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Abstract. Schematic knowledge, as a critical ingredient of knowledge graphs,
defines logical axioms based on concepts to support for eliminating heterogene-
ity, integration, and reasoning over knowledge graphs(KGs). Although some well-
known KGs contain large scale schematic knowledge, they are far from complete,
especially schematic knowledge stating that two concepts have subclassOf rela-
tions (also called subclassOf axioms) and schematic knowledge stating that two
concepts are logically disjoint (also called disjointWith axioms). One of the most
important characters of these axioms is their logical properties such as transitivity
and symmetry. Current KG embedding models focus on encoding factual knowl-
edge (i.e., triples) in a KG and cannot directly be applied to further schematic
knowledge (i.e., axioms) completion. The main reason is that they ignore these
logical properties. To solve this issue, we propose a novel model named CosE
for schematic knowledge. More precisely, CosE projects each concept into two
semantic spaces. One is an angle-based semantic space that is utilized to pre-
serve transitivity or symmetry of an axiom. The other is a translation-based se-
mantic space utilized to measure the confidence score of an axiom. Moreover,
two score functions tailored for subclassO f and disjointWith are designed to
learn the representation of concepts with these two relations sufficiently. We con-
duct extensive experiments on link prediction on benchmark datasets like YAGO
and FMA ontologies. The results indicate that CosE outperforms state-of-the-art
methods and successfully preserve the transitivity and symmetry of axioms.
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1 Introduction

Schematic knowledge, as a critical ingredient of knowledge graphs (KGs), defines
logical axioms based on concepts to support for eliminating heterogeneity, integra-
tion, and reasoning over knowledge graphs. Although some well-known knowledge
graphs, e.g., WordNet [1], DBpedia [2], YAGO [3], contain lots of triples and axioms
but they are far from complete [4]. Right now, DBpedia contains more than 800 con-
cepts, but there are only 20 disjointWith axioms in it. In another way, traditional rea-
son methods cannot obtain all missing axioms. For example, given two axioms (Boy,
subclassO f, Children) and (Male_Person, subclassO f, Person), If the relationship
subclassO f between Children and Male_Person is missing, then it is hard to get the
axiom (Boy, subclassO f, Person) by traditional rule-based reasoning methods. More-
over, the sparsity of schematic knowledge limits the applications of knowledge graphs



such as question-answer and data integration. Therefore, it is of importance to improve
the completion of schematic knowledge.

Knowledge graph embedding, which aims to encode a knowledge graph into a low
dimension continuous vector space, has shown to be benefited knowledge graph com-
pletion by link prediction [5]. Each entity or relation is represented as a vector or a ma-
trix which contains rich semantic information and can be applied to link prediction [6].
The typical KG embedding models, such as TransE [7], TransH [8] and TransR [9],
treat a relation as a translation from head entity to tail entity. Some other models, like
RESCAL [10], DistMult [11], HolE [12] and ComplEx [13], adopt different composi-
tional operations to capture rich interactions of embeddings. Recently, several studies,
such as EmbedS [14] and TransC [15], pay an attention to the completion of axioms
for given schematic knowledge. They encoded instances as vectors and concepts as
spheres so that they could preserve the transitivity of some relations. Although exist-
ing embedding methods have achieved certain success in KG completion, most of them
only focus on entity-level triples but ignore the logical properties of axioms asserted
in schematic knowledge. Therefore, It is hard to directly employ these methods on the
tasks related to schematic knowledge such as completion, reasoning, repairing. For in-
stance, two concepts C; and C; with symmetry relation denoted by (C;,r,C;) ,in a
typical translation-based method, e.g., TransE [7], all the concepts and relations are
projected into a translation-based semantic space. In this space, the score of this axiom
[|Ci + r — C;j|2 is not equal to ||Cj + r — Cj||2. Thus, the symmetry of this axiom
is lost. To solve this problem, we need to explore a new embedding method for ax-
ioms that can simultaneously preserve the transitivity of subclassO f and symmetry of
disjointWith well.

In this paper, we propose a novel embedding model, namely CosE (Cosine-based
Embedding), for learning concepts and relationships in schematic knowledge. In pre-
vious studies [16], the authors showed that all the axioms could be reduced to subclas-
sOf axioms and disjointWith axioms. Hence, our model is mainly tailored for learn-
ing the representation of axioms asserted with these two relations. To preserve logical
properties and measure the confidence of a potential missing axiom, CosE is imple-
mented by projecting concepts based on relations to an angle-based semantic space and
a translation-based semantic space. In CosE, for a concept, its vector and valid length
in the angle-based semantic space are learned and utilized to preserve logical proper-
ties. Another vector for this concept in the translation-based semantic space is used to
measure the confidence score of an axiom. The effectiveness of CosE is verified by link
prediction experiments on standard benchmark datasets. The experimental results indi-
cate that CosE can achieve state-of-the-art performance comparing existing methods in
most cases.

The main contributions of our work are summarized as follows:

1. To the best of our knowledge, we are the first to propose one kind of embedding
method for schematic knowledge, which can simultaneously preserve the transitiv-
ity of subclassO f and symmetry of disjointWith well.

2. We define two score functions based on angle-based semantic space and translation-
based semantic space which are tailored for subclassOf axioms and disjointWith
axioms in order to sufficiently learn the representation of concepts.

3. We conduct extensive experiments on benchmark datasets for evaluating effective-
ness of our methods. Experimental results on link prediction demonstrate that our
method can outperform state-of-the-art methods in most cases and successfully pre-
serve the transitivity and symmetry of axioms.



2 Related work

In this section, we divide the research efforts into knowledge graph embedding and
schema embedding, and review them as follows.

2.1 Knowledge graph embedding

There are two mainstream methods for knowledge embedding: translational distance
models and semantic matching models [5]. The former uses distance-based scoring
functions, and the latter employs similarity-based ones.

In recent years, knowledge graph embedding has been widely studied, see [7-10,
17]. It aims to effectively encode a relational knowledge base into a low dimensional
continuous vector space and achieves success on relational learning tasks like link pre-
diction [18] and triple classification [17]. Various techniques have been devised for this
task, several improved models are proposed. In order to find the most related relation
between two entities, TransA [19] sets different weights according to different axis di-
rections. In TransH [8], each entity is projected into the relation-specific hyperplane
that is perpendicular to the relationship embedding. TransR [9] and TransD [20] still
follow the principle of TransH. These two models project entities into relation-specific
spaces in order to process complex relations. Moreover, the translation assumption only
focuses on the local information in triples such as a single triple, which may fail to make
full use of global graph information in KGs.

Another type of embedding methods conducted semantic matching using neural net-
work architectures and obtained the encourage results on link prediction of KG comple-
tion such as MLP [21], NAM [22], R-GCN [23]. Moreover, ProjE [24] and ConvE [25]
optimized the complex feature space and changed in the architecture of underlying
models. Both of them achieved better performances compared with the models with-
out complex feature engineering.

KG embedding methods mainly focus on instance-level triples of knowledge graphs,
which utilize triples of KGs to obtain the representations of entities and relations, but
they are not suitable for encoding the schematic knowledge of ontologies because they
can not persevere transitivity and symmetry of axioms in their models well, which are
essential characters applied in enriching incomplete data.

2.2 Schema embedding

Some methods have been proposed for embedding of schematic knowledge in a simple
ontology language called RDF Schema (or RDFS). On2Vec [26] employed translation-
based embedding method for ontology population, which integrated matrices that trans-
formed the head and tail entities in order to characterize the transitivity of some re-
lations. To represent concepts, instances, and relations differently in the same space,
EmbedS [14] and TransC [15] encoded instances as vectors and concepts as spheres so
that they can deal with the transitivity of isA relations (i.e., instanceOf, subclassOf). In
addition, [27] proposed a joint model, called KALE, which embeds factual knowledge
and logical rules simultaneously. [28] improved this model, referred to as RUGE, which
could learn simultaneously from labeled triples, unlabeled triples, and soft rules in an
iterative manner. Both of them treated RDFS as rules to improve the performances of
embedding models [4].



Although above embedding models tailored for RDFS enable to preserve the transi-
tivity of some relations (e.g., subclassO f) in their semantic spaces, it is not enough for
them to express other kinds of schematic knowledge, especially those expressed with
the disjointWith relation. Moreover, it is hard for their score functions to simultane-
ously describe disjointWith among concepts and preserve its symmetry well.

To the best of our knowledge, our method is the first embedding method for schematic
knowledge of ontologies based on cosine measure that can simultaneously preserve the
transitivity of subclassO f and symmetry of disjointWith well.

3 Cosine-based embedding for schematic knowledge

In this section, we first present the framework of CosE and introduce two semantic
spaces. Then, we define two score functions for these two spaces, one is defined for
angle-based semantic space to preserve logic properties of axioms. The other is defined
for translation-based semantic space to predict the confidence score of a missing axiom.
Finally, we present the training model of CosE.

3.1 CosE
‘ O class —> subclassOf <= -->» disjointWith ~ —= wvalid length
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Fig. 1: An overview of cosine-based embedding for Schematic knowledge

In most cases, for an axiom (C;,r,C;) with transitive or symmetry asserted in
schematic knowledge, existing KG embedding models only treat r as a symbol and
ignore its logical property, so these models cannot represent transitivity and symmetry
precisely. Therefore, in order to get a better embedding of schematic knowledge, the
logical properties of relations should be considered.

Figure 1 shows a framework of CosE that describes how concepts are represented
based on the logical properties of their relations. We use solid lines and dotted lines
denoted as subclassO f and disjointWith relations, respectively.



Given a set of axioms, CosE first separates all axioms into two sets where S con-
tains all subclassOf axioms and D contains all disjointWith axioms. For example,
three axioms (C1, subclass-O f, Cy), (Ca, subclassO f,Cs) and (C1, disjointWith
,Cy) are asserted, we obtain S={(C4, subclassOf,Cs), (C1, subclassOf,C2)} and
D={(C4, disjointWith,C4)}. Then, for each set, all concepts are projected into two
semantic spaces, one of which is an angle-based semantic space for modeling the logi-
cal properties of relations and a translation-based semantic space for measuring confi-
dence score of given axioms. As most of subclassOf axioms and disjointWith axioms
are 1-to-n and n-to-n relations, existing score functions of translation-based methods
are still not good at dealing with these complex relations. To measure the confidence
score more precisely, concept vectors are projected into a translation-based semantic
space by a mapping matrix Mc;c; where C; and C; are concepts in given schematic
knowledge. For an axiom (C, subclassO f, Cs), head concept Cy and tail concept Co
are projected by Mc;,c; that means each axiom is projected into its own translation-
based semantic space. In the above example, let C12 and C32 be the projected vectors
of Cy and C3 by Mc, c,, and let C33 and C33 be the projected vectors of Cy and Cs
by Mc,c,- C32 and C33 are the vectors of Cs, but they locate in different translation-
based semantic spaces. It is helpful that all the axioms can be expressed well in their
own translation-based semantic space. Given an axiom (Cj, r, C;), its mapping matrix
is defined as follows:

Mcc; = CipCjp, + I, M

where C;p € R™ and Cj, € R™ are projection vectors for head concept C; and the
tail concept C;. With the mapping matrix, the projected vectors about C; and C; are
defined as follows:

CiL = MCiCjCi7 C,]l = Mcicj CJ (2)

Notice that the logical properties are expressed precisely by the angle-based seman-
tic space. In the above examples, to deal with the transitivity, if we have two correct
axioms (C1, subclassof,Cy) and (Co, subclassO f, Cs), vectors of Cy and Cs should
be similar (i.e., cos(Cj, C;) =~ 0) in subclassOf angle-based semantic space and the
length of C; is smaller than C5. Similarly, the angle between vectors of Cs and Cj
should be approximated 0° and the length of Cs is also smaller than C5. For dealing
with the symmetry, CosE only removes the length constraints because cosine function
has symmetry property. For example, if (Cy, disjointWith,Cy) is a correct axiom,
then the vectors of C; and C} are similar in the disjointWith angle-based semantic
space. Therefore, CosE can simultaneously preserve transitivity and symmetry well.

3.2 Score function

In this section, we introduce score functions of CosE in detail. As CosE projects each
concept into two semantic spaces, we design two kinds of score functions to measure
the score of each axiom. One is utilized to preserve logical properties in angle-based se-
mantic space. The other is served for measuring the confidence of axioms in translation-
based semantic space. Given an axiom (Cj,r, C}), the score function of this axiom is
defined as:

f(c’hrvcj):fa(civrvcj)+.ft(ciaracj)7 (3)

where f,(C;,r,C;) and fi(C;,r, C;) are score functions defined in the angle-based
semantic space and translation-based semantic space, respectively.



The angle-based semantic space aims to preserve logical properties. We assume
that relations with different properties should be measured by different score functions.
For a subclassOf axiom (C;, 75, C;), concepts C; and C; are encoded as (C;, m) and
(Cj, n), where C; and C ; are the vector representations of concepts C; and C;, m and
n are two vectors that defined to obtain their valid lengths for persevering the transitivity
of concepts. The score function of the subclassOf axiom is defined as follows.

fa(Ci; 15, Cj) = 1 = cos(Cs, C) + ||ml|2 — [[n]2, @

where C; € R" and C; € R" are their vectors in the angle-based semantic space.
|lml|2 and ||n|| are valid length corresponding to C; and C';. Notice that these four
vectors are parameters that could be obtained when training procedure is accomplished.

For one disjointWith axiom (Cj, 74, C;), CosE removes the length constraints of
vectors. Its score function is defined as:

fa(Ciyrq,C;) =1 — cos(C;, Cj), (5)

where C; € R" and C; € R". For the axiom (Cj, disjointWith,Cj), the score of
fa(Ciyrq, C;) and f,(Cj, 74, C;) are the same because of the symmetry of cosine mea-
sure. It means CosE can preserve the symmetry of disjointWith axioms.

Although the angle-based semantic space can keep the logical properties of axioms,
it is hard to measure the confidence score of each axiom. Particularly, the subclassOf
axioms and disjointWith axioms are the typical multivariate relations so that the score
function designed for angle-based semantic space is not enough to measure the con-
fidence of axioms with multivariate relations. To solve this issue, we introduce a new
score function of an axiom w.r.t the translation-based semantic space to measure the
confidence of each axiom as follows.

ft(Ci,r,Cy) = ||CiL" + 1 — Cj1'||2 (6)

where C;,’ € R”, r € R” and C 3 " € R™ are the projection vectors in translation-
based semantic space. In our experiments, we enforce constrains as ||Cj||2 < 1, ||Cjl]2 <
L ICill2 < 1and |[Cy1z < 1.

3.3 Training Model

To train CosE, every axiom in our training set has been labeled to indicate whether the
axiom is positive or negative. However, most of existing ontologies only contain posi-
tive axioms. Thus we need to generate negative axioms by corrupting positive axioms.
For an axiom (C;, r, C;), we replace C; or C; to generate a negative triple (C;’, 7, C;)
or (C;, r,C}") by a uniform probability distribution.

For each axiom, we adopt the margin rank loss to train the representation of concepts
and relations, where £ and £’ denote a positive axiom and a negative one w.r.t the type
of relation, respectively. 7 and 7’ are used to denote the sets of positive axioms and
negative ones, respectively. For an axiom with subclassO f relation, the margin-based
ranking loss is defined as:

£sub — Z Z h/sub + f(g) - f(g/)]Jra (7)

E€Tsub E'ET.
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where [z] = max(z,0) and 7y, is the margin separating the positive axiom and the
negative one. Similarly, for the axioms with disjointWith relation, the margin-based
ranking loss is defined as:

Lais= D > [ais + F(€) = F(E)]4- ®)

Eenis 5’67}’%

Finally, the overall loss function is defined as linear combinations of these two func-
tions:
L= ‘Csub + ‘Cdis )

The goal of training CosE is to minimize the above functions and iteratively update
embeddings of concepts.

4 Experiments

To verify the effectiveness of our model, we compare CosE with some well-known KG
embedding methods on the task of link prediction, a typical task commonly adopted
in knowledge graph embedding. We also design other tasks which are variants of link
prediction for transitivity and symmetry of relations in schematic knowledge.

4.1 Datasets

FB15K and WN18 are two benchmark datasets in most previous works, but they are
not suitable to evaluate the embedding models for schematic knowledge. Both of them
consists of many instances but contain few concepts and axioms. To evaluate CosE, we
build a knowledge graph in named YAGO-On from a popular knowledge YAGO which
contains a lot of concepts from WordNet and instances from Wikipedia. In our exper-
iments, every subclassOf axiom in YAGO is saved in YAGO-On. Another benchmark
dataset is Foundational Model of Anatomy (FMA) which is a real evolving ontology
that has been under development at the University of Washington since 1994 [29]. Its
objective is to conceptualize the phenotypic structure of the human body in a machine-
readable form. It is a real-world, biomedical schematic knowledge and the version used
is the OWL files provided by OAEI*. As these two datasets only contain subclassOf
axioms, so we add disjointWith axioms into them by the simple heuristic rules in [30].
We also evaluate CosE on two new benchmark datasets, named YAGO-on-t and
YAGO-on-s, which are two subsets of YAGO-On to test the effects of the link pre-
diction for transitivity and symmetry inference. For any two axioms in YAGO-On, if
(Cj, subclassO f, C;) and (C}, subclassO f, Cp,) exist in YAGO-On, we save an axiom
(Cj, subclassO f, Cy,) in YAGO-On-t. Similarly, if an axiom (Cj, disjointWith, Cy)
exists in YAGO-On, we save the axiom (C}, disjointWith, C;) in YAGO-On-s. The
statistics of YAGO-On, FMA, YAGO-On-t and YAGO-On-s are listed in Table 1.

4.2 Implementation details.

We employ several state-of-art KG embedding models as baselines, including TransE,
TransH, TransR, TransD, ComplEx, Analogy, Rescal and TransC, which are imple-
mented by OpenKE platform [31] and the source codes of methods.

* http://oaei.ontologymatching.org/



Table 1: Statistics of original datasets and generated ones

Dataset YAGO-On| FMA |YAGO-On-t| YAGO-On-s

f Concept 46109 [78988| 46109 46109

Train B subclassOf | 29181 |29181| 11898 0
f disjointWith| 32673 |32673 0 10000
Valid f subclassO f 1000 | 2000 1000 1000
f disjointWith| 1000 | 2000 1000 1000

Test f subclassO f 1000 | 2000 5949 0
7 |f disjointWith| 1000 | 1000 0 10000

CosE is implemented in Python with the aid of Pytorch and OpenKE. The source
code and data are available at https://github.com/zhengxianda/CosE. Mini-batch SGD
is utilized on two datasets for training CosE model. For parameters, we use SGD as the
optimizer and fine-tune the hyperparameters on the validation dataset. The ranges of the
hyperparameters for the grid search are set as follows: embedding dimension & is chosen
from the scope of {125, 250, 500, 1000}, batch size B range of {200,512, 1024, 2048},
and fixed margin v range of {3,6,9,12, 18,24, 30}. Both the real and imaginary parts
of the concept embeddings are uniformly initialized, and the phases of the relation em-
beddings are uniformly initialized between 0 and 1. No regularization is used since we
find that the fixed margin of ~y could prevent our model from over-fitting. The best con-
figuration is determined according to the mean rank in the validation set. The optimal
parameters are o = 0.001, & = 200, v = 3 and B = 200.

4.3 Linked prediction

Link prediction is a task to complete the axiom (C;,r, C;) when C;,  or C; is miss-
ing. Following the same protocol used in [7], we take MRR and Hits@N as evaluation
protocols. For each test axiom (Cj,r, C;), we replace the concept C; or C; with C,
in concept set C to generate corrupted triples and calculate the score of each triple us-
ing the score function. Afterward, by ranking the scores in descending order, the rank
of the correct concepts is then derived. MRR is the mean reciprocal rank of all correct
concepts, and Hits@N denotes the proportion of correct concepts or relations ranked
in the fop N. Note that a corrupted triple ranking above a test triple could be valid,
which should not be counted as an error. Hence, corrupted triples that already exist in
schematic knowledge are filtered before ranking. The filtered version is denoted as “Fil-
ter,” and the unfiltered version is represented as “Raw.” The “Filter” setting is usually
preferred. In both settings, a higher Hits@N and MRR implies the better performance
of a model.

For link prediction, all models aim to infer the possible C; or C'; concept in a testing
axiom (Cj, 7, C;) when one of them is missing. The results of concept prediction on
YAGO-On and FMA are shown in Table 2. From the table, we can conclude that:

— CosE significantly outperforms the models in term of Hizs@N and MRR. It illus-
trates that CosE can simultaneously preserve the logical properties by means of
two semantic spaces, which are helpful to learn better embeddings for completing
schematic knowledge.

— Compared with the project matrices of TransH, TransR and TransD, the projec-
tion matrix Mc;,c; in CosE can measure the confidence of axioms more precisely.



The reason may be that CosE projects axioms with the same relation into several
translation-based semantic spaces. As most schematic knowledge only has few re-
lations, so the projection strategy of CosE is more suitable.

Table 2: Experimental results on link prediction

Experiment YAGO-On FMA
Metric MRR Hits @N(%) MRR Hits @N(%)
Raw Filter| 10 3 1 | Raw Filter| 10 3 1
TransE ]0.241{0.501]0.784(0.582(0.343|0.066|0.325|0.474|0.371{0.247
TransR |0.090{0.428|0.588|0.433|0.355|0.060(0.411|0.490(0.440(0.370
TransH |0.195|0.196|0.472(0.252(0.091{0.008|0.009{0.018|0.005|0.003
TransD 0.038]0.176|0.462|0.305/0.000{0.034]0.149{0.430{0.250{0.000
Analogy [0.037/0.301|0.496|0.429|0.160|0.037]0.277|0.487|0.415|0.130
ComplEx |0.034(0.237|0.491|0.403|0.058{0.033|0.201|0.484|0.372|0.011
Rescal [0.080(0.339]0.525]0.392(0.244|0.047|0.317{0.469|0.377|0.236
TransC> [0.112(0.420(0.698|0.502|0.298| - - - - -
CosE  [0.256(0.638(0.863(0.731{0.502(0.053|0.444|0.510|0.487|0.397

Table 3 and Table 4 list the results of link prediction on subclassOf axioms and
disjointWith axioms, respectively. In most cases, CosE has outperformed all models in
terms of Hits@N and MRR that means these two semantic spaces work well in CosE.
For link prediction results on disjointWith axioms, CosE performs a little bit worse than
TransR and TransE in MRR raw. From further analysis, we find CosE prefer to give a
higher score for a correct corrupted triple, so CosE is performing well. Particularly, in
disjointWith axioms prediction, Hits@ ] of CosE is increased by 15% and 30% on the
two benchmark datasets. It indicates that the angle-based semantic space can preserve
symmetry property precisely.

Table 3: Experimental results of link prediction on subclassOf axioms

Experiment YAGO-On FMA
MRR Hits @N(%) MRR Hits@N(%)
Raw Filter| 10 3 1 | Raw Filter| 10 3 1
TransE [0.375|0.116]0.722{0.472{0.179(0.113|0.113]0.260{0.110{0.035
TransR {0.063{0.063(0.216|0.020{0.000{0.010{0.010|0.050{0.050{0.050
TransH [0.377]0.724|0.494|0.179|0.179(0.110]0.110{0.295|0.080{0.040
TransD (0.011]0.011]0.018{0.008|0.000|0.050{0.050{0.050{0.000(0.000
Analogy [0.003/0.003|0.035|0.003{0.003|0.050{0.050/0.0500.050|0.050
ComplEx |0.001{0.003|0.002|0.001{0.001{0.003]0.003|0.010|0.000|0.000
Rescal [0.069|0.069|0.143]0.073(0.035|0.009|0.009{0.010{0.005{0.005
CosE  (0.428/0.428(0.726(0.509/0.267/|0.176(0.176/0.290(0.190|0.090

Metric

> As experimental results of TransC are much worse than the ones mentioned in the paper [15],
so we adopt its original results for comparison.



Table 4: Experimental results of link prediction on disjointWith axioms

Experiment YAGO-On FMA
MRR Hits @N(%) MRR Hits@N(%)
Raw Filter| 10 3 1 |Raw Filter| 10 3 1
TransE ]0.120]0.627]0.846|0.693(0.507|0.122]0.639|0.927(0.741|0.491
TransR {0.132]0.792|0.974]0.848/0.710(0.010|0.010/0.050{0.050|0.050
TransH |0.010/0.014]0.220{0.010|0.003|0.005]0.006|0.002|0.001|0.001
TransD |0.066(0.774]0.906]0.621|0.000|0.066|0.292{0.873]0.488|0.000
Analogy (0.074/0.598|0.988/|0.854(0.317|0.069]0.557|0.979|0.823|0.264
ComplEx |0.066(0.470(0.970|0.820(0.110{0.003]0.003|0.010|0.000|0.000
Rescal ]0.100]0.640]0.920|0.720(0.500|0.094|0.640|0.940|0.750/0.480
CosE  {0.097(0.917/0.990/0.970{0.860|0.090|0.870|0.990(0.950|0.780

Metric

4.4 Transitivity and symmetry

In this section, we verify whether the logical properties are implicitly representation
by CosE embeddings. To illustrate what kind of information is contained in concept
vectors, we design two link prediction experiments on two special datasets. In YAGO-
On-t, axioms of the training set are subjected to the rule (C;, subclassOf,C;) and
(C;, subclassO f, Cy,) and the testing set contains the inferred axioms (C;, subclassO f,
Cy) by applying the transitivity property of subclassO f. Thus, we train CosE by train-
ing set and use link prediction on the testing set to verify the performance on transi-
tivity. Similarly, we verify the symmetry by YAGO-On-s. If the training set contains
(Cy,disjointWith, C;), the test axiom (C}, disjointWith, C;) is saved in the testing
set.

As listed in Table 5, CosE is the only model which can achieve good performances
on both two datasets. On YAGO-On-t, the MRR and Hits@N of CosE exceed the ones
of other models. On YAGO-On-s, only MRR and Hits@ ] of CosE worse than TransE,
but their results are very similar. These two experiments indicate that CosE is better
than other models for reasoning axioms with transitivity or symmetry.

Table S: Experimental results on link prediction for transitivity and symmetry

Experiment YAGO-On-t YAGO-On-s
MRR Hits@N(%) MRR Hits@N(%)
Raw Filter| 10 3 1 | Raw Filter| 10 3 1
TransE ]0.064|0.077|0.142|0.070{0.001{0.043{0.369/0.971|0.514|0.080
TransR {0.012]0.013{0.003|0.002|0.001|0.010{0.010{0.000{0.000{0.000
TransH |0.200/0.238]0.309(0.274|0.149|0.001]0.002|0.000|0.000|0.000
TransD |0.008|0.009]0.020{0.001|0.000|0.001]0.181]0.512|0.302|0.000
Analogy [0.001{0.001|0.001{0.001{0.000{0.043|0.315|0.932|0.538|0.000
ComplEx |0.001{0.001{0.001|0.000{0.000{0.036/0.253|0.743|0.439|0.000
Rescal ]0.016/0.020(|0.055]0.015]0.004/0.032]0.166|0.449|0.226|0.039
CosE  {0.203(0.334/0.429(0.280(0.270|0.038|0.324/0.990{0.558|0.000

Metric




5 Conclusion and future work

In this paper, we presented a cosine-based embedding method for schematic knowl-
edge called CosE, which could simultaneously preserve the transitivity of subclassO f
and the symmetry of disjointWith very well. In order to sufficiently learn the repre-
sentation of concepts, we defined two score functions based on angle-based semantic
space and translation-based semantic space which are tailored for subclassO f axioms
and disjointWith axioms. We conducted extensive experiments on link prediction on
benchmark datasets. Experimental results indicated that CosE could outperform state-
of-the-art methods and successfully preserve the transitivity and symmetry of relations.
As future work, we will explore the following research directions: (1) CosE is a
simple model tailored for learning the representation of axioms, but it still has some
limits. We will try to find a more expressive model instead of cosine measure to learn
the representation of concepts. (2) The embedding of axioms can be applied in various
tasks of knowledge graphs. We will merge CosE into these tasks for improving their
performances such as noise detection [32] and approximating querying [33].
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