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Abstract. Utterance domain classification (UDC) is a critical pre-processing step 

for many speech understanding and dialogue systems. Recently neural models 

have shown promising results on text classification. Meanwhile, the background 

information and knowledge beyond the utterance plays crucial roles in utterance 

comprehension. However, some improper background information and 

knowledge are easily introduced due to the ambiguity of entities or the noise in 

knowledge bases (KBs), UDC task remains a great challenge. To address this 

issue, this paper proposes a knowledge-gated (K-Gated) mechanism that lever-

ages domain knowledge from external sources to control the path through which 

information flows in the neural network. We employ it with pre-trained token 

embedding from Bidirectional Encoder Representation from Transformers 

(BERT) into a wide spectrum of state-of-the-art neural text classification models. 

Experiments on the SMP-ECDT benchmark corpus show that the proposed 

method achieves a strong and robust performance regardless of the quality of the 

encoder models. 

Keywords: Utterance Domain Classification, Gating Mechanism, Knowledge-

gated, BERT.  

1 Introduction 

Spoken language understanding (SLU), which is the core component of intelligent per-

sonal digital assistants (IPDAs) such as Microsoft Cortana, Google Assistant, Amazon 

Alexa, and Apple Siri [1-3]. The first step of such “targeted” understanding is to convert 

the recognized user speech into a task-specific semantic representation of the user’s 

intention, and then classify it into a specific domain for further processing, which is 

called utterance domain classification (UDC) [4-6]. For example, “张学友的一路上有

你 (Jacky Cheung’s down the road with you)” and “打开优酷网 (Open Youku web-

site)” in Table 1 should be classified as music and website, respectively. 

Recently neural models have shown promising results on text classification and have 

been employed to utterance classification [5, 7]. Meanwhile, Bidirectional Encoder 

Representation from Transformers (BERT) [8] obtains new state-of-the-art results on a  
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Table 1. Examples of utterances with domain tags from the SMP-ECDT dataset, which is a 

benchmark corpus for Chinese UDC task. Italics for entity mentions. 

Utterance Domain 

张学友的一路上有你 

Jacky Cheung’s down the road with you. 

音乐 

Music 

打开优酷网 

Open Youku website 

网站 

Website 

 

wide range of task. What is more, the neural models with pre-trained BERT token em-

beddings can achieve better performance. 

Despite the effectiveness of previous studies, UDC task remains a challenge in real-

world applications for two reasons: (1) The background information and knowledge be-

yond the utterance plays crucial roles in utterance comprehension [9]. (2) The knowledge 

representation may bring the bias to the downstream model, and the path through which 

information flows in the network should be controlled [10]. 

Incorporating knowledge bases (KBs) as prior knowledge into the neural language 

understanding (NLU) tasks has far been demonstrated to be valuable and effective ap-

proaches [9, 11-12]. And the popular connection mechanism to enrich the utterance 

representation using knowledge representation is concatenating the knowledge embed-

dings and the text representations vector directly [11, 15]. However, this approach, that 

tightly couples the utterance and knowledge representation, lacks an effective mecha-

nism to control the influence of the knowledge information. 

To further increase the knowledge representation flexibility, gating mechanisms [10, 

13-14] can be introduced as an integral part of the neural network models. The soft but 

differentiable gate units are trained to capture the dependencies that make significant 

contributions to the task. It can thus provide complementary information to the dis-

tance-aware dependencies modeled by neural networks [14]. 

It is therefore desirable to combine the best of both lines of works: the neural network 

models and the knowledge-based gating mechanism. In this paper, we propose 

knowledge-gated (K-Gated) mechanism, which leverage domain knowledge from ex-

ternal sources to control the path through which information flows in the neural network 

for UDC task. The contributions of this paper can be summarized as follows: 

 We propose a knowledge-gated (K-Gated) mechanism for UDC task, which lev-

erages domain knowledge from external sources to control the path through 

which information flows in the neural network. 

 In terms of external knowledge, we rely on CN-Probase to provide decent entities 

and types, and adopt some other reliable knowledge sources to build complement 

KB for providing richer knowledge representations in special domains in the 

UDC task. 

 We demonstrate consistent improvements across all experiments incorporating 

the proposed K-Gated mechanism into a wide spectrum of state-of-the-art neural 

text classification models on the SMP-ECDT benchmark corpus. 
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2 Related Work 

There are many studies on utterance or short text classification to improve efficiency, and 

a typical example is support vector machine (SVM) [15]. After that, deep learning draw 

attention in natural language processing (NLP) with deep belief networks (DBNs) [16], 

convolutional neural networks (CNNs) [17], recurrent neural networks (RNNs) [5], and 

particularly long short-term memory (LSTM) [18-21], the most commonly used RNN. 

In recent years, attention mechanisms have been introduced to NLP, showing great 

capacity for extracting meaning representations for generic text classification tasks, such 

as intent detection [7], domain classification [2], and document classification [19]. Mean-

while, in terms of pre-trained embedding that are widely used in neural models, BERT [8] 

obtains new state-of-the-art results on a wide range of task. In this paper, we employ pre-

trained BERT token embeddings and incorporate the proposed K-Gated mechanism into 

a wide spectrum of state-of-the-art neural text classification models for further improve-

ment. 

Another line of related research is knowledge-based NLU. In NLU literature, linguistic 

knowledge [15, 23] or knowledge bases (KBs) [9, 11-12] can be treated as prior 

knowledge to benefit language understanding. In this paper, we aim to appropriately in-

corporate representations obtained from KBs to enhance the neural UDC models, by con-

sidering type information of entity mentions inside utterances.  

To incorporate knowledge information into neural network models, much of the pre-

vious work is based on the idea of generalizing the embedding layer of the encoder to 

support modeling of external knowledge [9, 12]. The strategy of this method is to concat-

enate the knowledge embeddings and the text representations vector, aiming at enriching 

the utterance representations. However, this approach, that tightly couples the utterance 

and knowledge representation, lacks of an effective mechanism to control the influence 

of the knowledge information. In contrast to these studies, our approach leverages gating 

mechanism to control the path through which information flows in the neural network. 

To our knowledge, our study is the first one to use knowledge-based gating mechanism 

for neural UDC task. 

3 Model 

In this section, we present our model for the UDC task. Figure 1 gives an overview of our 

model. 

The first layer maps input utterances 𝒰 into vectors by token embeddings (obtained by 

pre-trained BERT), as well as detects external knowledge inside the utterances using dis-

tant supervision and complement KB. Then an encoder layer takes as input the embed-

dings to produce hidden states 𝐹. In the last but one layer, we use a merge layer to exploit 

the concatenation of the hidden states 𝐹 and the knowledge representation vectors 𝐾 to 

enrich the utterance representation. The gate for knowledge representation vectors is 

made up of a multi-layer perception (MLP) and a tanh activate function. We apply ele-

ment-wise dot-product between the gate vector and the knowledge representation vectors. 

The final fully connected layer with softmax function uses the concatenation of vector 𝐾  
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Fig. 1. Overview of the knowledge-gated (K-Gated) model for utterance domain classification. 

and 𝐹 to predict the domain label 𝑦𝐷.  

𝑦𝐷 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊(𝐹 ⊕ 𝐾) + 𝑏).                                  (1) 

The design of this structure is motivated by the effectiveness of multiplicative interac-

tion among vectors and by gating mechanism which has been used successfully in a va-

riety of tasks [10, 13-14]. It also typically corresponds to our finding that the external 

knowledge is highly correlated with utterances in many cases, so the semantics of external 

knowledge should be useful for UDC. 

 

3.1 External Knowledge 

In terms of external knowledge, we rely on CN-Probase to provide decent entities and 

types detection for knowledge extraction. CN-Probase is a widely used general Chinese 

taxonomy for entity type retrieval [24]. However, in a UDC task, general knowledge bases 

may suffer from absence of some entities and their type information. For instance, in the 

utterance “横看成岭成峰的下一句 (The next sentence of mountains is a ridge while 

seen by the side)”, the entity “横看成岭侧成峰 (mountain is a ridge while seen by the 

side)” in this expression cannot be obtained by distant supervision with CN-Probase. To 

solve this problem, in our paper, we adopt some other reliable knowledge sources, such 

as Baidu Baike (extracting knowledge of poetry, lottery, weather and so on), QQ music 

(extracting knowledge of singer and music), and so on. Our goal is to complement the 

CN-Probase to provide richer knowledge representations in restricted domains in the 

UDC task. 

To be more specific, given an utterance 𝒰, we hope to find a type set 𝒯 respected to 

the entity mention set ℳ inside it. We achieve it by retrieving relevant knowledge from 

the KB 𝒦 (i.e. distant KB 𝒦𝑑 and compliment KB 𝒦𝑐), including two major steps: entity 

linking and conceptualization. Entity linking is an important task in NLP which aims to 

identify all the mentions in a text and produce a mapping from the set of mentions to the 

set of knowledge base entities [25]. We acquire ℳ of an utterance by distant supervise 

(i.e. CN-Probase1) and complement KB 𝒦𝑐 , namely we identify ℳ = {𝑚𝑖}𝑖=1
𝑠  and map 

it to entity-type facts {ℰ, 𝒯} = {𝑒𝑖, 𝑡𝑖}𝑖=1
𝑠 in 𝒦. Then, we receive the type result 𝑡𝑖 for each 

                                                           
1 http://shuyantech.com/api/entitylinking/cutsegment 
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entity mention 𝑚𝑖 ∈ ℳ from our abovementioned 𝒦 through conceptualization. For in-

stance, given an utterance “Jacky Cheung’s down the road with you”, we obtain the entity 

mention set ℳ = {Jacky Cheung, down the road with you} by entity linking. Thereafter, 

we conceptualize the entity mention, namely, the entity mention Jacky Cheung acquires 

its types {singer, actor} and down the road with you acquires its type {music} from 𝒦 

respectively. Note that we only keep the entity-type facts within domains of our UDC task. 

Meanwhile, the types represented same domain are redirected to the same domain type 

(e.g., poetry-title, poet and verse are redirected to poetry). As for the extra knowledge 

source 𝒦𝑐, we do entity linking and conceptualization through string match. Following 

that we acquire a sentence-level external knowledge set, and then vectorize it. The exter-

nal knowledge representation vectors 𝑇𝑖 = [𝑟1, 𝑟2, … , 𝑟𝑛𝑇
] ∈ ℝ𝑛𝑇   can benefit inferring 

the domain of utterance, where 𝑛𝑇 denotes the dimension size of the external knowledge 

representation vectors. 

 

3.2 BERT 

The model architecture of BERT is a multi-layer bidirectional Transformer encoder based 

on the original Transformer model [26]. The input representation is a concatenation of 

WordPiece embeddings, positional embeddings, and the segment embedding. Specially, 

for single sentence classification, the segment embedding has no discrimination. A special 

classification embedding ([CLS]) is inserted as the first token and a special token ([SEP]) 

is added as the final token. Given an input token utterance 𝒰 = (u1, . . ., u𝑡  ), the output 

of BERT is H = ( [CLS], ℎ1, . . . , ℎ𝑡 , [SEP] ), where t denotes that the utterance has t tokens: 

 𝐻 = 𝐵𝐸𝑅𝑇(𝒰),                                                      (2) 

where H ∈ ℝ𝑑𝑚×𝑡×𝑛 denotes the token embeddings, the 𝑑𝑚 is the dimension of these t 

tokens, 𝑛 denotes the number of the utterances. 

The BERT model is pre-trained with two strategies on large-scale unlabeled text, i.e., 

masked language model and next sentence prediction. The pre-trained BERT token em-

bedding provides a powerful context-dependent utterances representation and can be used 

for various target model, e.g., textCNN, BiLSTM [8]. Many NLP tasks are benefit from 

BERT to get the state-of-the-art and reduce the training time. 

 

3.3 Utterance Encoder 

We describe our utterance encoder, which is marked in Figure 1. The encoder is a stack 

of several recurrent units or filters where each accepts a single element of the input 

vector, collects information for that element and propagates it to the next layer. We 

complete utterances representation using BERT2, published by Google, which is a new 

way to obtain pre-trained language model token representation [8]. Among numerous 

neural text classification models proposed for encoding information, we adopt several 

popular and typical models as encoder to demonstrate the strong applicability and gen-

erality of our knowledge-gated method. The selected base models include: textCNN 

[17], BiLSTM [21], BiRNN with attention mechanism [7], HAN [22] and Transformer 

                                                           
2https://github.com/hanxiao/bert-as-service 
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[26]. Then the utterance representation vectors 𝐻 are fed into an encoder to extract con-

textual feature. For convenience, we define the entire operation as a feature extraction 

𝐹: 

 𝐹 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝐻),                                                      (3) 

where 𝐹 ∈ ℝ𝑑𝑓×𝑛  denotes utterance representation, 𝑑𝑓denotes the number of hidden 

states. However, when we use pure BERT for sequence-level classification tasks, BERT 

fine-tuning is straightforward. We take the final hidden state 𝐻′ (i.e., the output of the 

Transformer) for the first token in the input, which by construction corresponds to the 

special [CLS] token embedding. The only new parameters added during fine-tuning are 

for a classification layer [8]. 

 𝑦𝐷 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝐻′ + 𝑏).                                       (4) 

3.4 Gating Mechanisms 

As it is described above, external knowledge is useful for UDC task, but it may propagate 

some redundant information. Gating mechanisms can control the path through which in-

formation flows in the network [10]. To automatically capture important external 

knowledge information, we proposed knowledge-gated mechanism for UDC task perfor-

mance.  

In language modeling, Gated Tanh Units (GTU) [13], Gated Linear Units (GLU) [10] 

and Gated Tanh-ReLU Units (GTRU) [14] have shown effectiveness of gating mecha-

nisms. GTU is represented by tanh(A ∗ W + b) ⊙ σ(A ∗ V + c), in which the sigmoid 

gates control features for predicting the next word in a stacked convolutional block. To 

overcome the gradient vanishing problem of GTU, GLU uses (A ∗ W + b) ⊙ σ(A ∗ V +
c) instead, so that the gradients would not be downscaled to propagate through many 

stacked convolutional layers. And the GTRU is represented by  tanh(A ∗ W + b) ⊙
relu(A ∗ V + c). We named the gated mechanism used in this paper as Gated Tanh-MLP 

Unit (GTMU) for UDC, shown in Figure 2. 

 

 

Fig. 2. Our proposed knowledge gate. 
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The GTRU uses relu instead of sigmoid because they believe the sigmoid function in 

GTU and GLU has the upper bound +1, which may not be able to distill external features 

effectively [14]. The GTMU uses tanh because we believe the upper bound +1 and the 

lower bound -1 can keep out improper information by element-wise product, avoid af-

fecting the main track too much as well. Specifically, we compute the features vector 𝑔𝑖 

as: 

𝑇𝑖 ′ = BERT( 𝑇𝑖),                                                            (5) 

 𝐴𝑖 = 𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑇𝑖
′),                                                         (6) 

 𝑔𝑖 = tanh(𝑀𝐿𝑃(𝐴𝑖)),                                                    (7) 

 𝐾𝑖 = 𝑇𝑖 ′ ⊙ 𝑔𝑖,                                                                 (8) 

where 𝑖 denotes the 𝑖𝑡ℎ utterance, the 𝑇𝑖 ∈ ℝ𝑛𝑇  is the its external knowledge vector, 𝑇𝑖′ ∈
ℝ𝑑𝑚×𝑡 is the knowledge embedding, 𝐴𝑖 ∈ ℝ𝑑𝑚𝑙𝑝  is the knowledge representation, 𝑑𝑚𝑙𝑝 

is the cell-num of the last layer of MLP, 𝑔𝑖 ∈ ℝ𝑛𝑇and ⊙ is the element-wise product be-

tween matrices. We using BERT to acquire the knowledge representation.  The pooling is 

average pooling, retaining more information, in comparison to max pooling, which usu-

ally believed to lead to better results [27]. The gate vector 𝑔𝑖 is calculated by MLP with a 

tanh activate function. The sentence-level knowledge vectors are provided by correct 

knowledge vectors during training phase, and by the output from distant supervision and 

complement KB in the test phase. 

The 𝑔 can be seen as a weighted feature of the knowledge representation. The 𝑔 

keeps the most salient external knowledge features of the whole knowledge represen-

tation and the new knowledge representation 𝐾 is more “reliable” for contributing the 

prediction results. 

4 Experiments 

4.1 Dataset 

We execute the experiments on the benchmark corpus of SMP-ECDT [28], provided by 

the by the iFLYTEK Co. Ltd. SMP-ECDT (Social Media Processing - the Evaluation of 

Chinese Human-Computer Dialogue Technology) 2018 is the second evaluation of Chi-

nese human-computer dialogue technology, and subtask 1 is for Chinese utterance domain 

classification. The benchmark corpus consists of the two top categories chit-chat and task-

oriented. Meanwhile, the task-oriented dialogue also includes 30 sub-categories, making 

this a 31-category classification task. This corpus contains 3736 training data and 4528 

test data items, which all are single-turn short utterances that do not include historical turn 

information. 

 

4.2 Baselines 

We incorporate the proposed knowledge-gated mechanism (K-Gated) into a wide spec-

trum of neural text classification models: 
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  BERT [8]: This model is BERT for sequence-level classification tasks, and BERT 

fine-tuning is straightforward. Only new output layer is added during fine-tuning 

for a classification layer. 

 TextCNN [17]: This model is widely used on text classification task. It provides a 

very strong baseline for domain classification. We set the widths of filters to [3, 4, 

5] with 100 features each. 

 BiLSTM [21]: This model is a basic BiLSTM model for domain classification.  

 BiRNN Att [7]: This method uses BiLSTM and attention mechanism for joint in-

tent and slot filling task. Here we use the intent independent training for UDC task.  

 HAN [22]: This model usually is used for document classification. Here we use 

the word part of it because of the short length of utterances.  

 Multi-head Att [26]: This model uses Transformer to encode text representation 

and uses decoder to generate an output sequence. We use the encoder part for UDC.  

We also apply the popular connection mechanism to enrich the utterance representation 

using sentence-level knowledge representation [9, 12], which concatenates the 

knowledge embeddings 𝐴 and the text representations vector 𝐹. This method, K-Concat, 

can be treated as the baseline knowledge-based UDC method. 

 

4.3 Training Details 

We employ the Jieba tokenize3 and pre-trained BERT token embeddings to preprocess 

each utterance, and OOV words are randomly initialized. Then, we utilize every model to 

performed 10-fold cross validation on the training set of SMP-ECDT corpus and evaluate 

the proposed model. We explore different sets of hyperparameter settings and determine 

the Adam optimizer with learning rate 0.001 and batch size as 25, based on the perfor-

mance on the validation set. The layer-num of the MLP is set as 1-5. The cell-num of each 

MLP layer is 768. To avoid overfitting, we employ dropout during training, and the drop-

out rate is set as 0.1-0.5 for validation. The metric utilized to evaluate each model is the 

accuracy of prediction. All data shown in the following results are the mean of 5 inde-

pendent experiments. The metric for the experiments is the accuracy metric.  

 

4.4 Results and Analysis 

The results are shown in Table 2. As we can see from Table 2, comparing to the pure 

BERT classifier, all of the state-of-the-art neural text classification models using pre-

trained BERT token embedding achieve performance improvement. And K-Gated with 

“BERT+TextCNN” achieves best result and significantly outperforms the base BERT clas-

sifier by 3.06%. Meanwhile, both K-Concat and K-Gated bring consistent improvement 

across all experiments, regardless of the quality of the encoder model. This finding 

confirms that the proposed knowledge-based methods are robust: their effectiveness do 

not depend on the network architecture used to construct the classifier. 

                                                           
3 https://github.com/fxsjy/jieba 

https://github.com/fxsjy/jieba
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Table 2. Accuracies of our models and competing approaches on the test set. 

Models Test acc (%) 

BERT [8] 

+K-Concat  

+K-Gated 

80.60 

81.17 

81.34 

BERT+TextCNN [17] 82.68 

+K-Concat 

+K-Gated 

82.86 

83.66 

BERT+BiLSTM [21] 

+K-Concat  

+K-Gated 

81.67 

82.06 

82.29 

BERT+BiRNN Att [7]         

+K-Concat  

+K-Gated                                   

81.32 

82.70 

82.81 

BERT+HAN [22] 

+K-Concat  

+K-Gated 

82.57 

82.80 

82.90 

BERT+Multi-head Att [26] 

+K-Concat 

+K-Gated 

80.36 

81.68 

81.90 

 

4.5 Layers in MLP 

In this section, we compare the number of the layers in MLP used in the K-Gated and 

present the results in Table 3.  

Table 3. The performance of different number of the layers in MLP. 

NO. of the layers in MLP Test acc (%) 

1 82.82 

2 83.32 

3 83.66 

4 83.15 

5 83.24 

 

As we can see from Table 3, if the network has too few free parameters (layers), training 

could fail to achieve the required error threshold. On the other hand, if the network has 

too many free parameters, then a large data set is needed. We can see that the MLP with 

3 layers achieves the best result. 
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4.6 Gating Mechanisms 

In this section, we compare GLU(𝐴 ∗ 𝑊 + 𝑏) ⊙ 𝜎(𝐴 ∗ 𝑉 + 𝑐)  [13], GTU tanh(𝐴 ∗
𝑊 + 𝑏) ⊙ 𝜎(𝐴 ∗ 𝑉 + 𝑐)  [10] and GTRU tanh(𝐴 ∗ 𝑊 + 𝑏) ⊙ 𝑟𝑒𝑙𝑢(𝐴 ∗ 𝑉 + 𝑐) 

[14]used in UDC task. Table 4 shows that all of four gating mechanisms achieve relatively 

high accuracy on SMP-ECDT benchmark corpus. The proposed GTMU outperforms the 

other three gates. It has a three layers MLP generating knowledge features via tanh acti-

vation function, which controls the magnitude of the external knowledge according to the 

given utterances’ information.  

Table 4. The performance of different gating mechanisms in knowledge gate. 

Gating mechanisms Test acc (%) 

GLU 82.88 

GTU 83.58 

GTRU 83.05 

GTMU 83.66 

 

4.7 Effect of KB Complement 

Finally, we investigate the influence of our complement to CN-Probase in providing a 

richer knowledge representation in certain restricted domains in the Chinese UDC task. 

Table 5 shows the performance of the models that employ GTRU gating mechanism on 

“BERT+TextCNN” without and with our KB complement. As shown in Table 5, com-

pared to the models using only CN-Probase, our complementary approach improved 

the accuracy by 0.51%. 

Table 5. Accuracies of our models on the test set. 

Models Test acc (%) 

K-Gated (CN-Probased) 83.15 

K-Gated (Full) 83.66 

5 Conclusion 

This paper investigated knowledge dependent UDC and proposed a knowledge-gated 

mechanism, which leverages domain knowledge from external sources to enrich the 

representations of utterances and uses knowledge-based gating mechanism to control 

the path through which information flows in the neural network. Experimental results 

demonstrated the effectiveness and robustness of the proposed method, K-Gated UDC, 

on the SMP-ECDT benchmark corpus. In the future, it would be interesting to study 

how to effectively reduce the type label noises in external knowledge to identify the 

correct type labels for each mention from a noisy candidate type set. 
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