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Abstract. Knowledge Graphs (KGs) contain rich semantic information
and are of importance to many downstream tasks. In order to enhance
practical utilization of KGs, KG completion task, which is also called
link prediction, is a newly emerging hot research topic. During KG em-
bedding model training, negative sampling is a fundamental method for
obtaining negative samples. Inspired by an adversarial learning frame-
work KBGAN, this paper proposes a new knowledge selective adversarial
network, named as KSGAN, using a knowledge selector for high-quality
negative sampling to benefit link prediction. The performances of our
model KSGAN are evaluated on three standard knowledge completion
datasets: FB15k-237, WN18 and WN18RR. The results show that KS-
GAN outperforms a list of baseline models on all the datasets, demon-
strating the effectiveness of the proposed model.

Keywords: Adversarial learning · Knowledge Graph · Link prediction
· KSGAN.

1 Introduction

Knowledge Graphs (KGs) contain linked knowledge in the form of triples which
describe relations between entities. Typical examples of KGs are Freebase [1],
WordNet [2], Yago [3], etc. KGs consist of numerous facts by triples, i.e. (h, r, t),
where h, r and t represent head entities, relations and tail entities respectively.
Therefore, as its amount of valuable information, KG becomes the base of many
research tasks such as information extraction, question answering and recom-
mender systems [4]. However, open-domain KG is far from complete [5] due to
its dramatic difficulty in incorporating all concepts that human ever had. There-
fore, it is necessary to develop algorithms to predict missing entities or relations
given head entities and relations (or relations and tail entities) or head entities
and tail entities. Since the target information exists in the form of text, a vari-
ety of knowledge graph embedding(KGE) techniques that embed the triples of
facts consisting of entities and relations in KG into a continuous vector space are
proposed [4]. With the numeric representations of entities and relations, the sim-
ilarities between entities or relations can be computed and measured. In order to
model relations and entities in KG, positive and negative examples are frequently
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needed to train KG embedding models. Therefore, negative sampling [6] is widely
used to acquire a great deal of negative examples (also called corrupted triples)
when training a knowledge graph embedding model (e.g., TransE [6], TransD [7],
DistMult [8], ComplEx [9]).

However, previous works such as TransE [6] generates corrupted triples uni-
formly. The generated corrupted triples consist of false corrupted triples (true
facts) and true corrupted triples, in which the former denotes an accurate rela-
tion between head and tail entities while the latter fails. Moreover, true corrupted
triples are composed of the triples that provide more semantic information (e.g.
(Beijing, IsA, province)) and others that contain less (e.g. (Beijing, IsA, car)),
since the former may be more reasonable and easy to mix up. Using true cor-
rupted triples which provide less information may result in slowing training
process down since the corrupted triples are obviously false and very likely to
be distinguished from true facts. KBGAN [10] is a typical adversarial learning
framework for link prediction, regarding semantic matching models (e.g., Dist-
Mult [8], ComplEx [9]) as a generator in GAN and translational distance models
(e.g., TransE [6], TransD [7]) as a discriminator. This paper proposes a novel
knowledge selective adversarial network (KSGAN) for link prediction task. In
contrast to KBGAN and IGAN [11], KSGAN leverages a knowledge selector
as filter to select corrupted triples from generator. The selected high-quality
corrupted triples are used to help discriminator to avoid zero loss problem dur-
ing training process. Three publically available datasets FB15k-237, WN18 and
WN18RR are used to test the performance of our model. Through the compar-
ison with a list of state-of-the-art baseline methods such as KBGAN, results
show that KSGAN outperforms the baselines and achieves improvement (7.0%
for MRR and 1.4% for Hits@10) on average.

In summary, the major contributions of this paper are three-fold: (1) Fo-
cusing on the negative sampling problem, a new knowledge selector to select
high-quality negative triples for KG embedding model is proposed. (2) A novel
knowledge selective adversarial network is proposed to predict missing entities
for link prediction tasks. (3) Experiments on standard datasets illustrate the
effectiveness of KSGAN using MRR and Hits@10 metrics.

2 Related Work

2.1 Knowledge Graph Embedding Models

Different knowledge graph embedding models explore diverse methods to embed
triples into vector spaces. TransE [6] is a classic translational distance model,
which represents entities and relations in d -dimensional vector Rd by model-
ing h + r ≈ t given a true fact (h, r, t). Various variants such as TransH [12],
TransM [13], TransR [14] and TransD [7] have been developed in recent years.
These models focus on the drawbacks of TransE and introduce some effective
strategies (e.g. using more reasonable scoring functions) to represent entities
and relations. However, the aforementioned models simulate unique embedding
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in vector spaces for every entities and relations. Targeting at more flexible mod-
els, TransF [15] ensures that t (or h) has the same direction with h+r (or t−r)
without enforcing strict magnitude constraints between them. ManifoldE [16]
uses a manifold function to constrain t (or h) within a sphere space with a cen-
ter of h + r (or t − r). As a generic model, GTrans [17] introduces eigenstate
and mimesis to represent the features of entities and relations.

Different from the translational distance model, RESCAL [18] is a classic
semantic matching model, which concentrates on capturing latent semantics be-
tween head entities and tail entities using a bilinear function as scoring function.
DistMult [8] simplifies RESCAL by restricting interactions between heads and
tails entities in a diagonal matrix. ComplEx [9] maps entity and relation em-
beddings to a complex space rather than a real space. SimplE [19] simplifies
ComplEx by considering a different similarity scoring function. TuckER [20] is
based on Tucker decomposition and the semantic matching models mentioned
above such as RESCAL, DistMult, ComplEx and SimplE are all special cases
of TuckER. Other semantic matching models such as NTN [21] and MLP [22],
focus on neural network architectures and try to output scores from hidden layer
of neural network which takes the vectors of entities and relations as input given
facts (h, r, t).

The scoring functions of the models are investigated and summarized in Ta-
ble 1. As shown in the table, h, r and t represent a embedding vector of head
entities, relations and tail entities. The vector related to hyperplane in TransH
is denoted by wr while wh, wr and wt are mapping vectors in TransD. wr ∈ R
in TransM is the weight associated with specific relations. A radius of sphere in
ManifoldE is denoted as Dr. In translational distance models such as TransR,
the projection matrix used to map entities from entity space to relation space is
denoted as Mr, while the matrix that contains interactions between heads and
tails entities is denoted as Mr in semantic matching model like RESCAL. t̄ in
ComplEx is the representation of the conjugate of a tail entity embedding vector
t and r−1 in SimplE is the embedding vector of inverse relation. The relation-
specific weight matrices are denoted by M1

r and M2
r in NTN as well as M1,

M2 and M3 are the weights in different layers in MLP. The tensor are denoted
by Mr and W. Re(·) means taking the real part of a complex vector and � is
element-wise product.

2.2 Negative Sampling Methods

The goal of training a knowledge graph embedding model is to tell the model
how to distinguish right from wrong given negative triples and positive ones.
Thus, negative sampling is necessary for training KG embedding model for the
reason that both negative and positive triples are needed to be provided during
training process. TransE [6] generates corrupted triples by replacing heads or
tails in true triples randomly for each triple in mini-batch. It is possible that
there exist some false negative examples which also make sense. For instance,
a true fact (Jackie Chan, profession, actor) may turn into a negative example
(Jackie Chan, profession, director), which is also true. In order to reduce false
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Table 1. The score functions used in existing KG embedding models

Type Model Score function f (h, r, t) Embedding

Translational
distance
model

TransE −‖h + r− t‖1 h, r, t ∈ Rd

TransH −
∥∥(h− w>r hwr) + r− (t− w>r twr)

∥∥2

2
h, r, t, wr ∈ Rd

TransM −wr ‖h + r− t‖1 h, r, t ∈ Rd

TransR −‖Mrh + r−Mrt‖22
h, t ∈ Rd, r ∈ Rk,

Mr ∈ Rk×d

TransD −
∥∥(wrw

>
h + I)h + r− (wrw

>
t + I)t

∥∥2

2

h, wh, t, wt ∈ Rd,

r, wr ∈ Rk

TransF (h + r)>t + (t− r)>h h, r, t ∈ Rd

ManifoldE −(‖h + r− t‖22 −D2
r)2 h, r, t ∈ Rd

GTrans −‖Wr � (h + r− t)‖22 h, r, t,Wr ∈ Rd

Semantic
matching

model

RESCAL h>Mrt
h, t ∈ Rd,

Mr ∈ Rd×d

DistMult 〈h, r, t〉 h, r, t ∈ Rd

ComplEx Re(h, r, t̄) h, r, t ∈ Cd

SimplE 1
2

(
〈h, r, t〉+

〈
t, r−1,h

〉)
h, r, r−1, t ∈ Rd

TuckER W ×1 h×2 r×3 t
h, t ∈ Rd, r ∈ Rk,

W ∈ Rd×d×k

NTN r>tanh(h>Mrt + M1
rh + M2

r t + br)
h, t ∈ Rd, r, br ∈ Rk,

Mr ∈ Rd×d×k,

M1
r ,M

2
r ∈ Rk×d

MLP w>tanh(M1h + M2r + M3t) h, r, t ∈ Rd

negative triples, TransH [12] designs a strategy for replacing head entities or
tail entities from a given true triple (h, r, t) with Bernoulli distribution. The
aforementioned negative sampling methods are likely to be effective but not a
reasonable way to generate high-quality corrupted triples that contain valuable
information. Inspired by GAN [23], KBGAN [10] and IGAN [11] propose an
adversarial learning framework for knowledge representation learning, which ob-
tains high-quality negative samples effectively. KBGAN introduces a framework
that uses one of semantic matching models (e.g. DistMult or ComplEx) as gener-
ator to generate high-quality negative samples from a candidate set. Meanwhile,
discriminator, adopting one of the translational distance models (e.g. TransE or
TransD), is trained given a positive sample and negative sample provided by
generator. IGAN addresses a similar framework in which a generator corrupts
true triples with the entire entity set and uses a different reward function. How-
ever, the performances of discriminator and generator from previous works can
still be enhanced by adding a new knowledge selector proposed in this paper.

3 Model

3.1 Overall Framework

In order to obtain negative triples, most of previous works generate corrupted
triples (h′, r, t) or (h, r, t′) with a certain probability distribution given a true
fact triple (h, r, t). As observed in IGAN [11], training a translational distance
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Fig. 1. The generator (G) computes probabilities of different triples. The knowledge
selector (S) forms a selection set and then selects a semantically correct triple with
the assist of the discriminator (D). The discriminator is trained with both positive and
negative triples.

model with marginal loss function may cause zero loss problem. Whether the
scores of those corrupted triples with highest probabilities are within the range
of the margin in marginal loss function, is not unwarrantable during the training
process. Using corrupted triples whose scores are not within the margin of the
scores of positive triples may bring zero loss to the marginal loss function. The
parameters of KG embedding models are not being updated due to vanishing
gradient caused by zero loss. Thus, training with such corrupted triples, which
have high scores in semantic matching models but low scores in translational
distance models, may not push KG embedding models to converge effectively.
Based on the framework proposed by IGAN and KBGAN [10], a new knowledge
selective adversarial network KSGAN is therefore proposed to train KG embed-
ding models with positive and negative triples to avoid the zero loss problem.
Comparing with KBGAN and IGAN, KSGAN has a new component knowl-
edge selector, which is a filter aiming to filter out obviously false triples and
select semantic ones given positive training examples. The structure of KSGAN
is illustrated in Fig. 1.

In KSGAN, the generator, which can be regarded as an agent in reinforcement
learning, generates negative triples with probability distributions. The discrimi-
nator learns to adjust its parameters by minimizing loss function and calculates
the rewards returned to the generator as interactions from environment to the
agent in reinforcement learning. The goal of KSGAN is to train a discriminator
with the negative triples generated by generator.

3.2 Triple Selection with Assist of Discriminator

Knowledge graph is composed by entities from a set of entities E and relations
from a set of relations R. T denotes a set of ground truth triples and T ′ denotes
a set of corrupted triples (h′, r, t′) through the corruption of ground truth triples
by replacing head entities or tail entities.



6 K. Hu et al.

During training translational distance models such as TransE and TransD, a
marginal loss function is applied, which is shown as Eq. 1:

L =
∑

(h,r,t)∈T

∑
(h′,r,t′)∈T ′

max (0, f(h, r, t)− f(h′, r, t′) + γ) (1)

where f (h, r, t) is a scoring function in knowledge graph embedding models given
a positive triple (h, r, t).

KSGAN is an adversarial network which consists of a generator, a knowledge
selector and a discriminator. Following KBGAN, since small subset of entities
shrink the search space of entities, corrupted triples are constructed based on
the set of Ns candidate entities. The generator uses one of semantic matching
models to represent different negative triples by calculating probabilities using
a softmax function as Eq. 2:

pi =
exp fG(h′i, r, t

′
i)∑Ns

j=1 exp fG(h′j , r, t
′
j)

(2)

where Ns is the size of candidate set.
However, generated negative triples only based on a generator may be se-

mantically false and cause the zero loss problem when training discriminator.
Since entities closed to each other in the same vector space may express similar
meanings or have semantically close information to some extent, the corrupted
triples consisted of those entities may have similar scores. Training discrimina-
tor with those negative triples and their corresponding ground truth triples may
cause higher loss value, where the parameters of negative triples should be up-
dated since their scores are improperly similar to that of true triples. Therefore,
aiming to avoid zero loss problem, a knowledge selector is designed to select Ss

triples with relatively high probabilities from generator to form a selection set.
Afterwards, a negative triple that has the closest distance to its ground truth
triple is selected by a selector, based on the representation of entities and re-
lations from KG embedding models in discriminator. The selector selects those
triples with maximum scores from the selection set, referring to the embedding
of KG embedding model in discriminator, which can be formulated as Eq. 3:

fsel(h
′, r, t′) = max

(h′,r,t′)∈Ts′
(fD(h′, r, t′)) (3)

where the selection set is denoted by Ts′, which is composed by Ss corrupted
triples with high probabilities selected by the selector.

Thus, the selector selects negative triples with correct semantic informa-
tion (high score in semantic matching models) and close distance (high score in
translational distance models) to avoid the zero loss problem when training the
discriminator. Suppose (h′, r, t′) is a negative sample selected from the selection
set Ts′ given a positive sample (h, r, t), one of the translational distance models is
regarded as the discriminator and a objective function can be defined as follows:

LD =
∑

(h,r,t)∈T

max(0, f(h, r, t)− fsel(h′, r, t′) + γ) (4)
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where fsel(h
′, r, t′) is the score of a selected negative triple (h′, r, t′).

In reinforcement learning, Ss triples in the selection set selected by the selec-
tor are used to compute a reward by the discriminator embedding model. The
reward function is formulated as follows:

R = fD(h′, r, t′) (5)

where (h′, r, t′) ∈ Ts′ and fD(h′, r, t′) are the results from the discriminator
through calculating the scores of corrupted triples (h′, r, t) or (h, r, t′). In order
to maximize the expectation of reward, the generator learns to follow a pol-
icy to generate more triples which have high semantic scores. The generator is
formulated as Eq. 6:

RG =
∑

(h,r,t)∈T

∑
(h′,r,t′)∈Ts′

E(h′,r,t′)∼pG((h′,r,t′)|(h,r,t)) [fD(h′, r, t′)] (6)

In order to update parameters of the generator which can be viewed as a
policy to generate triples with high probabilities, policy gradient [24] with base-
line b is used to tune the parameters of semantic models in the generator. The
policy gradient is:

∇GRG =
∑

(h,r,t)∈T

∑
(h′,r,t′)∈Ts′

E(h′,r,t′)∼pG((h′,r,t′)|(h,r,t)) [∆fD(h′, r, t′)∇G log pG((h′, r, t′)|(h, r, t))]
(7)

where pG denotes the policy for generator to generate negative samples as well as
∆fD(h′, r, t′) is the difference between the score of negative triples and baseline
b, which is nearly equal to the mean of rewards of corrupted triples in selection
set Ts′.

To avoid the zero loss problem, we further propose a strategy to exchange the
models between generator and discriminator. In other words, one of the transla-
tional distance models is regarded as a generator while one semantic matching
model acts as the role of discriminator. The generator generates the distribution
of negative triples using Eq. 2, in which the score function belongs to transla-
tional distance model. The selector tends to select those triples that have rela-
tively high scores in distance models and form a selection set. The triple with
maximum value of semantic score in selection set is selected by selector. The
logistic loss function used to train discriminator with selected negative triples
and positive triples is defined as follows:

LD =
∑

(h,r,t)∈T ∪Ts′

log {1 + exp [−l · fD(h, r, t)]} (8)

where l is a label used to distinguish positive(l = +1) and negative(l = −1)
triples.

The reward computed by discriminator is returned to generator as feedback
evaluating the quality of generated triples. Again, the generator updates the
parameters of the KG embedding model through the policy gradient using Eq. 7.
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Table 2. Statistics of the three standard datasets.

Datasets #Entity #Relation #Training #Validation #Testing

FB15k-237 14,541 237 272,115 17,535 20,466

WN18 40,943 18 141,442 5,000 5,000

WN18RR 40,943 11 86,835 3,034 3,134

4 Experiments

4.1 Datasets

Three widely used standard dataset FB15k-237, WN18 and WN18RR for link
prediction task are used to test our model. The dataset FB15k-237 [25] is a vari-
ant version of FB15k [6]. The dataset has been widely applied to KG completion
tasks, such as link prediction and triple classification. It is constructed by re-
moving redundant relations from the original dataset. In addition, to enhance
the quality of evaluation, we further use WN18 [6] and its subset WN18RR [26].
The two datasets are the subsets of WordNet database, which consists of lexical
relations (e.g. hypernym and hyponym) between words. The statistical charac-
teristics of the three datasets are shown in Table 2.

4.2 Baseline methods

Our models are compared with following baseline methods:

– TransE is a classic translational distance model proposed in [6]. It captures
latent representations through modeling translational distance between re-
lations and entities in vector spaces.

– TransD is another KG embedding method proposed in [7] that projects
entity vectors via a dynamic mapping matrix.

– ComplEx is a semantic matching model proposed in [9]. TransE, TransD
and ComplEx are the pre-trained models used in KBGAN algorithm men-
tioned above and implemented using open-source code1.

– KBGAN(TransE+ComplEx) is an adversarial learning model proposed
in [10], using pre-trained model TransE as discriminator and ComplEx as
generator.

– KBGAN(TransD+ComplEx) is the same adversarial learning model pro-
posed in [10], taking pre-trained model TransD as discriminator and Com-
plEx as generator.

4.3 Evaluation Metrics

Following previous works such as TransE [6] and ComplEx [9], two commonly
used metrics, filtered mean reciprocal rank (MRR) and hits at 10 (Hits@10), are
used in the following experiments. We follow the similar filtered setting [6] in the

1 https://github.com/cai-lw/KBGAN
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experiments to avoid false corrupted triples (true facts) showing in evaluation
process. The mean reciprocal rank MRR can be computed using Eq. 9:

MRR =
1

2 ∗ |Tt|
∑

(h,r,t)∈Tt

1

rankh
+

1

rankt
(9)

whereTt is a set of test triples in link prediction task and the number of test
triples is denoted as |Tt|.

The Hits@10 is the proportion of correct entities ranked in top 10 after
calculating the scores and ranking them in descending order:

Hits@10 =
1

2 ∗ |Tt|
∑

(h,r,t)∈Tt

I(rankh ≤ 10) + I(rankt ≤ 10) (10)

where I(·) is an indicator function representing that whether the ranks on head
or tail entities are within 10 or not.

4.4 Results

Following KBGAN [10], our model KSGAN also utilizes pre-training models (e.g.
TransE, TransD and ComplEx) as generator and discriminator in the adversarial
learning network. In pre-training process, the aforementioned models are trained
1000 epochs, taking 100 training data as mini-batch. In each epoch, we generate
corrupted triples by replacing head or tail entities from a given true triple (h, r, t)
based on the average number of tails per head or heads per tail, similar to
previous works (e.g. TransH). Using both true triples (h, r, t) and corrupted
triples (h′, r, t′), a knowledge graph embedding model is trained as well as carry
out early-stop process every 50 epochs by testing the model on the validation
dataset and recording MRR and hits@10. Following KBGAN, the dimension
of embedding vectors is set to 50 and the value of margin γ in translational
distance models (e.g. TransE and TransD) is 3 for the scoring function that
use L1 distance. The value of regularization λ in semantic matching models (e.g.
ComplEx) is 1 for FB15k-237 and 0.1 for WN18/WN18RR. We use Adam [27] to
update the model parameters in each epoch with their default settings α = 0.001,
β1 = 0.9, β2 = 0.999, ε = 10−8.

In adversarial training process, the pre-trained models are loaded in KSGAN.
Following the settings in KBGAN, the size of candidate entity set is set to 20
and the discriminator is trained 5000 epochs with 100 batches. Early-stop is
carried out per 100 epochs evaluating the metrics such as MRR and hits@10 on
validation sets. We regard translational distance models (e.g. TransE or TransD)
as discriminator and semantic matching models (e.g. ComplEx) as generator as
well as attempt to exchange the roles between them.

In KSGAN, two different types of models are considered and each type has
two combinations in our experiments, (1)ComplEx is used as generator while
TransE or TransD are as discriminator, named as KSGAN(TransE+ComplEx)
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Fig. 2. The results of hyperparameter tunning using MRR and Hits@10.

or KSGAN(TransD+ComplEx) and (2) TransE or TransD acts as the role of gen-
erator while ComplEx is discriminator, denoted as KSGAN(ComplEx+TransE)
or KSGAN(ComplEx+TransD). The number of selection set Ss not only affects
the embedding in the discriminator but also affects rewards returned to the gen-
erator. Thus, to obtain the optimal value of the hyperparameter Ss, KSGAN is
tested with different values Ss = 3, 5, 7, 9, 11, 13, 15, 17, 19 on the three datasets.

The results of hyperparameter Ss tunning on the validation dataset are shown
in Fig. 2. The testing results compared with other baselines are shown in Table 3.
The performances of KSGAN on the validation dataset, as shown in Fig. 2,
improve when Ss increases from 3 to 15 and the results on MRR tend to be
stable when Ss is larger than 15. We thus select 15 as the optimal value for
the hyperparameter Ss. The testing results of KSGAN on the three datasets
FB15k-237, WN18 and WN18RR with optimized Ss is displayed in Table 3.

The results show that KSGAN has improvements on the three datasets es-
pecially on WN18 (about 12.2% increasing for KSGAN(TransE+ComplEx) and
4.5% for KSGAN(TransD+ComplEx)), compared with KBGAN using the same
evaluation metric MRR. However, when testing on FB15k-237, the results are
equal to KBGAN on MRR but have slight improvements using Hits@10. The
results show that KSGAN has a improvement on MRR (about 1% for KS-
GAN(TransE+ComplEx) and 2% for KSGAN(TransD+ComplEx)) and Hits@10
(about 2% for both models) on WN18RR. The performances of models KS-
GAN(ComplEx+TransE) and KSGAN(ComplEx+TransD) on Hits@10 demon-
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Table 3. The performance comparision of models by setting Ss = 15.

FB15k-237 WN18 WN18RR

Models MRR Hits@10 MRR Hits@10 MRR Hits@10

TransE(pre-trained)) 24.2 42.2 43.3 91.5 18.6 45.9

KBGAN(TransE+ComplEx) 27.8 45.3 70.5 94.9 21.0 47.9

KSGAN(TransE+ComplEx) 27.9 46.2 79.1 95.4 21.2 48.7

TransD(pre-trained) 24.5 42.7 49.4 92.8 19.2 46.5

KBGAN(TransD+ComplEx) 27.7 45.8 77.9 94.8 21.5 46.9

KSGAN(TransD+ComplEx) 28.0 46.5 81.4 95.2 22.0 47.9

ComplEx(pre-trained) 26.4 43.6 76.1 92.3 37.2 45.3

KSGAN(ComplEx+TransE) 26.7 44.0 92.8 95.0 40.5 45.5

KSGAN(ComplEx+TransD) 26.8 44.0 92.8 95.0 40.6 45.6

strate the improvements on WN18 (about 2.9%) but the results on the rest
datasets are almost equal to KBGAN indicating that TransE and TransD have
little help to improve Hits@10. It is worth noting that KSGAN achieve a dra-
matic improvement on MRR on WN18 (about 21.9%) and WN18RR (about 9%
for both models) but have slight improvements on MRR on FB15k-237 (about
1.1% for KSGAN(ComplEx+TransE) and 1.5% for KSGAN(ComplEx+TransD)),
compared with the pre-trained model ComplEx.

5 Conclusions

This paper proposes a new model for negative sampling in knowledge graph em-
bedding models to generate high-quality negative samples for avoiding the zero
loss problem. Based on an adversarial learning framework, pre-trained models
TransE, TransD and ComplEx are used as generator and discriminator in an
exchanged way. Experiment results on three widely used datasets show that the
performances of our proposed model have improvements compared with baseline
methods when setting optimal hyperparameters, demonstrating that the perfor-
mance of proposed adversarial learning network is effective for link prediction.
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