descent at 0.01, the margin γ of 1, the embedding 
dimension k of 300, and batch size of 50.  

4.3 Models and Experiment Setting 

We have a total of 102 linguistic metrics for L1. We identify the features that are 
correlated with readability levels at 90%, 95%, and 99% confidence interval with linear 
regression. The 90% confidence interval gives us 25 out of 102. Our model compari-
sons with 95% and 99% confidence interval metrics produces similar results. We only 
present experimentation with the complete set of 102 features and the 90% interval set 
of 25 features. We use SVM and Logistic Regression as our multi-class classifiers to 
build predictive models for document-level readability.  

To represent documents, we use the following approaches: 
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25HCF and 102HCF: We use only the scores of 25 linguistic features at 90% con-
fidence interval to construct document vector representation. For 102HCF, we use the 
complete set of features. 

25LFE and 102LFE:  This is to represent documents by projecting 25-feature vec-
tors onto the 25 linguistic feature embedding space learned with Trans-E. For 102LFE, 
we use the complete set of features. 

25LFE-Anno: We have one of our coauthors, a linguistics Ph.D and professor, to 
manually annotate the pair-wise relations among the 25 linguistic features. We then use 
the annotated feature graph to learn feature embedding and then infer document repre-
sentation by taking a vector-matrix multiplication.  

BOW: This is the default baseline representation where each document is a vector 
of terms weighted with ltc variant of TF*IDF. 

BOW+25HCF, BOW+25LFE, BOW+25LFE_Anno, BOW+25HCF+25LFE, 
BOW+25HCF+25LFE_Anno, BOW+102HCF, BOW+102LFE, 
BOW+102HCF+102LFE: We append different sets of feature representation to the 
BOW vector for each document.  
     W2V_Emb: We use the word embedding [14] of 300-dimension trained with 
Wikipedia to represent each word. We use the word vector average to represent each 
document. 
     CNNF: We trained a CNN model [15] for predicting readability with epoch of 
100, batch size of 50, and learning rate of 0.1.  We use the hidden layer output as fea-
tures to represent document. For each document we have a 400-dimension vector rep-
resentation.  

For evaluating multi-class classification, we use Accuracy and Distance-1 Adjacent 
Accuracy. Adjacent-level Accuracy is often used in computational linguistics where 
predicting a text to be within one level of the true level label is still considered accurate 
[9]. According to our data distribution as shown in Table 4, the Majority Vote accura-
cies is 13.4%, and adjacent accuracy is 38.24%. With Uniform Random evaluation, we 
have a baseline of 10% accuracy and 30% adjacent accuracy. We perform 10-fold train-
ing-test cross-validation and paired two-tailed T-test for significance test. 

4.4 Results and Analysis 

To address RQ1, we compare hand-crafted feature representation and linguistic fea-
ture embedding as presented in Tables 4 and 5. We can see that compared with 25HCF, 
the LFE model performs significantly better with Logistic Regression (LR) in both ac-
curacy and adjacent accuracy, and with SVM in adjacent accuracy.  LFE performs sim-
ilarly as 25HCF in accuracy with SVM classifier.  Embedding learned with human an-
notation (25LFE-anno) performs significantly better than both hand-crafted model of 
25HCF and 25LFE which is inferred with machine-learning. When experimenting with 
the complete set of 102 features, the LFE model performs significantly better HCF with 
both classifiers and for both accuracy and adjacent accuracy. 

To address RQ2, we present results in Tables 6 and 7. Significant results are bolded. 
We can see that appending HCF features to the BOW vector achieves better results than 
BOW model alone. But, BOW+25LFE and BOW+102LFE performs even better than 
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augmenting with HCF. Furthermore, BOW+25LFE_Anno, which is embedding learned 
with human annotated relation provides us with the best performance in adjacent accu-
racy, and best accuracy when combined with 25HCF and BOW. We observe similar 
performance of LFE with 102-feature experiments. 

Overall, LFE model alone achieves significantly better performance for readability 
assessment. When combined with other HCF and BOW representation, it also contrib-
utes to the improvement in predictive performance. 

 
Table 4: Comparing Linguistic Feature Embedding (25LFE, 25LFE-Anno)  

with Hand-Crafted Feature (25HCF) 
 

Representation 
Model 25 HCF 25 LFE 25 LFE-Anno 

Classifiers Accuracy Adj. Accu. Accuracy Adj. Accu. Accuracy Adj. Accu. 
SVM 0.2637 0.6106 0.2638 0.6127 0.2627 0.6032 

LR 0.2394 0.5815 0.3259 0.7003 0.3381 0.71 

 
Table 5: Comparing Linguistic Feature Embedding (102LFE)  

with Hand-Crafted Feature (102HCF) 
 

Representation 
Model 102 HCF 102 LFE 

Classifiers Accuracy Adj. Accu. Accuracy Adj. Accu. 
SVM 0.2529 0.5398 0.2538 0.6466 

LR 0.2818 0.6223 0.3221 0.7063 

 

Table 6. Compare 25-feature LFE model with traditional models with BOW representation 

Representation Model Classifiers Accuracy Adjacent Accuracy 

BOW (baseline) 
SVM 0.377 0.7812 

LR 0.377 0.7546 

BOW+25HCF 
SVM 0.385 0.7764 

LR 0.378 0.7569 

BOW+25LFE 
SVM 0.4055 0.8067 

LR 0.3983 0.7788 

BOW+25LFE_Anno 
SVM 0.409 0.8091 

LR 0.4004 0.7821 

BOW+25HCF+25LFE 
SVM 0.4021 0.8058 

LR 0.3998 0.7775 

BOW+25HCF+25LFE_Anno 
SVM 0.4104 0.8084 

LR 0.399 0.7774 
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Table 7. Compare 102-feature LFE model with traditional models with BOW representation 

Representa-
tion Model 

BOW 
 (baseline) BOW+102HCF BOW+102LFE BOW+102HCF 

+102LFE 

Classifiers SVM LR SVM LR SVM LR SVM LR 

Accuracy 0.377 0.377 0.389 0.3817 0.4006 0.3908 0.3931 0.396 

Adjacent 
Accuracy 0.7812 0.7546 0.7836 0.7501 0.8012 0.7768 0.7917 0.7659 

 
Figure 4 presents experiment results for RQ3, where we compare LFE with two pop-

ular word-embedding based representation with LR as the classifier. We can see that 
25-LFE, 25LFE-Anno, and 102LFE all perform significantly better than other models 
based on CNN feature or word embedding feature. 
 

 

Fig. 4. Compare LFE model with other word-embedding models for readability assessment. 
Significant performance is bolded and underlined. 

5 Conclusions 

We present in this paper a model to learn distributed representation of linguistic features 
for readability assessment. Our assumptions include the following: 1) Distributed 
model could be extended to features beyond word-level differences for knowledge-en-
riched representation;  2) There may exist latent factors that connects linguistic features 
to form certain types of relationship; and 3) The similarities and inter-relations among 
the linguistic features and their membership to different feature categories demonstrate 
that the linguistic features possess the statistical properties of feature graphs of “ho-
mophily”, “block structure” and “global and long-range statistical dependencies”.  

We propose to automatically infer the multi-relations among linguistic features and 
project the document representations onto the linguistic feature embedding space.  We 
showcase the model implementation in the area of Chinese L1 readability assessment 
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with positive results. We hope to extend the current research on extra datasets and other 
types of latent factor models to refine and strengthen the linguistic knowledge informed 
representation models. 

 
Acknowledgements. This work was supported by National Social Science Fund 
(Grant No. 17BGL068). We thank Prof. Jianyun Nie and anonymous reviewers for 
their valuable suggestions and thoughtful feedback. We thank undergraduate students 
Zhiwei Wu, Yuansheng Wang, Xu Zhang, Yuan Chen, Hanwu Chen, Licong Tan, and 
Hao Zhang for their helpful assistance and support. 
 
References 
[1] Collins-Thompson, K.; Callan, J. A language-modelling approach to predicting 
reading difficulty. In: Proceedings of HLT-NAACL. Boston. (2004) 
[2] Jiang et al., “Enriching Word Embeddings with Domain Knowledge for Readabil-
ity Assessment.” In: Proceedings of COLING 2018, pages 366–378, (2018) 
[3]Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and Yakhnenko, O. Trans-
lating embeddings for modeling multi-relational data. In: Advances in Neural Infor-
mation Processing Systems. pages 2787–2795. (2013) 
[4] Lise Getoor , Ben Taskar, Introduction to Statistical Relational Learning (Adap-
tive Computation and Machine Learning), The MIT Press, (2007) 
[5] Judea Pearl, Probabilistic reasoning in intelligent systems: networks of plausible 
inference, Morgan Kaufmann Publishers Inc., San Francisco, CA, (1988) 
[6] Sung Y T, et al. Leveling L2 texts through readability: Combining multilevel lin-
guistic features with the CEFR. The Modern Language Journal 99(2): 371-391(2015). 
[7] Jiang et al., “An Ordinal Multi-Class Classification Method for Readability As-
sessment of Chinese Documents.” R. Buchmann et al. (Eds.): KSEM 2014, LNAI 
8793, pages. 61–72, (2014) 
[8] Jiang et al. A graph-based readability assessment method using word coupling. In: 
Proceedings of EMNLP 2015, pages 411–420. (2015). 
[9] Flesch R. A new readability yardstick. Journal of applied psychology, 32(3): 221 
(1948). 
[10] Feng L. Automatic readability assessment. Ph.D Thesis. The City University of 
New York, (2010). 
[11] Vajjala and Meurers. On improving the accuracy of readability classification us-
ing insights from second language acquisition. In Proceedings of the ACL 2012 BEA 
7th Workshop, pages 163–173. (2012) 
[12] Todirascu A, et al. Are Cohesive Features Relevant for Text Readability Evalua-
tion? In: Proceedings of COLING 2016, pages. 987-997. (2016). 
[13] Qiu, X., et al. Exploring the Impact of Linguistic Features for Chinese Readabil-
ity Assessment. In Proceedings of NLPCC, pages 771-783. (2017) 
[14] Tomas Mikolov, et.al. Distributed representations of words and phrases and their 
compositionality. In Advances in Neural Information Processing Systems, 3111–
3119. (2013) 
[15] Kim, Yoon. "Convolutional Neural Networks for Sentence Classification." arXiv 
preprint arXiv:1408.5882 (2014) 


