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Abstract. Sequence-to-Sequence (seq2seq) approaches formalize se-
mantic parsing as a translation task from a source sentence to its corre-
sponding logical form. However, in the absence of large-scale annotated
dataset, even the state-of-the-art seq2seq model, i.e., the Transformer
may suffer from the data sparsity issue. In order to address this issue,
this paper explores three techniques which are widely used in neural ma-
chine translation to better adapt seq2seq models for semantic parsing.
First, we use byte pair encoding (BPE) to segment words into subwords
to transfer rare words into frequent subwords. Second, we share word
vocabulary on both the source and the target sides. Finally, we define
heuristic rules to generate synthetic instances to increase the coverage of
training dataset. Experimental results on the NLPCC 2019 shared task
2 show that our approach achieves state-of-the-art performance and gets
the first place in the task from the current rankings.
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1 Introduction

The task of semantic parsing, which aims to map natural language utterances
into their corresponding meaning representations, has received a significant
amount of attention with various approaches over the past few years. The lan-
guages of meaning representation mainly fall into two categories: logic based
formalisms and graph-based formalisms. The former includes first order logic,
lambda calculus, and lambda dependency based compositional semantics, while
the latter includes abstract meaning representation and universal conceptual cog-
nitive annotation. Traditional approaches are mostly based on the principle of
compositional semantics, which compose the semantics of utterances from lexical
semantics by using a set of predefined grammars. The widely used grammars in-
clude SCFG [16, 11], CCG [10, 4], DCS [12, 3], etc. One of the main shortcomings
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of grammar-based approaches is that they rely on high-quality lexicons, hand-
crafted features, and manually-built grammars. In recent years, one promising
direction in semantic parsing is to represent the semantics of texts as graphs.
This way, semantic parsing can be formalized as a process of graph generation. In
this direction, Ge et al [6] propose to obtain semantic graphs through transfor-
mation from syntactic trees. Reddy et al [13] use Freebase-based semantic graph
representation and convert sentences into semantic graphs by using CCGs or de-
pendency trees. Bast et al [2] identify the structure of a semantic query through
three predefined patterns. Yih et al [18] generate semantic graphs using a staged
heuristic search algorithm. All these approaches are based on manually-designed
and heuristic generation process, which may suffer from syntactic parsing errors
and structure mismatching, especially the case for complex sentences.

An alternative to the aforementioned approaches to semantic graph genera-
tion is to utilize the sequence-to-sequence (seq2seq) framework, which has been
adopted for a variety of natural language processing tasks [7, 1], semantic pars-
ing included [17, 5]. Now the task at hand translates to building seq2seq models
in order to map word sequences into corresponding sequences that represent se-
mantic graphs. To train such models, it is important to have enough training
data of high quality. Generally, the performance of seq2seq models is highly de-
pendent on the quality and quantity of available training data. However, most of
the datasets for semantic parsing are curated by human, which is labor intensive
and time consuming. Consequently, annotated corpora are generally limited in
size and training of seq2seq models tends to suffer from the scarcity of annotated
training data.

The NLPCC-2019 shared task 2 is a competition for open domain seman-
tic parsing, which is defined to predict the meaning representation in lambda-
calculus for an input question on the base of a given knowledge graph. Each
question in the shared task data is annotated with entities, the question type,
and the corresponding logical form. The dataset is called Multi-perspective Se-
mantic ParSing (MSParS) and includes more than 80,000 human-generated in-
stances. In MSParS, there is a total of 9 question types, including single-relation,
multi-hop, multi-constraint, multi-choice, aggregation, comparison, yes/no, su-
perlative, and multi-turn. Table 1 presents an illustrating example of a question
accompanied by its logical form, entities, and question type: the first row is the
question that we need to parse, the second row presents the logical form of the
question, the third row shows the entities and their positions in the logical form,
and the last row gives the question type. Participating systems are evaluated on
the prediction of logical forms given input questions

In the competition of shared task 2, we build our semantic parsing system on
the base of the Transformer, a state-of-the-art seq2seq model that is originally
proposed for neural machine translation and syntactic parsing [15]. Furthermore,
to enhance the performance of our system, we apply the following three tech-
niques: using byte pair encoding (BPE) to segment words into subwords, sharing
word vocabulary on both the source and target sides, and enlarging training data
by automatically generating synthetic training instances. In the NLPCC 2019
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Table 1. An example from the dataset for open domain semantic parsing.

<question id=1> who is film art directors of “ i see you ” from avatar

<logical form id=1> ( lambda ?x ( mso:film.film.art director “ i see you ”
from avatar ?x ) )

<parameters id=1> “ i see you ” from avatar (entity) [6,12]

<question type id=1> single-relation

Shared Task 2, our system win the first place among all the participating sys-
tems and the proposed techniques achieve remarkable improvements over the
Transformer baseline.

2 Semantic Parsing as Neural Seq2Seq Learning

In this section, we describe in detail our approach to semantic parsing. The
model is built on Transformer, a state-of-the-art seq2seq model that is originally
proposed for neural machine translation and syntactic parsing [15].

2.1 Preparing Data

Each instance in the MSParS dataset is a tuple of four elements, including a
question, its logical form, parameters, and question type. In this paper we only
use questions and their corresponding logical forms to train our parsing model
but ignore parameters and question type because they are not evaluated. Ques-
tions are fed into the encoder as source sequences and their corresponding logical
forms are viewed as target sequences.

Note that in the logical form, an entity is presented as a string which consists
of multiple words concatenated by ‘ ’. In pre-processing, we split an entity string
into its corresponding multiple words and symbols of ‘ ’. For example, the logical
form in Table 1 is processed as:
( lambda ?x ( mso:film.film.art director “ i see you ” from avatar ?x ) )

In post-processing, we resume entity strings by simply replacing ‘ ’ with ‘ ’
in output sequences.

We have also tried to split the strings of entity types into multiple pieces. For
example, mso:film.film.art director in Table 1 is split into mso : film . film . art
director. However, our preliminary experiments showed that it slightly hurts the
performance.

2.2 Sequence-to-Sequence Modeling

As mentioned, we use Transformer seq2seq model for semantic parsing. The
encoder in Transformer consists of a stack of multiple identical layers, each of
which has two sub-layers, one for multi-head self-attention mechanism, and the
other is a position-wise fully connected feed-forward network. The decoder is
also composed of a stack of multiple identical layers. Each layer in the decoder
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consists of the same sub-layers as in the encoder layers as well as an additional
sub-layer that performs multi-head attention to the output of the encoder stack.
Experiments on the tasks of machine translation and syntactic parsing show
that Transformer outperforms RNN-based seq2seq models [1]. Fig. 1 shows the
structure of Transformer seq2seq model.

Fig. 1. Transformer seq2seq model.

The self-attention in Transformer uses Scaled Dot-Product Attention which
operates on an input sequence, x = (x1, · · · , xn) of n elements where xi ∈ Rdx

and computes a new sequence z = (z1, · · · , zn) with the same length:

z = Attention (x) (1)

where z ∈ Rn×dz . Each output element zi is calculated as a weighted sum of a
linearly transformed input elements:

zi =

n∑
j=1

αij

(
xjW

V
)

(2)
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where WV ∈ Rdx×dz is a parameter matrix, and

αij =
exp(eij)∑n
k=1 exp(eik)

(3)

eij =

(
xiW

Q
) (
xjW

K
)T

√
dz

(4)

where the weight vector αi = (αi1, · · · , αin) over input vectors is obtained by
self-attention model, which captures the correspondences between element xi and
others, and eij is an alignment model which scores how well the input elements
xi and xj match. Here WQ,WK ∈ Rdx×dz are parameter matrices.

2.3 Generation of Synthetic Training Instances

Supervised machine learning algorithms tend to suffer from data imbalance
problems. In the dataset of MSParS, we find entity types contain quite
skewed distributions. For example, the entity type mso : film.actor.film
contains the most entity instances 1832 while the entity type mso :
baseball.batting statistics.slugging pct only has 1 entity instances. Seq2seq
models trained on such a kind of dataset may be overwhelmed by training in-
stances of big entity types while parameters for small entity types are not well
learned. The resulting models are apt to achieve relatively poor performance on
test set due to limited generalization ability.

To attack the data imbalance problem, we generate synthetic training in-
stances from the following two perspectives:

– Entity-based: Given a sentence and its logical form from the original training
set, we choose one entity in the sentence and replace it with another random
entity which has the same entity type. Figure2(a) shows examples of an
original pair and its synthetic pair.

– Label-based: Given a sentence and its logic from the original training set,
we choose one entity who has multiple entity types and replace its entity
type with another valid type. As shown in Figure2(b), since the entity of
“ i see you ” from avatar has multiple entity types, we randomly select an-
other entity type but film.film.art director, and generate a synthetic pair.

3 Experimentation

In this section, we first introduce the dataset we used. Then we describe the
settings of our model for the experiments. After that, we present a comparative
study on our system and other participating systems.
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Original pair

(b) Label-based Original pair

Synthetic pair

Synthetic pair

Sentence:  movies jim bob duggar has done  
Logical Form: ( lambda ?x ( mso:film.actor.film jim_bob_duggar ?x ) )

Sentence: movies marisa tomei has done 
Logical Form: ( lambda ?x ( mso:film.actor.film marisa_tomei ?x ) )

Sentence: who is film art directors of " i see you " from avatar
Logical Form: ( lambda ?x ( mso:film.film.art_director "_i_see_you_"_from_avatar ?x ) )

Sentence: who is film art directors of " i see you " from avatar
Logical Form: ( lambda ?x ( mso:film.film.editor "_i_see_you_"_from_avatar ?x ) )

(a) Entity-based

Fig. 2. Examples of automatically generated synthetic instances

3.1 Experimental Settings

Dataset We take our evaluation on the Multi-perspective Semantic ParSing (or
MSParS) released by NLPCC-2019 Shared Task 2. The dataset includes more
than 80,000 human-generated questions, where each question is annotated with
entities, a question type, and corresponding logical form. The organizers split
MSParS into a training set, a development set, and a test set. Both the training
and development sets are provided to participating teams, while the test set
is not. The training set has 63,826 instances and development set has 9,000
instances. Note that the organizers divide the test set to select a hard subset
according to certain criteria, so each team has two final results: full set score
and hard subset score.

Evaluation The evaluation uses accuracy (ACC), i.e. the percentage of pre-
dicted logical forms which exactly match the golden ones.

Settings We use openNMT [9] as the implementation of the Transformer
seq2seq model. In the parameter setting, we set the number of layers in both
the encoder and decoder to 6. For optimization we use Adam [8] with β1 =
0.1. The number of heads is set to 8. In addition, we set the hidden size to 512
and the batch token-size to 8192. In all experiments, we train the models for
250K steps on a single K40 GPU and save the models at every 5K steps. To
overcome the data sparsity issue, in all experiments we follow Ge et al. [5] and
share vocabulary for the input and the output. To address the translation of
rare words, we segment words into word pieces by byte pair encoding (BPE [14])
with 8K operations. We average the last 20 models’ parameters to improve the
performance .
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Table 2. Ablation results of our baseline system on the development set.

Model ACC

Baseline 85.93

-BPE 54.90
-Sharing Vocab. 84.00
-Both 52.47

3.2 Experimental Results

We first show the performance of our baseline system. As mentioned earlier,
BPE and sharing vocabulary are two techniques we applied to relieving data
sparsity. Table 2 presents the results of the ablation test on the development
set by either removing BPE, or vocabulary sharing, or both of them from the
baseline system. From the results we can see that BPE and vocabulary sharing
are critical to building our baseline system (an improvement from 52.47 to 85.93
in accuracy), revealing that they are two effective ways to address the issue of
data sparsity for semantic parsing.

Generation of synthetic training instances substantially increases the num-
ber of instances in our training set. As shown in Table 3, both the two methods
of generating synthetic training instances roughly double the number of train-
ing instances and achieve similar improvements over the model trained on the
original training set (e.g., 0.85 and 1.01), suggesting that our two methods are
effective in increasing the coverage of training instances. However, there exists
overlap in coverage of the two methods. In the presence of one method, the other
method achieves limited or no improvement.

We also compare our final system with systems from other participants in
Table 4. From the results we can see that our final system achieves the highest
performance, especially on the hard subset. This illustrates the feasibility and
effectiveness of our seq2seq-based semantic parsing.

Table 3. ACC (%) of our semantic parsing models on the development set.

Training set # Instances ACC

Original 63,826 85.93
+Entity-based 137,198 86.78
+Label-based 140,485 86.94

+Both (our final model) 213,857 86.96

3.3 Error Analysis

To find the reasons for improper parsing, we analyze 50 bad cases selected ran-
domly from the development set. The mistakes mainly fall into four categories.
First, entity type is incorrectly predicted when the entity has multiple types. As
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Table 4. Comparison of our final parser with other parsers

Model ACC on full set ACC on hard subset

Soochow SP (this paper) 85.68 57.43

NP-Parser 83.73 51.93
WLIS 82.53 47.83

Binbin Deng 68.82 35.41
kg nlpca ai lr 30.79 14.89

TriJ 26.77 14.49

shown in Figure 3 (a), entity chris pine has 5 types in the training set and our
model incorrectly predict its type as biology.organism in this example. 16 wrong
cases out of the 50 ones are caused by this error category. Second, it is hard to
correctly predict entity type if an entity occurs only once in the training set. As
shown in Figure 3 (b), langlois bridge at arles occurs once in the training set
and our model incorrectly predicts its type as visual art.artwork. 7 wrong cases
belong to this error category. Third, for those entities that even do not appear
in the training set, our model tends to make incorrect prediction. As shown in
Figure 3, though our model successfully recognizes body and soul as an entity, it
fails to identify its entity type. 18 wrong cases are in this error category. Finally,
in few cases our model sometimes fails to recognize entities. As shown in Figure3
(d), our model fails to recognize entity varsity.

(a) Sentence: what is birth date for chris pine
     Logical Form: ( lambda ?x ( mso:people.person.date_of_birth chris_pine ?x ) )
     Our Model: ( lambda ?x ( mso:biology.organism.date_of_birth chris_pine ?x ) )

(b) Sentence: who is langlois bridge at arles 's creator
     Logical Form: ( lambda ?x ( mso:visual_art.art_series.artist langlois_bridge_at_arles ?x ) )
     Our Model: ( lambda ?x ( mso:visual_art.artwork.artist langlois_bridge_at_arles ?x ) )

(c) Sentence: body and soul 's completion date
     Logical Form: ( lambda ?x ( mso:music.composition.date_completed body_and_soul ?x ) )
     Our Model: ( lambda ?x ( mso:visual_art.artwork.date_completed body_and_soul ?x ) )

(d) Sentence: colleges of varsity
     Logical Form: ( lambda ?x ( mso:education.school_newspaper.school varsity ?x ) )
     Our Model: ( lambda ?x ( mso:education.school_newspaper.school varges ?x ) )

Fig. 3. Examples of error types



A Transformer-based Semantic Parser for NLPCC-2019 Shared Task 2 9

4 Conclusion

In this paper, we present our seq2seq model that parses natural language ut-
terances to logical forms. To overcome the data sparsity issue, we use BPE to
segment rare words into frequent subwords, and we share vocabulary on the
source and the target side, considering the fact that many words are common on
both sides. Finally, to increase the coverage of training instances, we use heuris-
tic rules to generate synthetic instances from the original ones. Experiments on
the NLPCC-2019 shared task 2 show that our approach achieves state-of-the-art
performance and ranks the first among the participating systems.

Detailed analysis shows that misjudgement of entity types is one of the major
error sources. In future work, we will focus on joint learning of entity recognition
and semantic parsing.
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