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Abstract. Spelling errors in the classical Mongolian text are mainly
caused by misuse of polyphonic letters which present the same shape
in the certain position of the word. About half to three-quarters of the
classical Mongolian words are misspellings which have the correct ap-
pearances but wrong codes. In this paper, we code the Mongolian words
by glyph codes to map the words to their shapes one-to-one. In addi-
tion, we also proposed the correction of out-of-vocabulary words (OOV)
based on the Evolved Transformer by formalizing the correction task
as a translation from misspellings to target spellings. The experimental
results show that this approach achieves the new state-of-the-art perfor-
mance.
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1 Introduction

Spelling correction is the very first step of a natural language processing (NLP)
system to ensure that all of the input text is spelled correctly before they were fed
into subsequent steps. Most traditional systems in this field were built on Lev-
enshtein Distance and statistical methods [16, 6, 19]. Recently, Recurrent Neural
Networks (RNNs) have been found to be effective in natural language correction
[20]. Chollampatt and Ng [2] proposed character-level statistical machine trans-
lation to “translate” unknown words into correct words. The nested RNN [7] were
used to handle spelling correction in English which consists of a character-level
RNN (CharRNN) and a word-level one (WordRNN). In addition, attention was
further extended by Vaswani et al. [18], where the self-attentional Transformer
architecture achieved state-of-the-art results in Machine Translation. Aiming
to automate the laborious process of designing neural networks architectures,
Evolved Transformer [14] was proposed then and achieved the more outstanding
performance in Machine Translation. Transformers have not been applied to the
spelling correction yet.

The existing methods, however, cannot be directly applied to classical Mon-
golian words. Classical Mongolian is an alphabetic writing language that uses
⋆ Corresponding author: csfeilong@imu.edu.cn
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[3] as the standard code. It is designed to encode every speech sound (vowel and
consonant) with a Unicode code point. In classical Mongolian, a single encoded
letter may map to many different glyphs, and a single glyph may map to many
different encoded letters, too. For example, a letter “U+1820” maps to ᠠ , ᠡ, ᠊ ,

and according to its contexts. On the other hand, a glyph ᠳ     maps to let-
ter “U+1832” and letter “U+1833”. The mismatch between encoded letters and
glyphs makes classical Mongolian very easy to be misspelled. Numerous words
present correct appearance but are typed with incorrect codes in the text since
all the text editors care about is the appearance of the input words and nothing
else. Those misspellings with correct shapes are formally known as pronunciation
errors which we devote ourself to solve in this paper. They make up more than
90% in Mongolian spelling errors.

To solve the Mongolian spelling errors, an efficient mapping strategy be-
tween the word and shape is crucial before correction. [13] and [21] proposed a
presentation character to represent the word based on morphology. However, it
is a knowledge-dependent and labor-intensive work. In this paper, we propose
the direct mapping between words and shapes by representing the words with
glyph codes instead of Unicode codes. Then utilizing the vocabulary which is also
coded in glyph code to find out the correct spelling. In addition, the Evolved
Transformer [14] is applied to correct the out-of-vocabulary words (OOV). The
glyph-code representation proposal successfully avoids complex mapping algo-
rithm [13, 21]. It is also served for the generation of the training data for OOV
correction module, which can be seen as the translation from glyph codes to
their correct spellings. The main contributions are as follows:

– Glyph code is presented to convert the Mongolian text encoded with the
standard code into its corresponding glyph representation. It not only avoids
the costly resource collection process such as error patterns but makes words
matched the dictionary efficiently.

– We apply the Evolved Transformer to correct OOV words. It yields signifi-
cant improvements over the overall correction performance.

In the following sections, we introduce the related work firstly, then propose our
solution, describe the experiments, and close the paper with a conclusion at last.

2 Related Work

Neural network models have not drawn much attention in spelling correction
for classical Mongolian yet. The most successful spelling correction system is
the dictionary-based system [13] which was the first work to use presentation
character to represent the word. It mapped the Unicode code to presentation
character by rules. Most works operated on Mongolian standard codes directly.
The earliest rule-based MHAHP system [4] was just designed to detect Mongo-
lian spelling errors. [5] extended the rules and summarized the common errors.
However, the performance was limited by the complex error types. [15] proposed
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statistical translation framework, which regarded spelling proofreading as the
translation from the wrong words to the correct ones.

Dictionary-based approaches typically perform poorly in the absence of com-
plete vocabularies. More recent work in other languages has applied character-
level models to machine translation and speech recognition as well, suggesting
that it may be applicable to many other tasks that involve the problem of OOVs
[8, 10, 1]. [20] present the character-based RNN model with an attention mech-
anism for performing language correction which allows for orthographic errors
to be captured and avoids the OOV problem suffered by word-based neural
machine translation methods. [12] demonstrate the use of LSTM with a de-
lay, for jointly learning error patterns and language models for detection and
correction in Indic OCR. [11] proposed semi-character RNN based on psycholin-
guistics experiments. More recently, the QANet [22] and Evolved Transformer
[14] architectures alternate between self-attention layers and convolution layers
for Question Answering applications and Machine Translation respectively.

The research on the correction of Mongolian out-of-vocabulary words (OOV)
has not been sufficiently discussed yet. In this work, we utilize both the lexicon
which maps the glyph codes of the words to their correct spellings and novel
Evolved Transformer architecture to correct the pronunciation errors in Mongo-
lian text.

3 Method
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Fig. 1. General framework of Mongolian spelling correction.

Fig 1 shows the general framework of Mongolian spelling correction. Firstly,
input strings are encoded into shape codes, then undergo dictionary matching
to restore the words from shape representation. The dictionary is built manually
with a vocabulary of 172,456, of which about 20,000 items are loan words. The
key of each item is the Mongolian glyph codes, and the value is the correct
spelling. We add the OOV correction module to the general architecture by
applying novel seq2seq model – Evolved Transformer [14]. The polyphone error
won’t be discussed in this work for it belongs to context-sensitive real-word error.
For convenience, words are presented with their national Latin transliteration
(keyboard correspondence).
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3.1 Glyph Code Conversion
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Fig. 2. The Mongolian word and its glyph code sequence.

Glyph Segmentation Process Glyph code encoding is to code the words in
their glyph sequence in order after segmentation by the cutting line from top
to bottom. As seen in Fig 2, the word (meaning: sheep, Latin: hqni) were
segmented into 4 glyphs.

In this work, we adopt the simple and efficient segmentation algorithm in-
spired by the characteristic of the backbone. Classical Mongolian is written ver-
tically. Each letter in a word is linked from top to bottom by a vertical line
which is called the backbone of the word. The backbones are mostly placed in
the middle of the words, consisting of dense black pixels with blank space on
one or both sides. The projection line of the backbone on the horizontal x-axis
serves as the cutting line. There is at most one or two consecutive white-pixel
(255 in value) regions and one consecutive black-pixel (0 in value) region. The al-
gorithm for determining the cutting line is as follows: First, being scanned from
top to bottom, lines with only one continuous black pixels are chosen as the
candidate cutting lines. Then the frequency of each candidate and its numbers
of the dependent lines1 are recorded. After that, each candidate is scored by the
summation of its own frequency and its number of the dependent line. Finally,
the one with the highest score is identified as the cutting line.

100 glyphs are defined in total after segmentation of about 200,000 distinct
words (See Fig 3). The images were all generated as binary images in Portable
Network Graphic Format (.png). A glyph can be composed of multiple letters,
and a letter can be composed of several glyphs as well. The glyphs with higher
labels such as glyph 93, can be further segmented by multi-level segmentation.
In this work, only one-level segmentation is considered which can perform well
enough.

Glyph Segmentation Reasoning Why not use the entire word image di-
rectly to represent the words instead of their glyph sequence? It’s because some
typeface differences are hard to distinguish with the naked eye. Taking the words
1 If the black-pixel area of the line and other ones between them can completely cover

the black pixels of the current candidate, the line is considered as the dependent line
of the current candidate.
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Fig. 3. Glyphs and its labels.

(Latin: aNharvn) and (Latin: aegharvn) for instance, the shape of the
second letter ᠩ is slightly different. The former is correctly coded by “U+1829”
(Latin: N) and the latter is coded by two codes “U+1821” (Latin: e), “U+182D”
(Latin: g) wrongly. These seemingly identical words mislead the user’s incorrect
input. When we generate the entire word image for those words and match the
dictionary (matching the pixel value), the matching will fail. In order to avoid
the failure of in-vocabulary words correction caused by inappropriate matching
algorithm, glyph sequence is adopted to represent the words. The most similar
glyphs were categorized into the same groups. The words with a tiny difference
in shape can match the same code sequences with the target words so that they
can be matched successfully.

3.2 OOV Correction

We choose to use the Evolved Transformer architecture [14] to “translate” OOV
misspellings into correct words. The input of the model is the corresponding
labels of glyphs as seen in Fig 3. The output is the correct Unicode spelling. It
produces a ranked list of candidate words, in which the top one is the most likely
result. As for the word (See Fig 2), the input sequence should be the array
of [69, 2, 83, 6], and the output is the letters of correct spelling [“U+182C”,
“U+1823”, “U+1828”, “U+1822”] (Latin: [h, q, n, i]).

The goal of the Evolved Transformer is to examine the use of neural archi-
tecture search methods to design better feed-forward architectures for seq2seq
tasks. It applies tournament selection architecture search and warm start it with
the Transformer to evolve the better and more efficient architecture. The encod-
ing search space is inspired by the NASNet search space [9], but is altered to
allow it to express architecture characteristics found in recent state-of-the-art
feed-forward seq2seq networks. The search space was designed as one that can
represent the Transformer with which the initial population was seeded. It con-
sists of two stackable cells, one for the model encoder and one for the decoder
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Fig. 4. Architecture composition from encoding.

(see Fig 4.). Each cell contains NASNet-style blocks, which receive two hidden
state inputs and produce new hidden states as outputs. The encoder contains
six blocks and the decoder contains eight blocks, so that the Transformer can be
represented exactly. The blocks perform separate transformations to each input
and then combine the transformation outputs together to produce a single block
output; The transformations applied to each input is referred to as a branch.
The search space contains five branch-level search fields (input, normalization,
layer, output dimension and activation), one block-level search field (combiner
function) and one cell level search field (number of cells).

To perform the search directly on the computationally demanding task, Pro-
gressive Dynamic Hurdles (PDH) was developed to dynamically allocate more
resources to more promising candidate models. The model can learn morpholog-
ical knowledge well to find and organize the proper letters corresponding to the
glyph codes. In the absence of a dictionary as a reference, it is adapted to apply
for solving spelling errors.

4 Experiment

In this section, we will first evaluate the performance of OOV correction by
comparing the Evolved Transformer to the Transformer model. All the compar-
ative experiments were conducted in the Tensor2Tensor [17] training regime on
a single GPU. OOV correction is intended to generate words which conform to
Mongolian morphological rules according to input word shapes. We evaluate it
by shape accuracy and spelling accuracy. Shape accuracy measures the perfor-
mance of generating words which can present the same shape with the input
words without caring about the spellings. The latter one, as it implies, evalu-
ates the performance of generating the correct spellings. They were all tested
on common words and loan words. We will then benchmark the performance
of our overall performance against the evolutionary method [13]. It is evaluated
by the standard binary classification evaluation metrics of precision, recall and
f -measure.
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4.1 Experimental Data

The datasets for the Evolved Transformer is the aligned sets of glyph sequences
and correct spellings extracted from the dictionary. The training set consisted of
140,000 items including loan words of about 15,000 items and 125,000 items of
commonly used words. 6,000 items from the remaining entries of the dictionary
were extracted as test data for OOV correction. Loan words and commonly
used words were accounted for half of the set respectively. For testing the overall
performance, we firstly crawled texts of 35MB from the Mongolian news website.
The words whose frequencies were not too high or too low were selected Then.
After filtering shape errors among them, we selected the 8,000 tokens at last to
correct them manually by several native Mongolian people. The aligned set of
with and without correction is used to test the overall performance.

4.2 Result and Analysis

Table 1. Comparison between the Transformer and ET on different models.

Model Model Size
Common Set Loan Set

Spelling Acc Shape Acc Spelling Acc Shape Acc
ET Tiny 96.40% 99.83% 82.16% 96.70%

Transformer Tiny 93.70% 99.56% 76.16% 95.67%
ET Base 84.03% 98.53% 67.90% 90.80%

Transformer Base 81.96% 97.16% 66.10% 89.23%

OOV Words Correction As we can see in Table 1 and Table 2, we compared
the Evolved Transformer (ET) to the Transformer on variant model scales and
embedding sizes. Seeing from the results, ET demonstrates stronger performance
than the Transformer almost at all sizes, with the largest difference of 6.00% in
spelling accuracy and 1.57% in shape accuracy. By the “Tiny” ET, we get the
comfortable results that the highest spelling accuracy of commonly-used words
reaches 96.40% and that of loan words reaches 82.16%. The shape accuracy
is generally higher and more stable than spelling accuracy with the highest
accuracy of 99.83%.

As demonstrated in Table 1, we choose the smaller models as “Tiny” and
“Base” size models for our character-level task of which the vocabulary is only
100. The result indicates that the “Tiny” model fits our task better. “Tiny” model
yields the better results both in the correction of commonly used words and loan
words than the “Base” model. It’s mainly because of the degeneracy. Beyond
that, for both the Transformer and ET, we tried three additional embedding sizes
[64, 256, 384] under the better architecture – “Tiny” size model to explore the
best embedding size for our task. As can be seen in Table 2, the embedding size
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Table 2. Comparison between the Transformer and ET in different embedding size.

Model Embedding Size
Common Set Loan Set

Spelling Acc Shape Acc Spelling Acc Shape Acc
ET 64 96.10% 99.60% 80.06% 96.50%

Transformer 64 92.16% 99.60% 74.53% 95.10%
ET 128 96.40% 99.83% 82.16% 96.70%

Transformer 128 93.70% 99.56% 76.16% 95.67%
ET 256 96.30% 99.60% 80.06% 96.43%

Transformer 256 95.80% 99.36% 79.06% 96.50%
ET 384 83.80% 98.36% 67.46% 89.93%

Transformer 384 95.60% 99.50% 79.46% 96.33%

larger than 128 did not make any improvement for ET. While the performance
of the Transformer continued to grow until the size 384. The gap between the
two models becomes smaller with the increasing of embedding size. With the
consideration of both model size and effectiveness, the “Tiny” model at its default
setting is identified as our method for correcting OOV words.

It should be noted that the correction performance of loan words is far lower
than commonly-used words. It’s mainly for inadequate loan words in the training
data. The model failed to learn the specific word-formation rules of loan words
and usage of control character2, which is written frequently in loan words but
hardly in common words.

Overall Performance We conduct three experiments to show respectively the
quality of the construction of our dictionary and the correction effect of OOV
words as shown in Table 3. The baseline model [13] is the superior work based on
rules and dictionaries. From the experiment, we can see that the proposed meth-
ods with and without OOV correction module are all outperforms the baseline
systems in each criteria. The f -measure of the proposed method is respectively
3.30% and 6.39% higher than the baseline model. It can also be seen that the
recall rate is relatively lower in both single dictionary matching methods. It is
a common shortcoming in every dictionary-based system because the dictionary
cannot cover all the human words, especially for languages with rich inflection.
After joining the OOV correction module, the recall is improved further by
5.99% against the single glyph match method. It leads to a 3.00% increase in
the f -measure finally.

The experiment shows the excellent results, which confirms that our dictio-
naries, as well as the OOV correction module, were built pretty well.
2 Control characters are used in conjunction with Mongolian letters to control the word

shapes. They mainly refer to three Mongolian Free Variation Selector: “U+180B”,
“U+180C”, “U+180D”.
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Table 3. Evaluation for the overall performance. G_Match refers to the performance
after the glyph-based dictionary matching only. G_Match+ET refers to the experi-
mental effect of adding OOV correction by the Evolved Transformer.

Criteria Baseline G_Match G_Match+ET
P 95.13% 99.03% 99.04%
R 91.00% 93.31% 98.90%
F 93.02% 96.09% 98.97%

5 Conclusion
To address the serious pronunciation errors in classical Mongolian text, this pa-
per proposed the glyph codes to represent the words. It is an efficient represen-
tation method which avoids designing and building enormous and complicated
mapping rules. In addition, we proposed the first OOV correction module and
add it to the general correction framework. It is handled by the Evolved Trans-
former model with great performance. Experimental results demonstrate that
our method can meet the practical demands well. In future work, we will ex-
pand the training data further for loan words and will also explore a uniform
architecture to correct both OOV words and polyphones.
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