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Abstract. Classifying temporal relations between events is an important step of
understanding natural language, and a significant subsequent study of event
extraction. With the development of deep learning, various neural network
frameworks have been applied to the task of event temporal relation
classification. However, current studies only consider semantic information in
local contexts of two events and ignore the syntactic structure information. To
solve this problem, this paper proposes a neural architecture combining LSTM
and GCN. This method can automatically extract features from word sequences
and dependency syntax. A series of experiments on the Timebank-Dense corpus
also show the superiority of the model presented in this paper.
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1 Introduction

An event is a description of a certain behavior or state in a specific time and
environment [1]. From the perspective of time, events may occur in a time interval or
last for a period of time. Therefore, these events usually follow a sequential order.
Event temporal relation classification is to identify the order of events according to
the characteristics of time clues. Classifying temporal relations between events is a
basic task of natural language processing. It has direct application in tasks such as
question answering, event timeline generation and document summarization.
Temporal relations between events are various, such as "BEFORE", "AFTER", etc.

Temporal relation classification aims to classify these relations correctly. Fig. 1 shows
some examples of event temporal relations. S1 is an intra-sentence event pair
( boom, layoffs ) with ‘BEFORE’ relation. S2 is a cross-sentence event pair
( break , visit ) with ‘AFTER’ relation.

Previous works studied this task as the classifification problem based on pattern
matching and statistical machine learning. However, these methods need external
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resources to obtain semantic information, and depend on a large number of annotated
entity attributes, which are difficult to be obtained in the practical scenarios. With the
development of deep learning, temporal relation classification no longer depends on
manual features and external resources. However, existing studies only consider
semantic information in local contexts of two events and ignore syntactic information.
How to make better use of syntactic structure information becomes the key.

Fig.1. Examples of event temporal relation
In this paper, we proposes a neural architecture combining LSTMs and GCNs to

better compute the representation for each word based on the syntactic dependency
tree. Compared with existing studies, our model can achieve competitive results.

2 Related Work

Previous works of temporal relation classification are based on pattern matching and
statistical machine learning. Mani et al. [2] built MaxEnt classififier on hand-tagged
features for classifying temporal relations. Later Chambers et al. [3] used a two-stage
classififier which first learned imperfect event attributes and then combined them with
other linguistic features obtained from WordNet [4] and VerbOcean [5] in the second
stage to perform the classifification. The following works mostly expanded the
feature sets(Cheng et al.[6]; Bethard and Martin[7]; Kolomiyets et al.[8]).

In recent years, neural networks has been widely applied in the temporal relation
classification. Xu et al. [9] perform LSTM with max pooling separately on each
feature channel along dependency path. Cheng et al. [10] extracted the shortest
dependency path from the dependency syntax tree, obtained good results through Bi-
LSTMs. Choubey et al. [11] introduced more event context information based on the
shortest dependency path and used Bi-LSTMs for Classifying Temporal Relations
between Intra-Sentence Events.

In addition, Ning et al. [12] developed a probabilistic knowledge base acquired
from the news domain, existing temporal extraction systems can be improved via this
resource. Then Ning et al. [13] presented a joint inference framework using
constrained conditional models (CCMs) for temporal and causal relations.

Compared with feature-based methods, neural networks based on dependency path
achieves more advanced performance. But it causes lack of information and doesn't
take the syntactic structure into consideration. In this paper, we present a sequential
model with LSTMs and GCNs that can better compute the representation for each

S1: And at the big brokerage houses, after ten years of boom, they're talking
about layoffs.

S2: a. The main negative is the risk that the pope's visit will persuade a great
many more cubans to break loose of the cuban government.
b. If so, then the pope's visit would really open up a new chapter in the
government's relations with its own society.
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word by combining semantic and syntactic information. Thus, the overall
performance of event temporal relation classification is improved.

3 Graph Convolutional Networks

3.1 Graph Convolutional Networks

GCNs(Kipf and Welling(2017)[14]) are neural networks that operate directly on
graph structures. It convolves the features of neighboring nodes and also propagates
the information of a node to its nearest neighbors. Let ),( EVG  be a undirected
graph where V is the set of nodes ( nV || ) , E indicates the edge set. We can define

a matrix ndX R denoting d-dimensional input node features. GCNs retrieve new
node features at layer k+1 by encoding neighboring nodes’ features with the
following equation:
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Here, ddW R and db R are a weight matrix and a bias, respectively;
RELU is the rectifier linear unit activation function. v is the target node and vN
represents the neighborhood of v, including v itself. k

vh is hidden representation of

node u at layer k and vv xh 1 .
3.2 Syntactic Graph Convolutional Networks

The above GCNs can only be used for the topological structure of undirected graph,
while syntactic dependency trees are directed and there are various types of edges.
This paper refers to the Syntactic GCNs proposed by Marcheggiani[15] and modifies
the computation in order to incorporate label information.

Fig.2 An example sentence annotated with syntactic dependencies

We add an arc in the opposite direction for each arc in the syntactic dependency tree.
The syntactic dependency tree can be viewed as a graph whose edges are labeled. The
label ),( vuL for edge Evu ),( contains two pieces of information. It describes
the syntactic dependency type and indicates whether the edge is in the same or
opposite direction as the syntactic dependency arc. For example, Fig. 2 shows the
dependency graph of sentence “Annan rejects these arguments”. After adding arcs in
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the opposite direction, both (rejects, Annan) whose label is nsubj and (Annan, rejects)
whose label is nsubj’ belong to the edge set. We correspond label types to different
weight matrices and bias terms to represent different combinations of directions and
dependency types. In other words, the syntatic GCN parameters are label-specific.
The computation can be written as shown below. The specific model is shown in Fig.
3 (the bias terms are omitted in the figure).
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Fig.3 Syntactic GCN

Due to various dependency types and the arcs added, there are too many parameters in
the model. To avoid over-fitting, we only keep the direction of each label and do not
care about specific categories. So the label ),( vuL can be reduced to three types: (1)
the same direction as the syntactic dependency arc, (2) the opposite direction to the
syntactic dependency arc, or (3) point to itself.
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4 Event Temporal Relation Model Based on GCNs

The overall architecture of the proposed event temporal relation system is illustrated
in Fig. 4. The system contains two identical network modules, corresponding to the
processing process of two event sentence sequences. Each moudle is composed of
four components: word embedding layer, Bi-LSTM layer, Syntactic GCN layer and
max pooling layer. At the top of the model, there is the hidden layer, followed by the
softmax layer for classification. The model is described in detail below.

Fig.4 Event temporal relation classification model based on GCN

4.1 Word representations

Given the sentences of an event pair, for each word in the sentences, we create a word
representation tX . The word representation is the concatenation of four vectors:(i)a

pre-trained word embedding wordx (ii) a randomly initialized part-of-speech tag

embedding posx (iii) a randomly initialized embedding disx which represents the

distance between the word and the event word (iiii) a randomly initialized
dependency relation type embedding depx . It is noteworthy that depx cover the

shortage of syntactic GCNs that ignoring dependency relation types to some extent.
The final word representation as follows:

depdisposwordt x xxxX （3）

4.2 Bidirectional LSTM layer

Recurrent neural network is one of the most effective ways to represent sentences. In
order to further improve the representation ability of our model, we use Bi-LSTM to
transform the underlying input. At the same time, Bi-LSTM can make up the inability
of GCNs to capture dependencies between nodes far away from each other in the
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graph. For each word representation tX , Bi-LSTM layer encodes it in two directions
respectively. By concatenating outputs of two directions, we create a complete
context-aware representation of a word:

),,LSTM( 1







 ttt hXh （4）

1LSTM( , ),t t t

 

h X h （5）


 ttt hhh （6）
4.3 Syntactic GCN layer

GCN is used to solve the problem of general neural networks that not easy to deal
with topological structure. We use GCN to extract syntactic features from dependency
trees. The representation calculated by Bi-LSTM layer is fed to a GCN defined in
Equation (2). The output k

th of GCN is obtained. So the vector representation of

event sentences are
1 21 1 1 1{ , ,... }

n

k k k kH h h h and },...,{ 2222 21

kkkk
n

hhhH  .

4.4 Max Pooling layer

Max pooling layer is added to select the maximum value of each column of the GCN
outputs and the most informative data to form the final representation of event
sentences.

)(max 1dim
kHl  （7）

4.5 Hidden layer

Finally, the representation of two event event sentences produced by max pooling
layer are concatenated and fed into the hidden layer.

),concat( 21 llL  （8）
)tanh( hh bLWY  （9）

Where 21, ll are the representations of two event sentences, respectively. hW is the

weight matrix and hb is bias of tanh function.
4.6 Temporal relation classifier

After the hidden layer, a softmax classififier predicts probabilites for each of the six
classes:

)softmax( ooo bYW  （10）

Where Y represents the output of the event sentences vector through the hidden
layer, and oW is the weight matrix and ob is bias of softmax function.

In this paper, stochastic gradient descent algorithm is used to minimize the
negative logarithmic likelihood function for model training. The objective function is
defined as follows:



7

),|(log)(
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Where  is the trainable parameter set of the model; n Represents the number of
training samples; ix Represents the i th sample of the training sample and iy is the
corresponding label.

5 Experiments

5.1 Datasets

We tested the proposed model on the TimeBank-Dense(TB-D) dataset to certify its
validity and correctness.

TimeBank-Dense contains 36 documents annotated with 6 temporal relation types,
including “ AFTER ”， “ BEFORE ”， “ SIMULTANEOUS ”， “ INCLUDES ”，
“IS_INCLUDED”，“VAGUE”. “VAGUE” indicates event pairs whose temporal
relations are unclear or missing. TB-D annotates 6088 event pairs and their specific
distribution is shown in table 1.

Table 1. Event pairs distribution of TB-D corpus

Relation Inter-sentence Cross-sentence
AFTER 436 684
BEFORE 542 806

SIMULTANEOUS 49 44
INCLUDE 94 182

IS_INCLUDED 174 173
VAGUE 793 2111
Overall 2088 4000

5.2 Cross-validation and Hyper-parameters

We use a sentence-level 5-fold cross validation on the TB-D corpus and take the
micro-average overall F1-score as the final result. We randomly sampled 15% of the
training set acted as validation set. Early stopping is used to save the best model based
on the validation data.The patience is set as 10. We use 200-dimensions pre-trained
word embeddings from GloVe (Pennington et al., 2014)[16]. For POS and relative
distance, we adopt the 50-dimensions look up table initialized randomly. For
dependency relation, we adopt the 30-dimensions.

The batch size is 64. Adam optimization algorithm is adopted and the initial
learning rate is 0.001. In order to prevent neural networks from over-fitting, we adopt
dropout separately after embedding, Bi-LSTM, and hidden layer. The dropout ratio is
0.5. We set each single LSTM output with 128 dimensions, layer number is 3. GCN
output is 256 dimensions, layer number is 2. The hidden layer is set as 200-
dimensions.
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5.3 Results and discussion

Comparison with previous studies. We compare the proposed system with two best
performing feature-based systems and the best system in the neural network
architecture.
 CAEVO: Chambers et al.[17](2014) proposed a hybrid system based on filter

architecture. The system combines hand-crafted rules and hand-tagged features.
 MIRZA：Mirza and Tonelli[18](2016) mined the value of low dimensions word

embeddings by concatenating them with sparse traditional features. Their
traditional features includes entity attributes, temporal signals, semantic
information of WordNet, etc..

 Cheng: Cheng et al.[10](2017) built a LSTM classifier based on dependency path .
They extracted the shortest dependency path and take the word, part of speech
and dependency relation as input features.

Table 2. Comparison with the existing methods
Relation CAEVO MIRZA Cheng Ours
AFTER - 43.0 44.0 57.4
BEFORE - 47.1 46.0 54.2

SIMULTANEOUS - - - -
INCLUDE - 4.9 2.5 27.8

IS_INCLUDED - 25.0 17.0 32.3
VAGUE - 61.3 62.4 62.5
Overall 49.4 51.9 52.9 56.8

Table 2 shows the detail results. Compared with MIRZA, F1 increased by 4.5% ,
proving that neural networks has a significant effect on mining deep information of
sentences. The comparison with Cheng also shows the superiority of our work.

Effect of GCNs. In order to confirm the impact of GCN, we compare our model
against its version which lacks GCN layers and which lacks LSTM layers. Table 3
lists the detail comparisions. The last two columns represent our model, and k
represents the layer number of GCN.
Experimental results show the efficiency of our model in temporal relation

classification. GCN performs better than LSTM, no matter its layer number is 1 or 2.
The classifier with LSTM and one GCN layers (K = 1) performs the best, which
proves the complementarity of GCNs and LSTMs. Compared with the LSTM, F1
increased by 3.0%. The reason why the improvements is clear. Bidirectional LSTM
only encodes semantic information while GCN takes the features of neighboring
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nodes into consideration and models syntactic information. The experimental results
prove the necessity of syntactic structure for temporal relation classification.
2 GCN layers performs better than 1 GCN layer when LSTM layers are dropped

altogether. But when combined with the LSTM, F1 of 1 GCN layer increased by 2.8%
while F1 of 2 GCN layers decreased by 1.4%. This suggests that extra GCN layers are
effective but when there are too many layers it is largely redundant with respect to
what LSTMs already capture.
In addition, to measure the influence of ignoring dependency relation types , we

delete depx from the word vector tX . Removing dependency types leads to a drop

of 0.4% F1. It shows that the loss of syntactic dependency types has an effect on the
results. We still can't throw out the type information completely.

Table 3. The effect of GCN on experimental performance

Relation

LSTM GCN
(k=1)

GCN
(k=2)

LSTM
+GCN

- depx (k=1)

LSTM
+GCN
(k=1)

LSTM
+GCN
(k=2)

AFTER 53.6 54.3 58.6 59.1 57.4 55.0
BEFORE 48.4 48.4 51.0 53.7 54.2 49.1

SIMULTANEOUS - - - - - -
INCLUDE 12.9 16.3 16.4 29.6 27.8 18.6

IS_INCLUDED 28.5 28.7 31.3 26.9 32.3 29.1
VAGUE 60.9 61.2 62.1 61.6 62.5 61.7
Overall 53.8 54.0 56.0 56.4 56.8 54.6

6 Conclusion

In this paper, we propose an event temporal relation model based on graph
convolutional networks (GCN). We combine LSTM and GCN to extract not only
sequential features but also regional dependency features for each word. It overcomes
the inability of traditional neural network model to process syntactic structure
information of text. Compared with most previously proposed methods, our model is
competitive. However, there is room for improvement. For example, the current
researches mainly focus on event pairs, which may lead to inconsistent situations
when constructing time chains later. In future studies, we can introduce linear
programming to improve the overall performance of the model.
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