
A Multi-pattern Matching Algorithm for Chinese-Hmong

Mixed strings

Shun-Ping He, Li-Ping Mo* and Di-Wen Kang

College of Information Science & Engineering, Jishou University, Jishou 416000, Hunan,

China

zmx89@jsu.edu.cn

Abstract. To solve the problem of rapid retrieval of Chinese-Hmong mixed text,

a multi-pattern matching algorithm in double-bytes unit combined with the idea

of AC algorithm and the mismatch processing strategy of Horspool algorithm is

proposed for the Chinese-Hmong mixed strings. In this algorithm, a deterministic

finite automaton is constructed based on the pattern-set according to the idea of

AC algorithm, and the moving distance of the pattern is calculated by the bad-

character rule of the Horspool algorithm, and the text is only traversed once to

complete the quick search task of all patterns by using the finite automata. The

experimental results show that the proposed algorithm has a good performance

in multi-pattern matching for Chinese-Hmong mixed texts in different scale, even

for the mixed texts containing more than 100,000 characters, the matching effi-

ciency is also significantly higher than the AC algorithm.

Keywords: Natural Language Processing, Multi-pattern Matching, AC Algo-

rithm, Horspool Algorithm.

1 Introduction

Square Hmong characters were created in the late Qing Dynasty of China and have

been mainly used in the Hmong settlements such as Wuling Mountain District. Hmong

informatization is one of great significances to promote the development of the local

national cultural tourism industry and the digital protection of the intangible heritage

of the Hmong culture. Information retrieval is a bottleneck to hinder the further research

of the Hmong informatization. A high-performance pattern matching algorithm for

strings is crucial to realize the fast retrieval of the square Hmong information.

According to the word formation, a square Hmong character represents a morpheme

or word [1]. The square Hmong words in practical applications mainly containing sin-

gle character or two characters, and few words containing 3 characters or more. More-

over, the square Hmong characters are usually mixed with Chinese characters, appear

in the Chinese-Hmong songbook and script. The information retrieval mainly searches

for a meaningful square Hmong string or Chinese-Hmong string from the mixed text.

Obviously, compared to English, the mixed character set of the square Hmong charac-

ters and Chinese characters is a large character set, and the probability that the Chinese-

2

Hmong string is repeated in the text is very low, so mismatches are common. In previ-

ous research, Zeng L. et al. proposed a Horspool extension algorithm for matching the

square Hmong string [2]. This algorithm directly expands the English character into

words, and treats the double-bytes of square Hmong character as a whole. Only when

the double bytes are completely equal, it is regarded as a square Hmong character

matched. The experimental results show that the mentioned algorithm can solve the

string search problem of square Hmong text. However, the algorithm is a single-pattern

matching algorithm, which cannot search for multiple Chinese-Hmong mixed strings

in text at one time. This paper presents an AC-EH algorithm, which combines the above

Horspool extension algorithm with the AC algorithm, and can used to solve the multi-

pattern matching problem of Chinese-Hmong mixed strings.

The rest of this paper is organized as follows. Section 2 introduces the basic princi-

ples of AC algorithm and Horspool algorithm. Section 3 depicts the proposed AC-EH

algorithm. Section 4 verifies the feasibility of proposed algorithm by using the case

study and experiment analysis. Section 5 concludes the paper.

2 Principles of AC Algorithm and Horspool Algorithm

2.1 AC Algorithm

Aho-Corasick automata algorithm (AC algorithm) is one of the most famous multi-

pattern matching algorithms, and it utilizes the common prefix relationship among pat-

terns to achieve efficient jumps in pattern mismatch. To some extent, AC algorithm can

be regarded as an extension of the KMP algorithm in a multi-pattern context, but it has

far better performance than the KMP algorithm [3-4]. Similar to the contribution of the

KMP algorithm to the field of single pattern matching, AC algorithm has had a pro-

found impact on the development of multi-pattern matching algorithms, it and its im-

proved algorithms are still widely applied in various fields of pattern matching.

AC algorithm is based on the Deterministic Finite Automata (DFA) constructed ac-

cording to the pattern-set, and converts the comparison of characters into the transition

of the states of the DFA. The AC automata is represented as a six-tuple M = (K, A, g, f,

S, Z), where the following hold.

(1) K is a finite set, and each element of it is called a state.

(2) A is a finite alphabet, and each element of it is called an input symbol.

(3) g is a state transition function, which is an map on K×A→K, corresponding to

the function goto.

(4) f is failure function, which is also an map on K×A→K, indicating a state transition

when a pattern mismatch occurs, corresponding to the function failure.

(5) S∈K, is the initial state and unique.

(6) ZK, is the final state set. The final state marked as double circles is also called

an acceptable state or an ending state, corresponding to the function output.

The AC algorithm first preprocesses the pattern-set, establishes a function table cor-

responding to the functions goto, failure and output, and constructs a DFA used for

pattern matching with a mismatch pointer accordingly. Then, with the DFA, the three

3

functions described above are used to scan the text to be matched to find all occurrence

positions of each pattern in the text. If the current state fails to match, it goes to the state

indicated by the mismatch pointer of the current state, and the matching is continued.

AC algorithm eliminates the influence of the pattern-set size on the matching speed

by preprocessing. For the text T to be matched with length n and the pattern-set P={p1,

p2, p3,..., pq} with q patterns, AC algorithm only needs to scan T once to complete the

searching for each pattern in P without backtracking, and can find all the patterns that

have been successfully matched. Obviously, the time complexity of the AC algorithm

is only related to the length n of T, is O(n).

2.2 Horspool Algorithm

The Horspool algorithm is derived from the BM algorithm. The BM algorithm with a

time complexity of O(n) is one of the most famous single pattern matching algorithms,

which calculates the maximum value of pattern shift distance using bad-character rule

and good-suffix rule at the same time [5]. Due to skipping a lot of characters that don't

need to match, the performance of the BM algorithm is 3-5 times better than that of the

KMP algorithm in practical applications [6-7]. There are many improved versions of

the BM algorithm [8-12], and the Horspool algorithm is one of them, which fixes the

last character of the current matching-window as a bad-character, and only uses the

bad-character rule to calculate the moving distance of the pattern [12]. Because the

calculation of the distance based on good-suffix rule and the selection of the maximum

value in BM algorithm are all avoided, its efficiency is significantly higher than that of

the BM algorithm in practical applications.

For simplicity, the substring currently matched in T to be matched is denoted as

T[i]…T[i+m-1]. Where, i is the starting position of the substring, and 0≤i≤n-m.

T[i]…T[i+m-1] is also called a matching-window. Suppose T[i+j] and P[j] represent

the currently processed character in T and P, respectively. Where, j is the matching

position of the substring, and 0≤j≤m-1. The algorithm takes the last character T[i+m-1]

in window as a bad-character, and compares it with the last character P[m-1] of the

pattern. If the matching successes, the algorithm continues to compare the remaining

characters in T and P one by one from right to left until they are completely equal or

there is a mismatch at a certain character position. If the matching fails, T[i+m-1] acts

as a bad-character, and the algorithm tries to find the last position k (-1≤k≤m-2) where

the bad-character T[i+m-1] appears in P, and then moves P to the position where T[i+m-

1] and P[k] are aligned, and the next match will be continued.

To get the moving distance the pattern, the position of the last position k of each

character in P and the distance of position k from P[m-1] must be stored in advance.

This distance is denoted as shift[P[k]], which indicates the moving distance of P when

T[i+m-1] is a bad-character, and is calculated by the following Eq.(1).

 s [[]] -1- (-1 -2)hif P k m k k m   (1)

In Eq.(1), k=-1 means that the current character does not appear in P, and the moving

distance P is m.

4

Horspool algorithm performs character comparison from right to left, shifts the pat-

tern from left to right, and fixes the last character of the current matching-window as a

bad-character, and only needs to scan the text T to be matched once to find all the sub-

strings that match the pattern, so the time complexity is O(n). Obviously, the more

common the character mismatch, the better the performance of the Horspool algorithm.

3 Proposed AC-EH Algorithm

3.1 Basic Principle of AC-EH Algorithm

The proposed AC-EH algorithm takes double-bytes as a matching-unit to execute

matching for Chinese-Hmong mixed strings by combining the basic idea of AC algo-

rithm with the mismatch processing strategy of Horspool algorithm. Similar to the AC

algorithm, the AC-EH algorithm preprocesses the pattern-set before performing match-

ing, that is, constructs three lookup tables corresponding to functions goto, output, and

shift based on the pattern-set. The values of the three tables will be filled in during the

calculation of the three functions. And then, the algorithm includes three stages. Firstly,

the DFA is constructed and the corresponding functions goto and output are calculated

according to the basic AC algorithm. Secondly, the function shift of the pattern is gen-

erated by using the bad-character heuristic rule of Horspool algorithm. Finally, the pat-

tern matching is operated on the DFA. In the matching process, the functions goto,

output and shift are used to scan the text to be matched and search for the patterns by

moving DFA. When a mismatch occurs, the last character in the matching-window is

fixed as a bad-character according to the mismatch processing strategy of the Horspool

algorithm and the bad-character-based heuristic rule, and the pattern is moved based on

the shift value of the current bad-character, and the matching is continued.

3.2 Construction of DFA and Calculation of Function goto

Construction of DFA and calculation of function goto are crossed. AC-EH algorithm

creates an initial state 0 of the DFA, and starts from the initial state 0, for each pattern

pi[1...Len] of the pattern-set P (1≤i≤q), generates the value of the function goto and

other states of DFA. Suppose that the length of the text T to be matched is n, the pattern-

set with q patterns is P={p1, p2, p3,..., pq}, and the maximum and minimum lengths of

each pattern in P are MaxLen and MinLen, respectively. Let’s denote the current state

as Dk, the steps for generating DFA and function goto are as follows.

Step1: Take the initial state 0 as Dk.

Step2: When Dk faces the input character pi[j] (1≤j≤Len), it is checked whether there

is such a state Dt in the direct successors of Dk (ie goto(Dk, pi[j])=Dt). If it does, goto

Step3, otherwise, goto Step4.

Step3: Dk=Dt, take the next character pi[j+1] as the current input character, and goto

Step2.

5

Step4: Construct goto(Dk, pi[j])=Dt and check if the current input character is the last

character pi[Len] of the pattern pi. If yes, goto Step5; otherwise, goto Step3.

Step5: Dt is denoted as the final state.

3.3 Calculation of Function Output and Function shift

Assume that the current state Dk is a final state, and there is a path from the initial state

0 to the state Dk. If all characters on the path are sequentially connected to obtain the

string t1, then output(Dk)= t1.

In the process of pattern matching with DFA, if the input character a is faced in the

current state Dk, and a state Dt that makes goto(Dk, a)=Dt is not found, the shift value is

calculated by the following Eq.(2).

  1{ |)} is as a non-first character

 of string in th

,1 ,

()

e patte

rn

k
Min j P j a j MinLen k q

shift a

MinLen

a    



 others







 (2)

3.4 Description of AC-EH Algorithm

The AC-EH algorithm steps of multi-pattern matching using DFA for Chinese-Hmong

mixed strings are as follows:

Step1: Preprocess pattern-set, generate functions goto and output, and construct

DFA.

Step2: Traverse DFA, calculate the shift value of each character in T according to

Eq.(2), and record it in the shift table.

Step3: Align the last character of the pattern pMinLen with a length of MinLen in DFA

with the last character of T, take the character a in the position where T is aligned with

the first character of pMinLen as the current character, and let the matching pointer point

to a.

Step4: Take the initial state 0 as the current state Dk, record the position Pos of the

character a in T, and move the matching pointer from a, then match characters one by

one from left to right.

Step5: If match fails, move both pointer and DFA to the left based on the shift value

at the position of character a, and then goto Step4. Otherwise, Dk=goto(Dk, a), that is,

take the next state goto(Dk, a) as the current state.

Step6: Check if state Dk is a final state. If yes, call the function output, store the value

of output(Dk) and Pos value in the output table, then move the pointer and DFA to the

left to MinLen characters, and then goto Step4. Otherwise, take the next character in T

as the current character a, start the next comparison.

Step7: End the matching process. At this time, if the output table is empty, it means

that T does not contain any pattern in P. Otherwise, the contents of the output table are

just those patterns in P that appear in T.

6

4 Case Study and Related Experiment Analysis

4.1 Case Study

Given the Chinese-Hmong mixed text T to be matched and the pattern-set P={p1, p2,

p3, p4, p5} as shown in Fig.1. The MinLen value of the pattern in P is 5. The shift value

of each character in T is calculated according to Eq.(2) as shown in Fig.2.

Fig. 1. The content of the text T and the pattern-set P

Fig. 2. The shift value of each character in T

The following Fig.3 to Fig.7 show the execution of the AC-EH algorithm.

Fig. 3. The 1st diagram of algorithm execution case

In Fig.3, since the MinLen value is 5, the last 5 characters of T are aligned with the

characters of the shortest pattern in the DFA. Starting from the initial state 0 in DFA

and the current character ‘东’ in T, the pointer is moved from left to right. The compar-

ison in a character-by-character manner is done. When the final state 8 is reached, the

pattern p2 matches successfully. At this time, the output value of the final state 8 is p2,

and the position where p2 appears in T is 19. Then, values p2 and 19 are stored in the

output table. And then, according to MinLen value, the pointer and the DFA are both

moved 5 character-positions to the left as shown in Fig.4.

Fig. 4. The 2nd diagram of algorithm execution case

7

In Fig.4, matching is performed from the initial state 0. At this time, the current

character ‘方’ in T does not match the character ‘东’ in the aligned position of DFA.

Since the shift value of the character ‘方’ is 1, the pointer and the DFA are both moved

1 character-position to the left as shown in Fig.5.

Fig. 5. The 3rd diagram of algorithm execution case

In Fig.5, matching is performed from the initial state 0. At this time, the current

character ‘东’ in T matches the character ‘东’ of the aligned position in the DFA. Start-

ing from the character ‘东”, the pointer is moved from left to right, and the comparison

in a character-by-character manner is done again. When the final state 16 is reached,

the pattern p5 matches successfully. At this time, the output value of the final state 16

is p5, and the position where p5 appears in T is 13. Then values p5 and 13 are stored in

the output table. According to MinLen value, the pointer and the DFA are both moved

5 character-positions to the left as shown in Fig.6.

Fig. 6. The 4th diagram of algorithm execution case

In Fig.6, similar to the method described above, the pointer and the DFA are both

moved to the left by 1, 2, and 3 character-positions in sequence until the current char-

acter ‘东’ in T matches the character ‘东’ of the aligned position in the DFA (as shown

in Fig.7). Starting from the character ‘东’, the matching pointer is moved from left to

right, the comparison in a character-by-character manner is done again. When the final

state 5 is reached, the pattern p1 matches successfully. At this time, the output value of

the final state 5 is p1, and the position where p1 appears in T is 1. Then, values p1 and

1are also stored in the output table. Finally, the matching is completed and the result is

obtained by output table, that is, {(p2,19), (p5, 13) , (p1,1)}.

8

Fig. 7. The 5th diagram of algorithm execution case

4.2 Experiment Analysis

AC-EH algorithm was implemented in Java, all multi-pattern matching experiments

were carried out under the conditions of Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz,

4G memory and Win7 operating system. For the pattern-set composed of 5 patterns of

length 1-10 and 3 mixed texts T1, T2 and T3 to be matched with lengths of 5185, 37770

and 147645 words, both AC-EH algorithm and AC algorithm had an accuracy of 100%.

Time-consuming data of two algorithms in experiments are shown in Table 1. The TNo,

TLen, PLen1-PLen5, AC-EH_Time(ms), and AC_Time(ms) in the table respectively rep-

resent the number and length of the text to be matched, length of the five patterns, and

time-consuming data of the AC-EH algorithm and the AC algorithm.

Table 1. Time-consuming comparison of two algorithms

TNo TLen PLen1 PLen2 PLen3 PLen4 PLen5 AC-EH_Time AC_Time

T1 5185

1 1 1 1 1 6.770030 6.825193

2 2 2 2 2 5.965028 6.885809

3 3 3 3 3 5.200117 6.930709

4 4 4 4 4 5.007366 6.795045

5 5 5 5 5 5.067660 6.975610

6 6 6 6 6 4.819424 6.507041

7 7 7 7 7 4.885172 7.446423

8 8 8 8 8 4.778373 7.305949

9 9 9 9 9 5.080809 7.562844

10 10 10 10 10 5.071509 7.551619

T2 37770

1 1 1 1 1 13.082075 10.677013

2 2 2 2 2 9.653281 10.356616

3 3 3 3 3 8.607421 11.226723

4 4 4 4 4 7.597803 10.621849

5 5 5 5 5 8.734105 11.134998

6 6 6 6 6 7.187924 10.582401

7 7 7 7 7 7.051941 11.020822

8 8 8 8 8 6.687605 10.877140

9 9 9 9 9 7.169965 11.508313

10 10 10 10 10 6.850209 11.037500

9

T3 147645

1 1 1 1 1 31.151309 19.064743

2 2 2 2 2 26.267099 16.522093

3 3 3 3 3 21.268714 16.583350

4 4 4 4 4 19.912399 17.339282

5 5 5 5 5 17.442873 16.643965

6 6 6 6 6 16.167058 16.615101

7 7 7 7 7 16.362695 17.449288

8 8 8 8 8 15.448009 17.432931

9 9 9 9 9 15.641402 19.183729

10 10 10 10 10 14.888356 17.025298

According to table 1, the time-consuming line chart of the two algorithms for match-

ing different length patterns is shown in Fig.8.

Fig. 8. Time-consuming of two algorithms for patterns with different length

From Table 1 and Fig.8, it is easy to find that: (1) When the text such as T1 to be

matched is very short, the time performance of the AC-EH algorithm is significantly

better than that of the AC algorithm regardless of the pattern length. (2) When the text

to be matched is longer but the pattern is relatively shorter (for case, T2 matches the

pattern with length 1, T3 matches the pattern of length 1-5), the time performance of the

AC-EH algorithm is slightly inferior to the AC algorithm. (3) When the length of the

pattern is gradually increased (for case, T2 matches the pattern with the length 2 to 10,

T3 matches the pattern with the length 6 to 10), the time performance of the AC algo-

rithm remains basically stable, and that of the AC-EH algorithm is gradually improved,

which is significantly better than that of the AC algorithm.

In summary, the matching speed of the AC-EH algorithm is significantly faster than

that of the AC algorithm when the length of Chinese-Hmong mixed text and pattern is

increased to a certain extent. Even for the Chinese-Hmong mixed text containing more

than 100,000 words, the performance of the AC-EH algorithm can be better. Consider-

ing that the length of Chinese-Hmong mixed texts in the actual application are rarely

more than 100,000 words, and the patterns that need to be searched (such as a lyrics) is

usually longer, the AC-EH algorithm is suitable for solving the problem of multi-pat-

tern matching for Chinese-Hmong mixed strings.

10

5 Conclusions and Future Work

This paper proposes a multi-pattern matching algorithm for Chinese-Hmong mixed

strings by combining AC algorithm with Horspool extension algorithm. This algorithm

is simple, easy to implement, has high matching efficiency, and suitable for realizing

the rapid retrieval technology of Chinese-Hmong mixed text. In the future, we intend

to study the parallel fuzzy search algorithm for Chinese-Hmong mixed strings with

fuzzy Petri net.

Acknowledge

This work was supported by the National Natural Science Foundation of Hunan Prov-

ince (No. 2019JJ40234), the Natural Science Foundation of China (No. 61462029), the

Research Study and Innovative Experimental Project for College Students in Hunan

Province (No. 20180599) and the Research Study and Innovative Experimental Project

for College Students in Jishou University (No. JDCX20180122).

References

1. Yang, Z.B., Luo, H.Y.: On the folk coinage of characters of the Miao people in Xiangxi

area. Journal of Jishou University (social sciences edition) 29(6), 130–134 (2008).

2. Zeng, L., Mo, L.P., Liu, B.Y., et al.: Extended Horspool algorithm and its application in

square Hmong string pattern matching. Journal of Jishou University (Natrual Sciences Edi-

tion) 39(4), 150–156 (2018).

3. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search. Com-

munications of ACM 18(6), 333-340 (1975).

4. Han, G.H., Zeng, C.: Theoretical research of KMP algorithm. Microelectronics ＆ computer

30(4), 30–33 (2013).

5. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Communication of ACM 20(10),

762–772 (1977).

6. Cole, R., Hariharan, R., Paterson, M., Zwick, U.: Tighter lower bounds on the exact com-

plexity of String Matching. SIAM Journal of Computing 24(6), 30–45 (1995).

7. Cole, R., Hariharan, R.: Tighter upper bounds on the exact complexity of string matching.

SIAM Journal of Computing 26(3), 803–856 (1997).

8. Zhao, X., He, L.F., Wang, X., et al.: An efficient pattern matching algorithm for string

searching, Journal of Shanxi University of Science & Technology (Natural Science Edition)

35(1), 183–187 (2017).

9. Guibas, L. J., Odlyzko, A.M.: A new proof of the linearity of the Boyer-Moore string search-

ing algorithm. Siam Journal of Computing 9(4), 672–682 (1980).

10. Sunday, D.M.: A very fast substring search algorithm. Communications of the ACM 33(8),

132–142 (1990).

11. Wang, W.X.: Research and improvement of the BM pattern matching algorithm. Journal of

Shanxi Normal University (Natural Science Edition) 32(1), 37–39 (2017).

12. Horspool, R.N. Practical fast searching in strings. Software-Practice and Experience 10(6),

501–506 (1980).

