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Abstract. Representation learning of knowledge bases aims to embed
both entities and relations into a continuous vector space. Most existing
models such as TransE, DistMult, ANALOGY and ProjE consider only
binary relations involved in knowledge bases, while multi-fold relations are
converted to triplets and treated as instances of binary relations, resulting
in a loss of structural information. M-TransH is a recently proposed direct
modeling framework for multi-fold relations but ignores the relation-level
information that certain facts belong to the same relation. This paper
proposes a Group-constrained Embedding method which embeds entity
nodes and fact nodes from entity space into relation space, restricting the
embedded fact nodes related to the same relation to groups with Zero
Constraint, Radius Constraint or Cosine Constraint. Using this method,
a new model is provided, i.e. Gm-TransH. We evaluate our model on link
prediction and instance classification tasks, experimental results show
that Gm-TransH outperforms the previous multi-fold relation embedding
methods significantly and achieves excellent performance.

Keywords: Knowledge base - Representation learning - Multi-fold rela-
tion.

1 Introduction

Representation learning [7] has been proposed as a new approach for knowledge
base representation and inference. It embeds entities and relations of a knowledge
base into continuous vector space and preserves the structural information of
original relational data. The representation of entities and relations are obtained
by minimizing a global loss function involving all entities and relations. Compared
with the traditional logic-based inference approaches, representation learning

* This work is supported by the Science and Technology Program of Shenzhen of
China under Grant Nos. JCYJ20180306124612893, JCYJ20170818160208570 and
JCYJ20170307160458368.



2 Y. Huang, K. Xu et al.

shows strong feasibility and robustness in applications such as semantic search,
question answering, drug discovery and disease diagnosis.

Despite the promising achievements, most existing representation learning
techniques (such as TransE [1], DistMult [18], ANALOGY [9] and ProjE [12]
consider only binary relations contained in knowledge bases, namely triplets each
involving two entities and one relation. For example, “Donald J. Trump is the
president of America” consists of two entities “Donald J. Trump”, “America’
and a binary relation “president_of_a_country”. However, a large amount of the
knowledge in our real life are instances with multi-fold (n-ary, n > 2) relations,
involving three or even more entities in one instance (such as “Harry Potter is a
British-American film series based on the Harry Potter novels by author J. K.
Rowling”). A general approach for this problem is to convert each multi-fold
relation into multiple triplets with binary relations and learn the embedding of
each triplet using the existing Trans(E, H, R) methods. Thus, an instance with
a N-ary relation is converted to (J;[ ) triplets [I7]. Although such a conversion
is capable of capturing part of the structures of multi-fold relations [11], it
leads to a heterogeneity of the predicates, unfavorable for embedding. Wen et al.
[I'7] advocates an instance representation of multi-fold relations and proposes a
direct modeling framework “m-TransH” for knowledge base embedding. However,
m-TransH treats fact nodes the same as general entity nodes and ignores the
relation-level information that certain facts belong to the same relation.

In this paper, we first present a Group-constrained Embedding method
which embeds entity nodes and fact nodes from entity space into relation space,
restricting the embedded fact nodes related to the same relation to groups with
three different constraint strategies, i.e. zero constraint, radius constraint and
cosine constraint.

Then, using the Group-constrained Embedding method, we propose a new
model “Gm-TransH” for knowledge base embedding with multi-fold relations. In
terms of the three different constraint strategies, we advocate three variation of
Gm-TransH, i.e. Gm-TransH:zero, Gm-TransH:radius, Gm-TransH:cosine. We
conduct extensive experiments on the link prediction and instance classification
tasks based on benchmark datasets FB15K [I] and JF17K [I7]. Comparing with
baseline models including Trans(E, H, R) and m-TransH, experimental results
show that Gm-TransH outperforms the previous multi-fold relation embedding
methods significantly and achieves state-of-the-art performance.

The main contributions of our work are as follows:
(a) Present a Group-constrained Embedding framework for multi-fold relation

embedding, which embeds both entities and fact nodes into low dimensional
vector space, forcing the fact embedding to be close to their corresponding
relation vectors.

(b) We introduce three different types of group-constraints: Zero Constraint,
Radius Constraint and Cosine Constraint. Their merits and demerits are
analyzed empirically.

(¢c) We incorporate TransH model and propose a new model Gm-TransH and
three variants Gm-TransH:Zero, Gm-TransH:Radius and Gm-TransH:Cosine
for multi-fold relation embedding. Experimental results on link prediction
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and instance classification tasks have proven the effectiveness of the three
model variants.

(d) Clean the redundant data and generate a new subset G ¢qc¢ for the JF17K
datasets.

2 Related Work

2.1 Binary Relation Embedding

Most of the models proposed for knowledge base embedding are based on binary
relations, datasets are in triplet representation.

TransE [I] sets (h + 7) to be the nearest neighbor of ¢ when (h,r,t) holds,
far away otherwise. TransH [I6] is developed to enable an entity to have distinct
distributed representations when involved in different relations. TransR [§]
models entities and relations in distinct spaces and performs translation in
relation space.

Besides TransE, TransH and TransR, many embedding methods based on
binary relations are proposed, such as MultiKE [I9], RotatE [I4] and other
translation embedding methods(e.g. PTransE [7], TranSparse [6], KG2E [3]),
tensor factorization methods (e.g. LFM [4], HolE [10]) and neural network
methods (e.g. ProjE [12], Conv2D [2], NKGE [15], CrossE [20]) and so on.

2.2 Multi-fold Relation Embedding

For knowledge bases with multi-fold relations, S2C conversion and decomposition
framework [I7] are usually used. Then, multi-fold relations are converted to
triplets and treated as binary relations.

Wen et al. [I7] proposes m-TransH model with a direct modeling framework
to learn the embeddings of the entities and the n-ary relations, which generalizes
TransH directly to multi-fold relations. In m-TransH, the cost function f, is
defined by

2
b€ NM(B) (1)

2

FO= > ar(p)Pu,(tp) +br

pEM(R;)

Where M (R,) specifies a set of entity roles involved in relation R,., N denotes
all entities in a KB, R, on N with roles M(R,) is a subset of NM(£r) 't is an
instance of R, and t(p) indicates entity of role p. P, (z) is the function that
maps a vector z € U to the projection of z on the hyperplane with normal vector
n., namely,

P, (2) = z —n, zn, (2)

n, and b, are unit length orthogonal vectors in U, a, € RM(Br) is a weighting
function that

Y. arlp)=0 (3)

pEM(R;)
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Fig. 1. Illustration of group-constrained embedding for multi-fold relations.

3 Group-constrained Embedding

3.1 Framework

Our framework for modeling multi-fold relations are shown in Figure 1. The
knowledge extracted from raw text form instances of multi-fold relations in
knowledge bases, we introduce fact node to represent each instance of particular
relation and link the entities of the instance to corresponding fact node. These
fact nodes may share some roles (i.e. entities) and relations. For example, in
Figure 1, Fact2 and Fact4 share the same relation “born”, i.e. both Donald
Trump and Ivanka Trump were born in New York. We embed both entities and
fact nodes into low dimensional vector space and let the embeddings of fact nodes
of the same relation to be close, generating a group for each relation type, while
groups of different relation to be far away from each other.

3.2 Optimizing Method

Converting multi-fold relations to binary relations results in a heterogeneity of the
predicates, unfavorable for knowledge base embedding. M-TransH [I7] treats fact
nodes the same as general entity nodes and ignores the relation level information
that certain facts belong to the same relation. Here, we propose an optimizing
method called Group-constrained Embedding which embeds entity nodes and
fact nodes from entity space into relation space, restricting the embedded fact
nodes related to the same relation to a specific group. The cost function f, is
defined by Eq.(4):

@)= > ar(p)Pn,(t(p) +br|| +B+gr(t),t € NV (4)

pPEM (Ry) 2

Where g,(t) is a penalty term used to restrict the embedded fact vectors
and relation vectors. § is a decimal factor between 0 and 1 used to balance the
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Fig. 2. Tllustration of the three different strategies of group-constraint for multi-fold
relation embedding in knowledge bases. We embed entities, facts and multi-fold relations
from original vector space (i.e. graph A) to continuous vector space (i.e. graph B, C,
D) using Zero Constraint, Radius Constraint or Cosine Constraint methods. Orange
square indicates multi-fold relation, green circle indicates instance (i.e. fact node), blue
triangle indicates general entities.

penalty and the loss. For simplicity, we use the offset vector b, to represent the
relation vector and measure the distance between fact embedding and relation
vectors.

To solve the penalty term g,.(t), we exploit three different types of constraints
as below:

e Zero Constraint

Zero constraint adopts a rigorous constraint on the embedded fact vectors,
and forces the Euclidean distance between the embedded fact vector Py, (€fqct)
and its corresponding relation vector b, to be zero. Namely,

9r(t) = llby = P, (efact) 5 .t € NV (5)

This forces the fact embedding to be relation vector exactly, it can reduce the
problem solving space and accelerate the model convergence. However, we argue
that this rigorous constraint may reduce diversity and expressivity of the model.

e Radius Constraint

Radius constraint uses a trick to preserve model’s diversity and expressivity,
it adopts a relaxed constraint on the Euclidean distance between Py, (eqc¢) and
b,. If the fact is an positive instance of the relation r, we force the distance to be
smaller than a very small positive number €, otherwise much bigger than €. In
this way, we define g, (t) as Eq.(6),

g-(t) = max(0, [[b: — P, (eface) ||, — €), ¢ € N (6)

e Cosine Constraint
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Considering the drawback of Euclidean distance that each dimension con-
tributes equally to the distance, we propose cosine constraint that exploits cosine
distance as measurement and minimize the cosine distance of the embedded fact
vector P, (efqct) and its corresponding relation vector b,. Namely,

gr(t) = cos (by, Py, (efact)) , t € NME) (7)

As depicted in Figure 2, we present an illustration of the three different types
of group-constraints, which consists of 4 subgraphs, i.e. subgraph A, B, C and
D. The first subgraph A shows the structure of the entities, facts and multi-fold
relations in the original vector space. The other three subgraphs (i.e. subgraph B
to D) show the Group-constrained Embedding of multi-fold relations with Zero
Constraint, Radius Constraint and Cosine Constraint methods respectively.

In the original vector space in graph A, we have a 3-ary relation “relationl”
(indicated by orange square) and two instances (indicated by green circle) with
FACT-ID “factl” and “fact2”. Each of the two instances link with other three
general entities (indicated by blue triangle) through different roles (i.e. rolel,
role2 and role3). We present 4 general entities el, e2, e3 and e4 in graph A. We
can see that factl and fact2 share the same entities on “rolel” and “role2”,
differentiating on “role3”.

In graph B, C, and D, we indicate the embedded vectors of instances and
entities by adding a single quote to their names, e.g. the embedded vector of
fact node “factl” is marked as “factl’””. We indicate the embedded multi-fold
relation “relationl” the same as it in the original vector space since they are the
same vector and without a mapping operation.

Graph B shows the result of Group-constrained Embedding with Zero Con-
straint. As we force the Euclidean distance between the embedded fact vector
“factl”, “fact2’” and its corresponding relation vector “relationl” to be zero,
these three vectors fall nearly into the same point in the embedded vector space.
When using the radius constraint, as is shown in graph C, “factl’”” and “fact2"”
fall into a hypersphere, “relationl” acts as the center of the sphere and the
radius € is a decimal number between 0 and 1. We can see that Radius Constraint
degenerates to Zero Constraint when setting € to 0. In graph C, we use the cosine
distance as measurement, thus the angles of embedded vector “factl’”, “fact2"”
and “relationl” are nearly the same, falling onto a straight line when projected
to a hyperplane.

3.3 Proposed Model

Based on the Group-constrained Embedding method, we incorporate TransH
model and propose a new multi-fold relation embedding model Gm-TransH as
below, which consists of three variations corresponding to the three different
types of constraints.

e Group-constrained m-TransH (Gm-TransH)

To solve the problem of m-TransH described above, we propose a new mod-
el that extends m-TransH to make the embedded fact vectors close to their
corresponding relation vectors on the hyperplane.

In detail, we use the Radius Constraint for example, the embedded fact vectors
that belong to the same relation lie in one hypersphere, the relation vector act
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as the centre of the hypersphere, and the radius is a constant e. Namely, if a fact
is an instance of a relation, the distance between the embedded fact vector and
the relation vector is forced to be smaller than € on the hyperplane, otherwise
much bigger than e.

We call the above Group-constrained m-TransH model with Radius Constraint
Gm-TransH:radius.

We can also use the Zero Constraint method and the Cosine Constraint method
as substitute of the penalty term g,.(t). Namely, with Zero Constraint method,
the model Gm-TransH sets g,(t) to Eq.(5) and denoted as Gm-TransH:zero.

Similarly, we use Gm-TransH:cosine to specify the Group-constrained m-
TransH model with Cosine Constraint and set g,(t) to Eq.(7).

3.4 Complexity Ayalysis

In Table 1, we compare the complexities of several models described in Related
Work and the Gm-TransH models. For binary relation embedding models like
SLM, NTN and Trans(E, H, R, D), we conduct a S2C conversion [I7] for each
instance with multi-fold relation, resulting in a collection of triplets with binary
relations, which are appropriate for these models.

As listed in Table 1, the number of parameters of Gm-TransH models are
same as m-TransH and lower than the binary relation embedding models. The
time complexity (number of operations) of Gm-TransH models are higher than
m-TransH and close to the TransH model.

As a matter of fact, the training time of the three different Gm-TransH:(radius,
zero, cosine) models on the JF17K datasets with a dimension of 25 are about
45, 42 and 35 minutes respectively on a 32-core Intel Core 15-8300H 2.3GHz
processor, which are close to transH and m-TransH(35 minutes) models.

4 Experiments and Analysis

4.1 Datasets

JF17K We use a cleaned and extended JF17K datasets [I7] in our experiments.
The original JF17K datasets were transformed from the full RDF formatted
Freebase data. Denote the fact representation by F. Two datasets in instance
representations for multi-fold relations, i.e. T'(F) (denoted by G), T;q(F) (denoted
by G;q) and a dataset in triplet representation for binary relations, i.e. S2C(G)
(denoted by Gga.) were constructed, resulting in three consistent datasets, i.e. G,
Gid and GSQC.

However, as the provided JF17K datasets include many redundant samples,
which may affect the results, we cleaned up the repetitive data at the beginning.
In addition, the fact nodes (or CVT nodes) of a great quantity of instances
were missing in the G;; dataset. We found the fact nodes indicated by role
FACT-ID did not follow an 1-to-1 relationship to the multi-fold relations, which
were not applicable for our proposed models. So we extended the G;4 dataset
and generated a fact node for each of these incomplete instances. Two instances
which share same relation and entities except one role were assigned same fact
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Table 1. Complexities (the number of parameters to train and the times of multiplication
operations in each epoch) of several embedding models. N. denotes the number of real
entities, Ny denotes the number of fact nodes. N, represents the number of multi-fold
relations (i.e. fold > 2) and N2 represents the number of binary relations. Ny represents
the number of instances with multi-fold relations in the knowledge base. N2 represents
the number of triplets with binary relations. N, denotes the sum of the folds of all
instances with multi-fold relations. m and n are the dimensions of the entity and relation
vector space respectively. d denotes the number of clusters of a relation. k is the number
of hidden nodes of a neural network and s is the number of slice of a tensor.

Model ‘ # Parameters ‘ # Operations
SLM [13] O(Nem + Nyp2(2k + 2nk)) O((2mk + k)Ni2)
NTN [13] O(Nem + Nyo(n?s + 2ns + 25))|O(((m? 4+ m)s + 2mk + k) Ni2)
TransE [1] O(Nem + Nyon) O(N¢2)
TransH [16] O(Nem + 2Ny2n) O(2mNyz2)
TransR [§] O(Nem + Ny2(m + 1)n) O(2mnNe2)
CTransR [§] O(Nem + Npa(m + d)n) O(2mnN.2)
TransD [5] O(2Nem + 2Np2m) O(2nN¢2)
m-TransH [17] O((Ne + Ny)m 4 2N,n + N,) O(mN,)
Gm-TransH:zero | O((Ne + Ng)m + 2N.n + N,) O(m(N, + N¢))
Gm-TransH:radius| O((Ne + Ny)m + 2N,n + N,,) O(m(N, + Ny))
Gm-TransH:cosine| O((Ne + Ny)m + 2N,n + N),) O(m(N, + 3N\y))

node. We call the extended set Gyqc¢ and divided it into training set Gfact and

testing set G}act. The statistics of these datasets are shown in Table 2.
FB15K To verify the effectiveness of our models on a particular degenerated
type of multi-fold (N-ary) relation, i.e. binary relation with N = 2, we also
conduct instance classification task on FB15K dataset [I]. Since FB15K dataset
is consist of triplets in binary relations only and has no information of fact nodes,
we extend the FB15K dataset and attach an unique fact node to each triplet.
Thus, we can use the extended FB15K dataset to train the proposed Gm-TransH
model and test its performance while only binary relations holds. To compare
with benchmark models for binary relations, we use the original FB15K dataset
to train the NTN, TransE, TransH and TransR models. For convenience, we
use “Raw” to denote the original FB15K dataset and use “Ext” to denote the
extended FB15K dataset. Table 3 lists the statistics of the original and extended
FB15K datasets.

4.2 Link Prediction

Link prediction aims to complete the missing entities for instances or triplets, i.e.,
predict one entity given other entities and the relation. For example, for triplet
(h,r,t), predict t given (h,r) or predict h given (r,t). As for instances with multi-
fold relations, the missing entity can be any one of the entities associated with the
relation r. Link prediction ranks a set of candidate entities from the knowledge
graph. We use the extended JF17K datasets in this task and compare with some
of the canonical models including TransE, TransH, TransR and m-TransH.
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Table 2. Statistics of the extended JF17K dataset.
|G"/G"  |G{a/Gia

17629/12282(17629,/12282
181/159  |181/159
89248/17842(93976 /18318

Dataset ‘Gsfzc/Gzzc

17629,/12282
381/336
118568/30912

‘ G{act /G;act

17818/17818
181/159
36199,/10560

# Entities
# Relations
# Samples

Table 3. Statistics of the original and extended FB15K dataset.

Dataset

FB15K(Raw)
FBI5K (Ext)

‘# Rel‘# Ent‘# Train‘# Valid‘# Test

1,345 |14,951|483,142 (50,000 {59,071
1,345 19,966|483,142 |50,000 |59,071

Evaluation protocol In this task, for every instance in test set, we remove
each of the entities and then replace it with the entities in the real entity (as
opposed to fact entity) set in turn. For fairness, we replace only the real entities
appeared in the instances and exclude the fact nodes. Dissimilarities of the
corrupted instances are first computed via the proposed models and then sorted
by ascending order. Then we use Hit@l10(HIT) and Mean Rank (RANK) [1]
ranked by the correct entities as the performance metrics to evaluate the proposed
models. These two metrics are commonly used to evaluate the performance of
knowledge base embeddings. Hit@10 computes the probability of the positive
entities that rank up to the top 10% for all the entities. Mean Rank means the

average position of the positive entities ranked.
Table 4. The models and datasets used for link prediction.

Experiment Model g::al;zf ;:I)‘(;it::egt
TransE:triplet |TransE(bern) Glae Glae
TransH:triplet |TransH(bern) Glae Glae
TransR:triplet |TransR(bern) Glae Glae
m-TransH:inst m-TransH GY G’
m-TransH:1D m-TransH Gy Gy
Gm-TransH:zero | Gm-TransH | Ge: Gl
Gm-TransH:radius| Gm-TransH | G Gl
Gm-TransH:cosine| Gm-TransH | Get Gl

Implementation We trained and tested eight kinds of models in this task, the
training and testing datasets employed by each of the models as well as the model
they train are shown in the Table 4.

Stochastic Gradient Descent is used for training, as is standard. We take L2
as dissimilarity and traverse all the training samples for 1000 rounds. Several
choices of the dimension d of entities and relations are studied in our experiments:
25, 50, 100, 150, 200, 250. We select learning rate A for SGD among 0.0015, 0.005,
0.01, 0.1, the balance factor 8 for Gm-TransH among 0.001, 0.01, 0.05 0.1, the
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margin v among 0.5, 1.0, 2.0, and the radius € in Gm-TransH:radius among 0.01,
0.05, 0.1, 0.5, 1, 5, the batch size B among 120, 480, 960, 1920. The optimal
configurations for the three different Gm-TransH models are Gm-TransH:zero:
A=0.0015, 8=0.01, y=0.5, d=150, B=960. Gm-TransH:radius: A=0.0015, 5=0.05,
v=1.0, €=0.05, d=250, B=480. Gm-TransH:cosine: A=0.0015, =0.01, v=1.0,
d=200, B=1920.

Results Experimental results of link prediction on the cleaned and extended
JF17K datasets are shown in Table 5, which shows the Hit@10 results and Mean
Rank results of different embedding models with dimension 25, 50, 100, 150, 200,
250 respectively. The three Gm-TransH models outperform the Trans(E, H, R)
models by a large margin on both Hit@10 and Mean Rank metrics. Compared to
the m-TransH models, our models achieve an improvement on the probability
of Hit@10 and get an approximate Mean Rank with m-TransH:inst. The results
show that our approach is effective on improving the accuracy of link prediction
via multi-fold relation embeddings. Furthermore, by contrast, Gm-TransH:zero
outperforms Radius Constraint and Cosine Constraint on Hit@10 metric, showing
that Zero Constraint is better for discrimination. Gm-TransH:cosine is best
performed on Mean Rank metric and has higher overall optimizing ability.

Table 5. Experimental results (HIT/RANK) of link prediction on the extended JF17K
dataset.

Experiment/DIM|25 |50 |100 [150 |200 |250
TransE:triplet 29.43%/153.8|30.28%,/159.5/31.05%/149.2|31.45% / 145.6|29.53% /152.5(29.63%/155.5
TransH:triplet 35.42%/111.2|36.36%/111.7|35.51%,/120.1|36.52%/109.2|35.29% /113.1|36.58%/123.5
TransR:triplet 35.35%/126.1|36.56%,/104.9|36.51%,/113.3|36.47%/106.7|35.56% / 114.6|36.12% /126.9
m-TransH:inst 62.87%/78.7 |66.54%/81.4 |67.24%/76.4 |68.16%/78.6 |67.24%/82.2 |67.51%/86.1
m-TransH:ID 73.37%/107.2|74.06%/109.9|77.51%/107.5|79.07%/106.1|78.55%/112.1|78.36%/105.3

Gm-TransH:zero  |76.73%/80.1|78.56%/81.9 |82.17%/78.5 |83.28%/81.5 |82.25%/79.8 |81.63%,/82.7
Gm-TransH:radius |75.52%/80.9 |77.19%/80.2 |81.05%/78.2 [81.98%/78.3 (82.74%/78.8 |81.37%/80.7
Gm-TransH:cosine |74.20%/79.3 |77.96%/78.5 |80.01%/77.2 |81.27%/75.7 |81.30%/78.5 |79.14%/79.3

Table 6. Evaluation accuracy(%) of instance classification.

Datasets |FB15K (Raw)|FB15K(Ext)| FB17TK
NTN 68.2 51.3
TransE(unif/bern)| 77.3/79.8 — 54.4/58.5
TransH(unif/bern)|  74.2/79.9 — 55.6/59.1
TransR(unif/bern)| 81.1/82.1 — 60.7/63.4
m-TransH:inst — 83.2 72.5
m-TransH:ID — 84.7 76.7
Gm-TransH:zero — 90.4 88.2
Gm-TransH:radius — 92.3 92.3
Gm-TransH:cosine — 90.1 92.6

4.3 Instance Classification

Instance classification aims to judge whether a given instance is correct or
not. This is a binary classification task, which has been explored in [I3/16] for
evaluation. In this task, we use the extended JF17K and FB15K datasets to
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evaluate our models. For comparison, we select the NTN, TransE, TransH, TransR
and m-TransH as baseline models.

Evaluation protocol For instance classification task, we follow the same pro-
tocol in NTN and TransH. Since the evaluation of classification needs negative
labels, the JF17K and FB15K datasets both consist of positive instances only,
we construct negative instances following the same procedure used for FB13 in
[13]. For each golden instance, one negative instance is created.

We set a threshold 6, for each relation r by maximizing the classification
accuracies on the training set. For a given instance in the testing set, if the
dissimilarity score is lower than §,, it will be classified as positive, otherwise
negative.

Implementation For binary relation embeddings of triplets, we train and eval-
uate the NTN, Trans(E, H, R) models on the original FB15K dataset (denoted
as Raw) and the Ggo. dataset of JF17TK. We use the NTN code released by
Socher [13] and the Trans(E, H, R) code released by [§] directly. For multi-fold
relation embeddings of instances, we use the m-TransH code released by [17]
and implement the Gm-TransH models to evaluate on extended FB15K(Fxt)
dataset and the G, G4, G sqct datasets of JF17K respectively. We select the same
hyperparameters as used in link prediction and get the average accuracy of 20
repeated trials.

Results Table 6 lists the evaluation results of instance classification in detail. We
can observe that both on FB15K and JF17K datasets, the Gm-TransH models
can reach to an accuracy of 90%, outperforming the baseline models including
NTN, Trans(E, H, R) and m-TransH significantly. This shows our models can
learn the relation-level information effectively and expressively. Moreover, from
the results on the FB15K(Raw) and the FB15K(FExt) datasets, we see that even
for binary relations, the Group-constrained Embedding models are practicable
and reliable.

5 Conclusions and Future Work

We presented a group-constrained embedding framework with three different types
of constraint strategies for multi-fold relations and proposed a new representation
learning model, i.e. Gm-TransH. We evaluate the effectiveness and performance
of the proposed models on extended FB15K and JF17K datasets. Experimental
results show that the Gm-TransH models outperforms all baseline models on
link prediction and instance classification task. In the future, we will explore
more representation and embedding frameworks for the increasingly complicated
data in knowledge bases, e.g. events and procedures, as well as incorporating the
most recent advances in the learning of binary relations for multi-fold relation
embedding.
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