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Abstract. As a method for exploiting multiple heterogeneous data, su-
pervised treebank conversion can straightforwardly and effectively utilize
linguistic knowledge contained in heterogeneous treebank. In order to ef-
ficiently and deeply encode the source-side tree, we for the first time
investigate and propose to use Full-tree LSTM as a tree encoder for tree-
bank conversion. Furthermore, the corpus weighting strategy and the
concatenation with fine-tuning approach are introduced to weaken the
noise contained in the converted treebank. Experimental results on two
benchmark datasets with bi-tree aligned trees show that 1) the proposed
Full-Tree LSTM approach is more effective than previous treebank con-
version methods, 2) the corpus weighting strategy and the concatenation
with fine-tuning approach are both useful for the exploitation of the noisy
converted treebank, and 3) supervised treebank conversion methods can
achieve higher final parsing accuracy than multi-task learning approach.

Keywords: supervised treebank conversion · Full-Tree LSTM · tree-
bank exploitation · corpus weighting · concatenation with fine-tuning ·
multi-task learning.

1 Introduction

In recent years, neural network based dependency parsing has made great progress
and outperforms the traditional discrete-feature based approaches [1,3–5,17]. In
particular, Dozat and Manning (2017) [4] propose a simple yet effective deep bi-
affine parser, which achieves the state-of-the-art performance in many languages
and datasets.

Meanwhile, exploiting various heterogeneous treebanks for boosting parsing
performance is always the focus in the research community [6–10, 12–14, 18].
However, due to the lack of manually labeled data where each sentence has
two syntactic trees complying with two different annotation guidelines, called
bi-tree aligned data, as shown in Figure 1, previous works mainly focus on the

? Supported by National Natural Science Foundation of China (Grant No. 61525205,
61876116). Zhenghua Li is the corresponding author. We thank the anonymous re-
viewers for the helpful comments and Qingrong Xia and Houquan Zhou for their
help on preparing this English version.



2 Bo Zhang, Zhenghua Li, Min Zhang

$ 奶奶 叫 我 快 上学

subj

root

advobj

pred

HED

SBV ADV

VOB

DBL

Fig. 1. Example of treebank conversion from the source-side HIT (under) to the target-
side SU (upper).

unsupervised treebank conversion methods [8,10,12,13,18] and indirect treebank
exploitation methods [6, 9, 14].

Jiang et al. (2018) [7] first propose the task of supervised treebank conversion
by manually constructing a bi-tree aligned dataset. As shown in Figure 1, given
an input sentence x, treebank conversion aims to convert the source-side tree
dsrc to the target-side tree dtgt.

There are two main challenges for treebank exploitation via treebank conver-
sion. One is how to convert dsrc to dtgt with high quality (treebank conversion),
and the other is how to effectively exploit the converted treebank for higher
parsing accuracy of target side (treebank exploitation).

Jiang et al. (2018) [7] then propose the pattern embedding (PE) and the
shortest path TreeLSTM (SP-Tree) approach for treebank conversion. The PE
approach uses a custom pattern to encode dsrc, which captures the syntactic
structure correspondence between the target-side and source-side. Given a de-
pendency i← j in dtgt, they define nine patterns in accordance with the struc-
ture and the distance of wi and wj in dsrc. And then these patterns are mapped
into embedded vectors as the representation of dsrc. The SP-Tree approach uses
the bidirectional shortest path TreeLSTM to deeply encode dsrc. For scoring a
dependency i← j in dtgt, they use the concatenation of the TreeLSTM hidden
vectors of wi, wj and wa as the representation of dsrc, where a is the lowest
common ancestor node of wi and wj in dsrc.

Following Jiang et al. (2018) [7], our preliminary experiments show that
1) the performance of the PE approach is unstable since it only encodes dsrc

quite locally, especially when the two treebanks are very divergent, and 2) the
SP-Tree approach is very inefficient. for a sentence with n words, the SP-Tree
approach requires running TreeLSTM n2 times. In order to solve these problems,
we propose to use Full-tree LSTM as a tree encoder for treebank conversion,
called Full-Tree approach. We find that with proper dropping-out of the outputs
of the Full-Tree LSTM hidden cells, the Full-Tree approach can achieve slightly
higher conversion performance than the SP-Tree approach and is much more
efficient.

In terms of treebank exploitation, since the target-side treebank and con-
verted treebank comply with same guideline, Jiang et al. (2018) [7] simply con-
catenate them to train a parser, called the concatenation approach, which cannot
handle the noise contained in the converted treebank. We propose two ways to
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better exploit the converted treebank, i.e., the corpus weighting strategy and the
concatenation with fine-tuning approach.

We conduct experiments on two benchmarks of bi-tree aligned data, and the
results show that 1) compared with the treebank conversion approaches of Jiang
et al. (2018) [7], the Full-Tree LSTM approach can stably and efficiently achieve
higher accuracy, 2) the corpus weighting strategy and the concatenation with
fine-tuning approach can both effectively exploit the converted treebank and fur-
ther improve the performance of the target-side parsing, and 3) our approaches
are significantly better than Jiang et al. (2018) [7] both on treebank conver-
sion and exploitation and can significantly outperform the multi-task learning
baseline.

2 Related works

At present, major languages in the world often possess multiple large-scale het-
erogeneous treebanks, e.g., Tiger and Tüba-D/Z for German, Talbanken and
Syntag for Swedish, ISST and TUT for Italian, etc. We focus on exploitation
of Chinese heterogeneous treebanks, and select HIT-CDT [2], PCTB7 [16], and
SU-CDT [7] for case study.

Unsupervised treebank conversion. Niu et al. (2009) [12], Zhu et al.
(2011) [18], and Li et al. (2013) [8] propose to convert source-guideline treebank
into the target guideline with a statistical model, and use the converted treebank
as extra training data for boosting parsing performance. Without bi-tree aligned
data, these methods rely on heuristic rules or use automatically generated target-
side trees as pseudo gold-standard reference during training.

Indirect treebank exploitation. Li et al. (2012) [9], Guo et al. (2016) [6],
and Stymne et al. (2018) [14] propose to indirectly exploit heterogeneous tree-
banks without explicit conversion based on guide features, multi-task learning
(MTL), or treebank embedding.

Supervised treebank conversion. Jiang et al. (2018) [7] first propose su-
pervised treebank conversion task based on a newly constructed bi-tree (SUHIT)
aligned dataset. They also propose two treebank conversion approaches (PE and
SP-Tree) and use the concatenation approach to exploit the converted treebank.

In this work, we follow Jiang et al. (2018) [7] and focus on the supervised
treebank conversion task. We propose to use the Full-Tree LSTM to encode
the source-side tree to deal with the disadvantages of their PE and SP-Tree
approaches in efficiency and efficacy. For treebank exploitation, we propose to use
the corpus weighting strategy and the concatenation with fine-tuning approach,
in order to increase the impact of manually labeled data and weaken the noise
contained in converted treebank.

3 Treebank Conversion Based on Full-Tree LSTM

Basic parser. We build all our models based on the state-of-the-art biaffine
parser. As a graph-based dependency parser, it applies multi-layer bidirectional
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Fig. 2. Computation of score(j ← i) by conversion model. The left part is the biaffine
parser and the right part is the Full-Tree LSTM structure.

LSTMs (BiLSTM) to encode the input sentence, and employs a deep biaffine
transformation to compute the scores of all possible dependencies and uses
viterbi decoding to find the highest-scoring tree. The left part of Figure 2 shows
how to score a dependency j ← i. Due to space limitation, please refer to Dozat
and Manning (2017) [4] and Jiang et al. (2018) [7] for more details.

Full-Tree LSTM is proposed by Tai et al. (2015) [15] to use the information
of the whole syntactic tree, whereas SP-Tree LSTM is proposed by Miwa and
Bansal (2016) [11] as an extension of Full-Tree LSTM in task of relation extrac-
tion, which only encodes the information of nodes on the shortest path of two
focused words. In this work, we use Full-Tree LSTM as the encoder of the source-
side tree to treebank conversion. Compared with the shallow PE approach, the
Full-Tree approach uses bidirectional TreeLSTM to deeply encode dsrc with
strong stability. Compared with the SP-Tree approach, the Full-Tree approach
requires less calculation to obtain word-level representation incorporating dsrc

for all words in sentence.

As shown in the right part of Figure 2, we use the bidirectional Full-Tree
(BiFull-Tree) LSTM to encode the dsrc (bottom-up and top-down). Given a dsrc,
the bottom-up Full-Tree LSTM starts from the leaves node and accumulates
information until the root node (the inner red dashed line), whereas the top-
down Full-Tree LSTM propagates information in opposite direction (the outer
blue dashed line).

Following Jiang et al. (2018), we stack Full-Tree LSTM on the top of the
BiLSTM layer of the basic biaffine parser. Moreover, we also consider the de-
pendency label of the dsrc, and embed a label into a dense vector as the extra
input of Full-tree LSTM. For example, the input vector for wk in the Full-tree
LSTM is xk = hk ⊕ elk , where hk is the top-level BiLSTM output vector at wk,
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and lk is the label between wk and its head word in dsrc, and elk is the label
embedding.

In the bottom-up Full-tree LSTM, an LSTM node computes a hidden vector
based on the combination of the input vector and the hidden vectors of its
children in dsrc. The right part of Figure 2 and Eq. 1 illustrate the computation
of the Full-Tree LSTM output vector at wk.

h̃k =
∑

m∈C(k)

hm

ik = σ
(
W(i)xk + U(i)h̃k + b(i)

)
fk,m = σ

(
W(f)xk + U(f)hm + b(f)

)
ok = σ

(
W(o)xk + U(o)h̃k + b(o)

)
uk = tanh

(
W(u)xk + U(u)h̃k + b(u)

)
ck = ik � uk +

∑
m∈C(k)

fk,m � cm

hk = ok � tanh
(
ck
)

(1)

where C(k) means the children of wk in the dsrc, and fk,m is the forget vector
for wk’s child wm.

In the top-down Full-tree LSTM, an LSTM node computes a hidden vector
based on the combination of the input vector and the hidden vector of its single
father node in the dsrc. The calculation process is consistent with Eq. (1).

At each time step, the hidden vector of the BiFull-Tree LSTM is the con-
catenation of the bottom-up and top-down Full-Tree LSTM hidden vectors, de-
noted as rtree. For example, the output vector of the BiFull-Tree LSTM at wk

is rtreek = h↑
k ⊕ h↓

k, where h↑
k is the hidden vector of the bottom-up Full-Tree

LSTM at wk, and h↓
k is the hidden vector of the top-down Full-Tree LSTM.

Taking scoring a dependency j ← i as an example, we integrate information
of dsrc encoded by the BiFull-Tree LSTM into target-side parser by the Eq. (2).

rDj = MLPD
(
hj ⊕ rtreej

)
rHi = MLPH

(
hi ⊕ rtreei

) (2)

Finally, the rDj and rHi are fed into the biaffine layer to compute a more
reliable score of the dependency i← j, with the help of the guidance of dsrc.

4 Treebank Exploitation

Treebank exploitation is how to make full use of the converted source-side tree-
bank to improve the performance of the target-side parsing in our scenario. Con-
sidering the noise contained in the converted data and the big gap between the
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consistency

Data sent num dependency num dependency label

SU HIT 10,761 50,866
81.68% 73.73%

HIT train 52,450 980,791

SU PCTB 11,579 49,979
66.37% 55.14%

PCTB train 43,114 961,654

Table 1. Data statistics.

size of the converted and manually labeled data (SUHIT has 980,791 converted
dependencies, and only 50,866 manually labeled dependencies), the concatena-
tion approach is too simple to effectively exploit converted data. In this work,
we use the corpus weighting strategy and the concatenation with fine-tuning ap-
proach to strengthen the impact of manually labeled data on the parser, which
brings significant improvement over the concatenation approach.

The corpus weighting strategy is an effective method of using multiple corpus
training models. We apply it as a method to rationally use data containing
noise. Specifically, before each iteration, we randomly sample training sentences
separately from the target-side and converted data in the proportion of 1 : M .
Then we merge and randomly shuffle the sampled data for one-iteration training.
We treat M ≥ 1 as a hyper-parameter tuned on the dev data. The concatenation
with fine-tuning approach first train on the concatenation of the target-side and
converted data and follow by fine-tuning for the target-side data.

Multi-task learning, as a strong baseline for treebank exploitation, aims
to incorporate labeled data of multiple related tasks for improving performance.
Following Jiang et al. (2018) [7], we treat the source-side and target-side parsing
as two individual tasks, which share parameters of word/tag embeddings and
multi-layer BiLSTM and separate parameters of the MLP and biaffine layers.
Due to space limitation, please refer to Jiang et al. (2018) [7] for the details.

5 Experimental Results and Analysis

5.1 Data

We employ the SUHIT|PCTB conversion datasets to conduct our experiments.Table
1 shows the number of sentences and annotated dependencies, respectively. For
SUHIT dataset, we directly employ the data settings of Jiang et al. (2018) [7]. For
SUPCTB, we randomly choose 1k and 2k sentences as the dev and test datasets,
and use the remaining 8k sentences for training.

In order to measure the similarity (or homogeneity) between the source-
side and target-side guidelines, we list the ratios of consistent dependencies and
relations following the practice in Jiang et al., (2018) [7]. We can see that the
PCTB is much more divergent from SU than HIT, and thus it is more difficult
to convert PCTB into the SU guideline.
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dropout
ratio

SU HIT SU PCTB

UAS LAS UAS LAS

0 86.00 81.13 80.49 75.92
0.3 86.20 81.46 81.50 77.05
0.5 86.32 81.66 81.69 77.54
0.7 86.42 81.69 81.92 77.68
0.8 85.93 81.21 82.31 78.02
0.9 85.78 81.18 81.64 77.31

Table 2. Dropping-out the outputs of the Full-Tree LSTM hidden cells on conversion
accuracy on the dev data.

5.2 Settings and evaluation metrics

We implement all the models with Pytorch 0.4.1, and release the codes at
https://github.com/sdzhangbo/Supervised-Treebank-Conversion.

In order to fairly compare with our Full-Tree method with the PE and SP-
Tree methods, we strictly follow the experimental settings of Jiang et al. (2018)
[7]: two-layer BiLSTMs with 300 output dimension; The MLP output dimension
is 200 for the biaffine parser and MTL; embedding dimension of the source-side
dependency labels is 50, the output dimension of TreeLSTM is 100, and the
output dimension of MLP is 300 for the conversion model.

For evaluation, we employ the unlabeled attachment score (UAS) and labeled
attachment score (LAS) for both conversion and exploitation.

5.3 Results of treebank conversion on the dev data

We count the time of encoding 1k sentences of the three approaches, and find
that the Full-Tree approach is little slower than the PE approach (2 vs. 1) and
is much more efficient than the SP-Tree approach (2 vs. 229).

We carefully tune the dropout ratio of the Full-Tree LSTM output, as shown
in Table 2. Specifically, 0 means that dropout is unused. We omit the results of
0.1/0.2/0.4/0.6 due to space limitation. On SUHIT, the model achieves best LAS
performance of 81.69% when we use the dropout ratio of 0.7, which outperforms
the dropout ratio of 0 by 0.56% (81.69-81.13). The model achieves the highest
LAS of 78.02% when the dropout ratio is 0.8 on SUPCTB, which outperforms the
model without Full-Tree LSTM output dropout by 2.1% (78.02-75.92). We can
conclude that dropout of Full-Tree LSTM output has a positive impact on the
conversion performance, i.e., the lower the data consistency, the more obvious of
the performance improvement.

5.4 Results of treebank exploitation on the dev data

Table 3 shows the results comparison of the three treebank exploitation methods
on the dev data. The results of concatenation approach of Jiang et al. (2018) [7]
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Methods
exploit converted HIT exploit converted PCTB

UAS LAS UAS LAS

concatenation 81.50 76.30 79.73 75.09

corpus
weighting

M = 1 81.37 76.14 79.80 75.25
M = 2 82.10 76.97 79.89 75.46
M = 3 81.85 76.61 80.01 75.30
M = 4 81.66 76.55 79.50 75.31
M = 5 82.14 76.84 79.34 74.77
M = 6 81.37 76.26 79.84 75.23

concatenation with fine-tuning 82.24 77.17 80.56 76.11

Table 3. Effect of Corpus Weighting strategy and Concatenation with Fine-tuning
approach on dev data.

Methods
SU HIT SU PCTB

UAS LAS UAS LAS

PE 86.66 82.03 74.71 67.11
SP-Tree 86.69 82.09 81.94 77.95
Full-Tree 86.28 82.04 82.45 78.45

Table 4. Conversion accuracy of PE, SP-Tree and Full-Tree approaches on test data.

is shown in the third row, The results of corpus weighting strategy is shown
from row 4 to row 9. The tenth row shows the results of concatenation with fine-
tuning approach. We can see the best model of corpus weighting outperforms
the concatenation model by 0.67% (76.97-76.30) and 0.37% (75.46-75.09) on
the two datasets, respectively. And the concatenation with fine-tuning approach
outperforms the concatenation model by 0.87% (77.17-76.30) and 1.02% (76.11-
75.09) on the two datasets, respectively.

We can see that the corpus weighting strategy and the concatenation with
fine-tuning approach can effectively exploit converted treebank that contains
noise, which can further improve the target-side parser performance.

5.5 Results of conversion and exploitation on the test data

Table 4 shows the results comparison of the three treebank conversion methods.
The Full-Tree method achieves almost the same performance compared with
PE and SP-Tree on SUHIT, which has high data consistency. However, on the
SUPCTB data with lower data consistency, the Full-Tree method outperforms the
SP-Tree by 0.5% (78.45-77.95), and advances the PE by large margin (11.34%,
78.45-67.11) in LAS, which indicates that the PE method heavily relies on the
conversion data and cannot exploit the source-side data stably. The Full-Tree
and SP-Tree method can both stably encode the source-side tree information,
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Methods
SU HIT SU PCTB

UAS LAS UAS LAS

Single parser 75.57 70.81 76.78 72.48
MTL and HIT 80.08 75.46 78.80 74.61
Jiang et al. (2018) 81.33 76.73 80.09 76.03
Ours 81.86 77.27 80.90 76.77

Table 5. Parsing accuracy of different parsers on test data.

which can achieve better convert performance over data with low consistency.
Considering the speed, the Full-Tree is a superior encoding method.

Finally, Table 5 lists the performance of the target-side parser with the help
of the source-side treebank by different exploitation methods. The third row
shows the results of our basic model that only use the target-side data. The
experimental results of using MTL to exploit the source-side data is shown in
row 4. The fifth and sixth row show the results of applying the concatenation
approach and the concatenation with fine-tuning approach to exploit the target-
side and converted source-side data, respectively.

On the two datasets, we find that the MTL method respectively outperforms
the baseline by 4.65% (75.46-70.81) and 2.13% (74.61-72.48) and our method
respectively outperforms the baseline by 6.46% (77.27-70.81) and 4.29% (76.77-
72.48), which indicate that heterogeneous data with common information can
effectively improve the performance of the target-side parsing. Additionally, our
method also outperforms the concatenation approach of Jiang et al. (2018) [7]
by 0.54% (77.27-76.73) and 0.74% (76.77-76.03).

Moreover, the treebank conversion method can further improve the perfor-
mance of target side parser, which outperforms the MTL method by 1.81%
(77.27-75.46) and 2.16% (76.77-74.61) on the two datasets, which indicates the
treebank conversion method is a more straightforward and effective way to utilize
heterogeneous data.

6 Conclusions

To exploit multiple heterogeneous Chinese dependency treebanks, we propose a
supervised treebank conversion method based on Full-Tree LSTM. Experimental
results on two conversion datasets show that 1) our Full-Tree LSTM approach
can efficiently and deeply encode the source-side tree, and is superior to the
PE and SP-Tree approaches of Jiang et al. (2018) [7]; 2) the corpus weighting
strategy and the concatenation with fine-tuning approach are both helpful in
exploiting noisy converted data for further improving the target-side parsing
performance; 3) compared with the MTL method, supervised treebank conver-
sion is a more effective way to exploit heterogeneous treebanks and can achieve
higher final parsing accuracy. Moreover, we also find that proper dropping-out
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of the outputs of TreeLSTM hidden cells significantly affects the performance of
the Full-Tree LSTM approach.
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