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Abstract. The currently used word embedding techniques use fixed vectors to 

represent words without the concept of context and dynamics. This paper pro-

poses a deep neural network CoDyWor to model the context of words so that 

words in different contexts have different vector representations of words. First 

of all, each layer of the model captures contextual information for each word of 

the input statement from different angles, such as grammatical information and 

semantic information, et al. Afterwards, different weights are assigned to each 

layer of the model through a multi-layered attention mechanism. At last, the in-

formation of each layer is integrated to form a dynamic word with contextual 

information to represent the vector. By comparing different models on the pub-

lic dataset, it is found that the model’s accuracy in the task of logical reasoning 

has increased by 2.0%, F1 value in the task of named entity recognition has in-

creased by 0.47%, and F1 value in the task of reading comprehension has in-

creased by 2.96%. The experimental results demonstrate that this technology of 

word representation enhances the effect of the existing word representation. 

Keywords: word representation, attention mechanism, logical reasoning, 

named-entity recognition, reading understanding 

1 Introduction 

The NLP (natural language processing) system available based on deep learning usu-

ally first converts the text input into a vectorized word representation [1–4], i.e. the 

word embedding vector for further processing. Researchers have proposed a large 

number of embedding methods to encode words and sentences into dense fixed vec-

tors, which tremendously enhance the ability of neural networks to process textual 

data. The most commonly used word embedding methods include word2vec [5], 

FastText [6] and GloVe [7] and so. Studies have demonstrated that these word em-

bedding methods can significantly improve and simplify a great number of text pro-

cessing applications [8-9]. 

However, at present, the commonly used word embedding techniques consider no 

of context and dynamics, which all regard words as fixed atomic units, and represent 

words by using the indices of word lists or fixed values in the pre-trained word vector 
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matrix. Although the embedding methods that assign fixed values to represent words 

are simple, yet they limit their effectiveness in many tasks [10]. In complex natural 

language processing tasks such as sentiment analysis, text categorization, speech 

recognition, machine translation and reasoning, et al., dynamic word representations 

with contextual meaning are needed, namely the same word has different representa-

tion vectors in different contexts. For instance, in the sentences: "A plant absorbs 

water from the soil by its roots" and "There is a big amount of water in what he has 

said", the meanings of "water" are different. If a pre-trained word vector is used, the 

word "water" in both sentences can solely be represented by the same word vector. In 

order to solve the above problem, this paper proposes a dynamic word representation 

model based on deep context, which is a multi-layer deep neural network. Each layer 

captures the contextual information for each word of the input statement from differ-

ent views [10], including grammatical information and semantic information, et cetera 

and then assigns different weights to each layer of the neural network through a multi-

layered attention mechanism, and finally integrates the information of each layer to 

form a vectorized representation of the word. 

2 Related work 

A word embedding model based on the shallow Neural Network Language Model 

(NNLM) can convert words into continuous vectors [11,12]. At present, the main-

stream word embedding models include CBOW, Skip-Gram, FastText and GloVe 

models, of which CBOW and Skip-Gram belong to the renowned word2vector 

framework. The leading improvement of FastText compared with the original 

word2vec is that it has introduced n-grams. GloVe is a word representation model 

based on overall word frequency statistics, which makes up for the lack of word2vec 

that doesn’t consider the overall co-occurrence information of words. Experiments 

have proven that the word vector generated by GloVe model is better under quite a 

few scenarios [7]. However, both the word2vec model and the GloVe model are too 

simple and are limited by the representational capacity of the shallow model used 

(typically 3 layers). 

The word representation model MT-LSTM [13] that is based on machine-

translation model utilizes the Encoder-Decoder framework to pre-train the corpus for 

machine translation and extract the Embedding layer and the Encoder layer of the 

model. And then it designs a model based on the new task, and uses the output of the 

trained Embedding layer and Encoder layer as the input of this new task model, and 

lastly does the training under the new task scenario. However, this machine transla-

tion model needs a large amount of supervised data, meanwhile, the Encoder-Decoder 

structure limits the model to capture some semantic information. 

The word representation model based on depth NNLM is generally better than 

shallow NNLM. Peters et al. [10] proposed a renowned model ELMo, which used the 

internal state of multi-layer BiLSTM (Bi-directional Long Short-Term Memory) to 

generate word vectors. Compared to N-gram models, word2vec models, and GloVe 

[10,14], it has a better effect. However, ELMo is limited by BiLSTM's serial comput-
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er system and feature extraction capabilities, which limits its application under a good 

number of scenarios. 

The method in this paper adopts the deep NNLM, meanwhile, it takes the idea of 

generating the word vector from the internal state of NNLM in ELMo, and replaces 

the BiLSTM encoder in the model with the Transformer encoder with concurrent 

computing and contextual coding capability, and introduces a multi-layer attention 

mechanism, blending word representation information of different levels in neural 

network, and generating the word vector with contextual meanings. 

3 Proposed Approach 

 

Fig. 1. Overall framework 

3.1 Overall framework 

The overall framework of the dynamic context representation model proposed in this 

paper is illustrated in Fig. 1. It consists of two main processes: 1) the masked lan-

guage model on the left of Fig.1(see Section 3.2 for details); 2) the Transformer layer 

in the pre-trained masked language model is extracted and a new output layer is added 

to form the model of this paper—the deep contextual dynamic word representation 

model (on the right side of Fig. 1), which blends multiple outputs of Transformer 

layer through a multi-layered attention mechanism, generating a deep dynamic word 

representation vector (see Section 3.3 for details). The Transformer layer of the main 

structure in the framework is made up of a Transformer encoder, which is a two-way 

contextual information extractor (see Section 3.4 for details). 

3.2 Masked language model 

The language model encodes the sequence of words by means of a distributed repre-

sentation. The objective function of a general language model is a log-likelihood 

function of the probability of occurrence of all word sequences in the corpus, such as 

the popular CBOW, Skip-Gram, FastText, and GloVe models, et cetera. In this paper, 

we utilize the masked language model composed of Transformer encoder that can 
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capture the contextual information of words in sentences to extract textual infor-

mation [16]. Unlike the general language models, the objective function of the 

masked language model is the log-likelihood function of the probability of occurrence 

of all masked words in the corpus, which is: 
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In it, Mask is a set made up of words that are masked in a word sequence context. n is 

the number of word sequences in the corpus. The model predicts Mask to the best of 

its ability in accordance with the remaining words. The whole process of prediction is 

similar to an English cloze test. As shown on the left side of Fig. 1, in the masked 

language model, the input word sequence context is first represented as a vector made 

up of the word sequence: 
1 2[ , , , ]tc word word word= , and then some words are 

blocked in the input word sequence context to obtain the word sequence that is partly 

masked: 
1[ , , , ]tu word MASK word=   . Then, the information of the input word 

sequence is extracted by the multi-layer Transformer encoder, and lastly the 

( | )k i iP w context Mask−  value is calculated using the normalized exponential func-

tion. The entire calculation process is shown in equation (2): 
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In it, MASK(c) represents the masked operation for some words in the word sequence 

c, W and M denote the weight matrix, Transformer indicates that the Transformer 

encoder extracts the information of the input word sequence, and L means the number 

of layers of the Transformer encoder. Softmax is a normalized exponential function, 

which converts the input into a probability distribution. 

3.3 Multi-layered attention mechanism 

The right side of Fig. 1 is the model structure chart of deep contextualized dynamic 

word representations (CoDyWor). In the figure, word denotes the input words, Trans-

former is the encoder, α is the weight of different layers, and sum demonstrates the 

summation of information captured by Transformer of different layers. T is the gener-

ated word representation. CoDyWor is stacked by the Transformer encoder with a 

multi-layered attention mechanism. The model merely retains the Transformer layer 

of masked language model (keeping the knowledge that the masked model acquires 

on the dataset) and then adds a new output layer. 

A CoDyWor with an L-layer Transformer generates L types of word representa-

tions for each input word: 
1 2{ , , , }Lh h h . Under the simplest scenario, CoDyWor 

directly uses the output of the last layer of Transformer as words’ contextualized word 
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representation, ie, ( ) LCoDyWor word h= . Since different levels of Transformer can 

capture different types of information [17], multiple layers of attention mechanism 

can be used to give different layers of Transformer different weights 
1 2, , T   . 

The formula for the CoDyWor word representation is as follows: 
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In it, 
jh  and 

ja  are respectively the output vector and the corresponding weight of 

the Transformer encoder of the j layer, β is a scaling parameter, and both α and β are 

automatically adjusted by the stochastic gradient descent algorithm. α is guaranteed 

by the Softmax layer to satisfy the probability distribution. Adding the β parameter 

mainly adjusts the norm of word representation vector generated by the model to rep-

resent the norm of the vector [10], which is convenient for model training. 

3.4 Transformer encoder 

 

Fig. 2. Multi-head dot-product attention mechanism 

The calculation diagram of Transformer encoder's multi-head scaling dot-product 

attention mechanism is shown in Fig. 2, in which MatMul represents matrix multipli-

cation, Softmax represents normalized exponential operation, and Scale denotes scal-

ing vector operation. The Transformer encoder duplicates the input three times, which 

means that the three input contents are the same. Here, Q, K, and V respectively de-

note of query, key, and value. First, through the query of the key, it is calculated that 

different keys should be given different weights, and then the values corresponding to 

the keys are taken out and the values are added based on the weights to form an out-

put, the times of repeating this process is called the number of Transformer headers. 

The query q, the key k, and the value v are all d-dimensional. The Transformer multi-

head scaling dot-product attention mechanism calculates as follows: 1) calculate the 

dot-product result of q and k, and then divide the result by a constant d ; 2) softmax 

function converts the result into probability value; 3) use probability value dot prod-

uct v to obtain scaling dot-product attention operational input. In order to improve the 
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computational efficiency, a set of queries q are put together into a matrix Q, and then 

the attention function is applied to a set of queries at the same time, and likewise, the 

key k and the corresponding value v are also placed in the matrices K and V respec-

tively. The multi-head scaling dot-product attention formula in the entire Transformer 

encoder is as follows: 

 ( , , ) max( )
TQK

Attention Q K V soft V
d

=  (4) 

4 Experiments 

We evaluate the proposed CoDyWor model on three public datasets, MultiNLI, 

CoNLL03 and SQuAD. 

4.1 Datasets and experimental settings 

The datasets of natural language inference, named entity recognition and reading 

comprehension tasks are multi-domain logical reasoning dataset MultiNLI [18] with 

more than 430,000 pieces of data, named entity dataset CoNLL03 [19] containing 

more than 10,000 pieces of data, and Stanford reading comprehension dataset SQuAD 

[20] with more than 100,000 pieces of data. In order to evaluate the effect of word 

representational learning, the accuracy is used as the evaluative metric in the logical 

reasoning task, and the F1 value is used as the evaluative criteria in the named entity 

recognition and reading comprehension tasks. The higher the accuracy rate or the F1 

score is, the better the model’s effect is. The hyperparameters of the model are set as 

follows: the length of maximum input sentence is 128, the number of training batches 

is 32, the learning rate is 2e-5, and the number of epochs is 6. In addition, in order to 

ensure the stability of the results, the experiment is to be repeated 10 times, and the 

average value is adopted as the final predicted result of the model. 

4.2 Logical reasoning 

In this section an experiment was carried out on the public MultiNLI dataset. Mul-

tiNLI is one of the largest corpora in logical reasoning tasks. The fields of corpus 

include speeches, letters, novels, and government reports, et cetera. In the logical 

reasoning task, MultiNLI-A is used to indicate that the data of both the training set 

and the test set are from the same domain, and MultiNLI-B is used to show that the 

data of both the training set and the test set are from the different domains. The re-

quirement of the MultiNLI dataset is to predict a given pair of (premise, hypothesis) 

sentences to determine whether the hypothesis sentence is implicit, contradictory, or 

neutral in relation to the premise sentence. 

The experimental results are shown in Table 1. The model CoDyWor proposed in 

this paper is apparently better than the enhanced sequence reasoning model 

GloVe_ESIM using GloVe word representation and the CoVe_BiLSTM and 
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ELMo_BiLSTM models using CoVe and ELMo word representation, indicating that 

the word representation with contextual meaning can improve the accuracy of logical 

reasoning tasks. Compared to the model GPT_Transformer [15] using the one-way 

Transformer, the accuracy of CoDyWor (using the two-way Transformer encoder) has 

increased by 2.0% (on the MultiNLI-A test set) and 2.3% (on the MultiNLI-B test 

set). It means that the contextual text information obtained from both directions at the 

same time is richer than the text information obtained from one direction, which is 

more conducive to the model to further comprehend the meaning of the text. 

Table 1. Comparison of accuracy in logical reasoning (MultiNLI datasets, %) 

Method MultiNLI-A MultiNLi-B 

GloVe_ESIM 72.3 72.1 

CoVe_BiLSTM [22] 71.6 71.5 

ELMo_BiLSTM [10] 76.9 76.7 

GPT_Transformer [15] 82.1 81.4 

CoDyWor 84.1 83.7 

4.3 Named entity recognition 

The experiment was carried out on the famous named entity identification dataset 

CoNLL03 in this section. The task of the CoNLL03 dataset is to identify four named 

entities in the sentence: people, places, organizations, and miscellaneous items (not 

belonging to the first three entities). 

The experimental results are shown in Table 2. The F1 value of the model CoDy-

Wor proposed in this paper is 92.69%, which is 1.48% and 0.99% respectively higher 

than the GloVe_BiLSTM model and the CoVe_BiLSTM model using the popular 

GloVe and CoVe word representation. Compared with the ELMo_BiLSTM model 

using ELMo word representation, it has increased by 0.47%, which reveals that the 

use of deep contextual dynamic word representation can enhance the F1 value of the 

named entity recognition task. 

4.4 Reading comprehension 

In this section the experiment was carried out on the famous Stanford reading com-

prehension dataset SQuAD. Given a question and a paragraph from Wikipedia that 

contains the answer to this question, SQuAD's task is to find out the range where the 

answer to the question lies in the paragraph. 

The experimental results are shown in Table 3. The F1 value of the model CoDy-

Wor proposed in this paper is 88.76%, which is 2.96% higher than the 

ELMo_BiLSTM model using the ELMo word representation. Meanwhile, it is also 

superior to GloVe_BiLSTM, which uses GloVe word embedding and uses a special 

model structure (simulating multi-step reasoning in machine reading comprehension), 

indicating that using the word representation with contextual meanings can simply 
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achieve fairly good results without designing a special model structure targeted on 

reading comprehension task. 

Table 2. Comparison of F1 values in named 

entity recognition (CoNLL03 dataset, %) 

Method F1 

GloVe_BiLSTM 91.21 

CoVe_BiLSTMt  91.70 

ESIM [3] 92.22 

ELMo_BiLSTM [10] 92.69 

CoDyWor 79.6 

Table 3. Comparison of F1 value in reading 

comprehension (SQuAD dataset, %) 

Method F1 

GloVe_BiLSTM 81.10 

CoVe_BiLSTM 82.56 

ELMo_BiLSTM [10] 85.80 

CoDyWor 88.76 

 

5 Ablation research 

In this section ablation experiments were performed on CoDyWor's multi-layered 

attention mechanism and Transformer encoder to analyze the effects of these two 

modules in the CoDyWor model. 

Table 4. Effect of multi-layered attention 

mechanism (SQuAD dataset, %) 

Layers T1:F1 T2:F1 

First layer 77.63 77.44 

Last layer (twelfth layer) 77.96 77.79 

Three layers(ahead) 85.15 84.96 

Three layers(behind) 85.25 85.08 

Six layers(ahead) 88.56 88.37 

Six layers(behind) 88.64 88.47 

All layers 88.76 88.56 

Table 5. Effect of the size of Transformer 

(MultiNLI-A dataset, %) 

Layers head Acc 

3 3 76.4 

3 12 77.6 

6 3 80.3 

6 12 81.6 

12 12 84.1 

12 16 84.4 

 

 

5.1 Effect of multi-layered attention mechanism 

Experiments were performed on the SQuAD dataset to analyze the effects caused 

by the number of layers (Transformer number) of the multi-layered attention mecha-

nism of the CoDyWor model, the position of the attention layer, and the regulariza-

tion parameter  . The results are illustrated in Table 4, in which the first column 

“Layers” indicates that the multi-layered attention mechanism is applied to different 

layers, the second column T1 represents the use of regularization parameter  , and 

the third column T2 indicates that the regularization parameters are not used. “Ahead” 

indicates the output of the first layer of the multi-layered neural network, and “be-

hind” demonstrates the output of the last layer of the neural network. Three rules can 

be found: 1) The effect of the model is significantly improved with the increase of the 
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number of layers of attention; 2) When the number of layers is the same, the words 

output from the lower layer Transformer represent better vector effects, especially 

when the number of layers is small, the differences are obvious; 3) The regularization 

parameter   can be used to increase the model’s F1 value by around 0.19%. 

5.2 Effect of the size of Transformer 

Experiments were carried out on the MultiNLI dataset to analyze the impact of the 

number of different Transformer layers and the number of self-attention heads in the 

Transformer adopted by the CoDyWor model on the inference accuracy. The experi-

mental results are shown in Table 5. It can be found that increasing the number of 

layers of Transformer within a certain range or increasing the number of self-attention 

heads in Transformer can both improve the inference accuracy of the model. 

6 Conclusion 

This paper proposes an efficient, simply-structured deep contextual dynamic word 

representation model CoDyWor that can be widely used in natural language pro-

cessing tasks. The contextual dynamic word representation generated by the model 

can be used for natural language processing tasks such as logical reasoning, named 

entity recognition and reading comprehension and so forth, and may be universally 

utilized to a certain extent. The contextual dynamic word representation generated by 

the CoDyWor model in the above tasks performs better than the current mainstream 

static word representations. 
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