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Abstract. Accurate service part demand forecast plays a key role in service sup-
ply chain management. It enables better decision making in the planning of ser-
vice part procurement and distribution. To achieve high responsiveness, the ser-
vice supply chain network exhibits a hierarchical structure: forward stocking lo-
cations (FSL) close to the end customer, distribution centers (DC) in the middle 
and center hub (CH) at the top. Hierarchical forecasts require not only good pre-
diction accuracy at each level of the service supply chain network, but also the 
consistency between different levels. The accuracy and consistency of hierar-
chical forecasts are important to be interpretable to the decision-makers (DM). 
Moreover, service part demand data is the spatial-temporal time series that the 
observations made at neighboring regions and adjacent timestamps are not inde-
pendent but dynamically correlated with each other. Recent advances in deep 
learning enable promising results in modeling the complex spatial-temporal rela-
tionship. Researchers use convolutional neural networks (CNN) to model spatial 
correlations and recurrent neural networks (RNN) to model temporal correla-
tions. However, these deep learning models are non-transparent to the DMs who 
broadly require justifications in the decision-making processes. Here an inter-
pretable solution is in the urgent demand. In this paper, we present an interpreta-
ble general framework STAH (Spatial-Temporal Attention Graph Convolution 
network for Hierarchical demand forecast). We evaluate our approach on Lenovo 
Group Ltd.’s service part demand data in India. Experimental results demonstrate 
the efficacy of our approach, showing superior accuracy while increasing model 
interpretability. 

1 Introduction 

Service parts for products like notebooks, cellphones, household appliances, and auto-
mobiles have grown into a business worth more than $200 billion worldwide [1]. Ser-
vice parts need to be managed at an appropriate level within the service supply chain 
to provide after-sales services to customers. Considering the high number of parts man-
aged, the high responsiveness required due to downtime cost for customers and the risk 
of stock obsolescence, the service supply chain management is a difficult task for 
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decision-makers (DM). The most difficult one in the decision processes is how to esti-
mate service part demand accurately. Generally, the service supply chain network is 
multiple hierarchical structures: forward stocking locations (FSL) close to the end cus-
tomer, distribution centers (DC) in the middle and center hub (CH) at the top. A good 
service part management needs an accurate demand forecast at each level and the con-
sistent demand forecast between different levels. For instance, service part demand in 
the CH can be disaggregated into one of DCs, which are further disaggregated into one 
of FSLs. The aggregation consistency is a critical point for decision-maker (DM) to 
interpret and accept the forecast results, which means the disaggregated demands 
should add up equally to the aggregated ones. Moreover, service part demand data is 
spatial-temporal time series that the observations made at neighboring regions and 
timestamps are not independent but dynamically correlated with each other. The key 
challenge to providing accurate service part demand forecast is how to discover inher-
ent spatial-temporal patterns and extract the spatial-temporal correlation of data effec-
tively. In recent years, many researchers use deep learning methods to deal with spatial-
temporal data, i.e., convolutional neural network (CNN) to extract spatial features of 
grid-based data and recurrent neural network (RNN) to extract temporal features of 
time-series data. Compared with the time series analysis model and traditional machine 
learning method, the deep learning method achieves great results and shows its ad-
vantages in modeling end-to-end nonlinear interactions, incorporating exogenous vari-
able and extract features automatically [2]. However, these deep learning models are 
described as “black-box” and non-transparent to DMs who broadly require justifica-
tions in the decision-making processes.  
To tackle the above challenges, we propose an interpretable general framework STAH 
(Spatial-Temporal Attention Graph Convolution network for Hierarchical demand 
forecast) to predict service part demand hierarchically. Instead of using CNNs, this 
model uses interpretable hierarchical graph convolution networks (GCN). It is capable 
to handle non-Euclidean hierarchical data structure such as the service supply chain 
network structure. To increase interpretability even further, attention mechanism is 
used in both hierarchical GCNs and RNN encoder-decoder to localize discriminative 
regions and timestamps both spatially and temporally. The main contributions of this 
paper are summarized as follows: 

• We develop a neural network structure for the hierarchical forecast that met the ag-
gregation consistency inherently. The neural network has multiple levels of outputs, 
each of which is corresponding to each level of the service supply chain network. 
The high-level output is the sum of the connected low-level ones. The objective 
function of this model is the combination of the objective function of each output at 
each level.   

• We propose a spatial hierarchical attention module that captures multilevel spatial 
correlations from the graph-based hierarchical service supply chain network and a 
temporal alignment attention module that identify the most relevant historical obser-
vations and align forecast results with them. 

• We apply inter-temporal regularization to restrict the difference of the learned spatial 
attention maps among different timestamps. This can help to avoid the case in which 



3 

the learned attention maps of each spatial region focus on one specific temporal state 
and largely ignore the other temporal ones. 

2 Related Review 

2.1 Hierarchical forecast 

Some time series analysis models such as ARIMA (Autoregressive Integrated Moving 
Average model), ETS (Smoothing State Space model), etc. are applied in hierarchical 
forecast [3–6]. This forecasting method estimates time series at all levels inde-
pendently. This approach doesn’t guarantee aggregation consistency in the hierarchical 
structure and the separate predictive models don’t take account of spatial correlations 
between each region. The “bottom-up” approach is adopted to meet the aggregation 
consistency constraint [5]. It forecasts all of the bottom-level disaggregated series and 
then adds the results of the forecast to form the higher-level series until it reaches the 
top-level one. However, this approach still doesn’t consider spatial correlations and the 
disaggregated data tends to have a low signal-to-noise ratio, the overall prediction ac-
curacy will be poor [7]. The optimal combined forecasting is the mainstream [4, 5, 8]. 
It estimates the initial forecast at bottom-levels and reconciles these forecasts based on 
aggregation consistency. Ordinary Least Square (OLS) and Weight Least Square 
(WLS) are used to estimate the covariance matrix based on historical observations. 

2.2 Convolutions on graphs 

CNNs can effectively extract the local patterns of the standard grid data. To generalize 
CNNs to data of graph structures, two basic approaches are proposed. One is to perform 
convolutional filtering on graph’s nodes and their neighbors directly [9], the other is to 
manipulate in the spectral domain with graph Fourier transforms [10]. However, this 
method requires explicitly computing the Laplacian eigenvectors, which is impractical 
for real large graphs. [11] find a model to circumvent this problem by using Chebyshev 
polynomial approximation to realize eigenvalue decomposition. [12] simply this model 
by limiting the application of each filter to the 1-neighbor of each node, approximating 
the largest eigenvalue and applying a normalization trick to the convolution matrix. In 
this way, they reduce the computational complexity to linear. This simplified model is 
called GCN, which is used in this paper. 

2.3 Attention mechanism 

Since the attention mechanism is propose by [13], it has been applied in various tasks 
such as natural language processing, image caption and speech recognition. The atten-
tion mechanism can select the information that is relatively critical to the current task 
from all inputs. Together with RNNs and CNNs, attention mechanism has proven to be 
useful to learn representation and improve performances in applied tasks [14, 15]. Re-
cently, [16] extend the attention mechanism to process graph-structured data and 
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achieved state-of-art results. In the time series forecast task, [17] proposed a multi-level 
attention network to adjust the correlations among multiple time series generated from 
different locations. [18] proposed a spatial-temporal forecast model that applies the at-
tention mechanism in both spatial and temporal dimensions.  

3 STAH: the model 

 

Figure 1. The system architecture of the proposed Spatial-Temporal Attention Graph Convolu-
tion network for Hierarchical demand forecast (STAH). 

In this section, we first mathematically formulate the definition of hierarchical ser-
vice part demand forecast and then we present the technical details of the proposed 
model STAH. The system architecture of the proposed model STAH is shown in 
Figure 1. We represent the output layer in a hierarchical structure that has multiple 
levels of outputs, each of which is corresponding to each level of the service supply 
chain network. The high-level output is the sum of the connected low-level ones. The 
aggregation consistency is met inherently in the hierarchical output layer. The pro-
posed neural network STAH is composed of spatial hierarchical attention module 
and temporal alignment attention module. The values of all features at each 
timestamp are firstly processed by spatial hierarchical attention module and then feed 
into temporal alignment attention module to generate hierarchical forecast. 

3.1 Hierarchical Service Part Demand Forecast 

The service supply chain network is a hierarchical structure that have multiple levels, 
as shown in Figure 2. Suppose service part demand and exogenous variables are rec-
orded as time series on each region at each level as 𝒙",$

(&) = (𝑦",$
(&), 𝑎",$

(&),	𝑏",$
(&),…,	𝑐",$

(&)) ∈
ℝ012, where 𝑦 is service part demand. 𝑎, 𝑏,…, 𝑐 are exogenous variables. 𝑖, 𝑗 and	𝑡 
represent level 𝑖, region 𝑗 and timestamp 𝑡. 𝐹 is the number of exogenous variables. 
𝑿"
(&) = (𝒙",2

(&), 𝒙",9
(&), . . , 𝒙",;<

(&) ) ∈ ℝ;<×(012) denotes the values of all the features of all 



5 

regions at level 𝑖 and time 𝑡. We define the number of the regions at all levels as 𝑛 =
∑ 𝑛"@
2 . 𝑿(&) = (𝑿2

(&), 𝑿9
(&), . . , 𝑿@

(&)) ∈ ℝ;×(012) denotes the value of all the features of 
all the regions at all the level at time 𝑡. The same processes apply to 𝑦 and 𝒀"

(&) ∈
ℝ;<  denotes the service part demand of all regions at level	𝑖 and time 𝑡. 𝒀(&) ∈ ℝ; 
denotes the service part demand of all the regions at all the level at time	𝑡. Then the 
hierarchical service part demand forecast problem is formulated as a multi-step pre-
diction given input with a fixed temporal length, i.e., learning a function 
𝑓:	ℝ;×(012)×D 	→ 	ℝ;×∆ that maps the historical values of all the features to the de-
mand in the following interval ∆. 

G𝑿(2), … , 𝑿(D)H
I(∙)
KL G𝒀(D12), … , 𝒀(D1∆)H                                  (1) 

The aggregation consistency can be formulated as 𝒀(&) = 𝑇N𝒀2
(&), where index 1 repre-

sents the bottom level and 𝑇N denotes an 𝑛 × 𝑛2 summing matrix derived from the hi-
erarchical structure. It consists of an (𝑛 − 𝑛2) × 𝑛2  submatrix 𝑇N,P  and an 𝑛2 × 𝑛2 
identity matrix.  

𝑇N = QDR,STUV
W                                                         (2) 

3.2 Spatial Hierarchical Attention Module 

The service supply chain network generally organizes as a hierarchical graph structure. 
In order to process this multilevel non-Euclidian data structure, multiple GCNs are 
used, each of which is applied to process the data of each level in the hierarchical graph 
structure, as shown in Figure 2. We introduce the notion of graph convolution operator 
“∗ ℊ” based on the conception of spectral graph convolution, as the multiplication of 
𝑿"
(&) at level 𝑖 and time 𝑡 with a kernel Θ, 

Θ ∗ ℊ	𝑿"
(&) = Θ(𝐿)𝑿"

(&) = Θ(𝑈Λ𝑈D)𝑿"
(&) = 𝑈Θ(Λ)𝑈D𝑿"

(&)                  (3) 

where graph Fourier basis 𝑈 ∈ ℝ;<×;< is the matrix of eigenvectors of the normalized 
graph Laplacian 𝐿 = 𝐼;< − 𝐷

`Va𝑊𝐷`
V
a = 𝑈Λ𝑈D ∈ ℝ;<×;< . 𝐷 ∈ ℝ;<×;<  is the diagonal 

degree matrix with 𝐷"" = ∑ 𝑊"$$ . Λ ∈ ℝ;<×;< is the diagonal matrix of eigenvalues of 
𝐿. Two approximation strategies are applied to simplify equation (1). One approxima-
tion is Chebyshev Polynomial Approximation. The kernel Θ can be restricted to a pol-
ynomial of Λ as Θ(Λ) = ∑ 𝜃dΛde`2

dfg , where 𝜃 ∈ ℝe is a vector of polynomial coeffi-
cients. 𝐾 is the kernel size of graph convolution. Chebyshev polynomial 𝑇d(𝑥) is used 
to approximate kernels as a truncated expansion of order 𝐾 − 1  as Θ(𝐿) ≈
∑ 𝜃d𝑇d(𝐿l)e`2
dfg  with rescaled Λm = 2Λ/𝜆qPr − 𝐼;, where 𝜆qPr denotes the largest eigen-

value of 𝐿 [19]. The graph convolution can then be rewritten as, 

Θ ∗ ℊ	𝑿"
(&) = Θ(𝐿)𝑿"

(&) ≈ ∑ 𝜃d𝑇d(𝐿l)𝑿"
(&)e`2

dfg                             (4) 
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where 𝑇d(𝐿l) ∈ ℝ;<×;<. Another approximation is 1st-order Approximation. Set 𝐾 = 1 
and assume 𝜆qPr ≈ 2. Thus, the equation (4) can be simplified to, 

Θ ∗ ℊ	𝑿"
(&) ≈ 	𝜃g𝑿"

(&) − 𝜃2(𝐷
`Va𝑊𝐷`

V
a)𝑿"

(&)                               (5) 

where 𝜃g and 𝜃2 are two shared parameters of the kernel. Set 𝜃 = 𝜃g = −𝜃2 and renor-
malize 𝑊 and 𝐷 by 𝑊m = 𝑊 + 𝐼;< and 𝐷m"" = ∑ 𝑊m"$$ . Then, the graph convolution can 
be expressed as, 

Θ ∗ ℊ	𝑿"
(&) = 𝜃(𝐷m`

V
a𝑊m𝐷m`

V
a)𝑿"

(&)                                         (6) 

Applying a stack of graph convolutions with the 1st-order approximation vertically can 
achieves the similar effect as 𝐾-localized convolutions do horizontally. In the spatial 
dimension, the service parts demand of different regions has highly dynamic influence 
among each other. Here, we propose a hierarchical attention model to capture the spatial 
correlations at the same level in the hierarchical graph structure. The spatial attention 
at level 𝑖 and time 𝑡 is defined as, 

𝑺"
(&) = 𝑽 ∙ 𝜎(𝑿"

(&)𝑾(𝑿"
(&))D + 𝒃)                                       (7) 

𝑆z",$,d
(&) =

{|}	(~<,�,�
(�) )

∑ {|}	(~<,�,�
(�) )�

��V
                                                (8) 

where 𝑺"
(&) ∈ ℝ;<×;< represents attention matrix at level 𝑖 and time 𝑡 and 𝑆",$,d

(&)  is an el-
ement in 𝑺"

(&) representing the correlation strength between region 𝑗 and region 𝑘. 𝑾 ∈
ℝ(012)×(012), 𝑽, 𝒃 ∈ ℝ;<×;< are learnable parameters and sigmoid 𝜎 is used as the ac-
tivation function. When performing the graph convolution, the spatial attention matrix 
𝑺l"
(&) ∈ ℝ;<×;<  is accompanied with the 𝑇d(𝐿l) . The graph convolution formula (4) 

changes to  

Θ ∗ ℊ	𝑿"
(&) = Θ(𝐿)𝑿"

(&) ≈ ∑ 𝜃d(𝑇d(𝐿l)⨀𝑺l"
(&))𝑿"

(&)e`2
dfg                    (9) 

And the formula (6) changes to  

Θ ∗ ℊ	𝑿"
(&) = 𝜃((𝐷m`

V
a𝑊m𝐷m`

V
a)⨀𝑺l"

(&))𝑿"
(&)                                (10) 

where ⨀ is the Hadamard product. In order to encourage the spatial attention model to 
preserve the similarity and meanwhile avoid focusing on one timestamp, we design the 
inter-temporal regularization that measures the difference among spatial attention ma-
trix. We employ the square Frobenius Norm of the difference between 𝑺"

(&V) and 𝑺"
(&a), 

defined as 

𝑅𝑒𝑔 = �𝑺"
(&V) − 𝑺"

(&a)�
0
= �∑ ∑ (𝑆",$,d

(&V) − 𝑆",$,d
(&a))9;<

df2
;<
$f2                     (11) 
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We randomly choose 𝑚 pairs of spatial attention matrixes from each training sample 
for this regularization term and add this term 𝑅𝑒𝑔 to the original objective function for 
the model training.  

 

Figure 2. The hierachical structure of a typical service supply chain network that consists one 
CH, three DCs and many FSLs. Four GCNs are used to model spatial correlation within one CH 
and three DCs. 

3.3 Temporal Alignment Attention Module 

We denote 𝑿m"
(&) = Θ ∗ ℊ	𝑿"

(&) ∈ ℝ;<×�  and 𝑿m(&) = (	𝑿m2
(&), 𝑿m9

(&), . . , 𝑿m@
(&)) ∈ ℝ;×� . 𝐷  is 

feature dimension after the graph convolution. Take {𝑿m(&)}&f2D  as input, RNN encodes 
{𝑿m(&)}&f2D  into hidden states {𝒉(&)}&f2D  via: 

𝒉(&) = 𝐿𝑆𝑇𝑀";&(𝑿m(&), 𝒉(&`2))                                      (12) 

where 𝐿𝑆𝑇𝑀";& is a long short memory architecture (LSTM) encoder to capture the 
long-range dependency proposed by [20]. To predict the desired service part demands 
{𝒀(&)}&fD12D1∆ , we adopt a LSTM decoder defined as 

𝒅(&) = 𝐿𝑆𝑇𝑀��N(𝑿m(&), 𝒅(&`2))                                      (13) 

where 𝒅(&) ∈ {𝒅(&)}&fD12D1∆  is the hidden state to learn in the decoding process. Ideally, 
the learned hidden states {𝒉(&)}&f2D  and {𝒅(&)}&fD12D1∆  carries contextual information in 
current and previous timestamps. However, the performance of the encoder-decoder 
networks decreases significantly when the length of time series increases. To alleviate 
this problem, we propose a temporal alignment attention model. At first, we concate-
nate ∆ successive encoder hidden states as: 

𝑷" = G𝒉("); 𝒉("12); … ; 𝒉("1∆`2)H, 1 ≤ 	𝑖 ≤ 𝑇 − ∆ + 1                (14) 

Similarly, we concatenate all the decoder hidden states as: 
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𝑷m = G𝒅(D12); 𝒅(D19); … ; 𝒅(D1∆)H                                 (15) 

Then, we compute the relevance score between 𝑷" ∈ {𝑷"}"f2D`∆12 and 𝑷m  as 𝑒" = 𝑷m𝑷"D 
and find the maximum one, with 𝑖qPr = argmax{𝑒"}"f2D`∆12.Finally, we merge each pair 
in {𝒉(&)}&f"�S�

"�S�1∆`2 and {𝒅(&)}&fD12D1∆  into {𝒅m(&)}&fD12D1∆  that contains the aligned long-dis-
tance encoder hidden states. We approximate the future service part demands with re-
gression: 

𝒀�2
(&) = 𝑨𝒅m(&) + 𝑩                                                (16) 

𝒀�(&) = 𝑇N𝒀2
(&)                                                    (17) 

where 𝒀�2
(&) denotes the predicted service part demand at bottom level and 𝒀�(&) denotes 

the predicted service part demands at all levels of the hierarchical structure. 𝑨 and 𝑩 
are parameters to learn. For model learning, we apply mean squared error coupled with 
regularization term 𝑅𝑒𝑔 multipled by a coefficient 𝜆: 

ℒ¢£¤¤ =
2
@
(∑ (∑ ¥𝒀�(&) − 𝒀(&)¦ + 𝜆D1∆

&fD12 𝑅𝑒𝑔)@
;f2 )                    (18) 

where 𝑁 is the number of the batch size. In the training procedure, we leverage mini-
batch Stochastic Gradient Decent (SGD) based algorithm, named Adam. We set the 
batch size as 128 and the starting learning rate as 0.001 which is reduced by 10% after 
10,000 iterations. 

4 Experiments 

4.1 Experimental Datasets 

We use one real-life dataset: Lenovo Group Ltd.’s service part demand data in India 
that has one DC and 17 FSLs. The dataset contains 17,467 stock keeping units (SKU) 
of service parts demand over five years. Except service parts demand data, other inter-
nal data like installed base, service parts category, etc., and external data like weather 
condition and holiday are collected. All the data is aggregated by week. We reduce the 
original dimensionality of categorical data by taking the 4th root of the number of cate-
gories. We use four years of data as the training set, the following six months as the 
validation set, and the final six months as the testing set. 

4.2 Experimental Setup 

In the experiments, we compute 26 weeks ahead rolling forecasts with 52 weeks his-
torical demand observations and other features, i.e. ∆= 26 and 𝑇 = 52. The Adjacency 
matrix of the DC graph in India is computed based on the distances among FSLs in the 
service supply chain network. The weighted adjacency matrix 𝑾 can be formed as, 
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𝑤",$ = «exp®−
𝑑",$9

𝜎9 ° , 𝑖 ≠ 𝑗	and	exp	(−
𝑑",$9

𝜎9 ) ≥ 𝜖

	0, otherwise.
	 

where 𝑤",$ is the weight of edge which is decided by 𝑑",$ (the distance between FSL 𝑖 
and 𝑗). 𝜎9 and 𝜖 are thresholds to control the matrix 𝑾, assigned to 500𝑘𝑚 and 10𝑘𝑚, 
respectively. Considering the computing efficiency, 1st-order approximation is used in 
this paper. Two stacks of the 1st-order approximation GCNs are applied vertically and 
convolution kernel of the first and the second GCN layers are 𝐷2 = 64 and 𝐷9 = 32, 
respectively. The LSTM encoder-decoder network is also two-layer LSTM, with 512 
and 128 hidden states, respectively. The number of pairs of spatial attention matrixes 
𝑚 = 10 in the term 𝑅𝑒𝑔. To measure and evaluate the performance of different meth-
ods, Mean Absolute Percentage Errors (MAPE), and Root Mean Squared Errors 
(RMSE) are adopted. We compare our framework STAH with the following baselines: 
1) Bottom-up Moving Average (MA); 2) Bottom-up Auto-Regressive Integrated Mov-
ing Average (ARIMA); 3) LSTM encoder-decoder (STAH without the spatial 
hierarchical attention module), 4) STAH model without temporal alignment attention. 

4.3 Experiment Results 

Method 
MAPE RMSE 

FSL DC FSL DC 
Bottom-up MA 8.97 5.92 1.32 16.85 

Bottom-up ARIMA 10.12 6.37 1.53 18.76 
Baseline 3) 7.32 5.71 1.21 13.64 
Baseline 4) 6.84 4.98 1.13 12.19 

STAH 6.63 4.79 1.04 10.86 

Table 1. The comparison of MAPE and RMSE obtained by different methods. 

The prediction accuracy at each level and the average statistical results for the dataset 
are shown in Table 1, respectively. From the tables, we can see in general that the DC 
level prediction has less errors than the FSL level forecasts and our proposed model 
achieves the best performance in both levels. As we can see, Deep learning approaches 
generally achieved better prediction results than tradition models. Compared with base-
line 3) that did not incorporate spatial topology, our model STAH has achieved a sig-
nificant improvement. This demonstrates our model can effectively utilize spatial struc-
ture to make more accurate predictions.  
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Figure 3. The spatial attention matrix obtained from spatial hierarchical attention module. 

In order to investigate the role of spatial attention mechanism in our model intuitively, 
we perform a case study: picking out ten service parts belonging to the same category 
and showing the average spatial attention matrix of the DC graph structure in the train-
ing set. As shown on the right side of Figure 3, each element represents the correlation 
strength between the 𝑖-th FSL and the 𝑗-th FSL in India. The service part demand on 
the 10th FSL is closely related to the ones on the 11th and 12th FSLs. This is because 
they are close in space and customers in that regions who have service parts replace-
ment requirements can go to one of them with no difference. This certainly explains 
why the spatial hierarchical attention module improves forecast accuracy and shows an 
interpretability advantage. 

 
Figure 4. Demonstration of the temporal alignment attention mechanism in the model STAH 

by visualizing one service part demand at the DC level. 

Compared with baseline 4), when removing the temporal alignment attention mecha-
nism, the performance drops. So, we can conclude the temporal alignment attention 
contribute positively. Furthermore, we visualize one service part historical demand at 
the DC level together with the prediction results, as shown in Figure 4. It highlights the 
aligned segment of service part historical demand and predicted service part demand. 
We find that two highlighted parts have similar trend and seasonality.  
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𝑚 
MAPE RMSE 

FSL DC FSL DC 
0 6.82 4.98 1.17 11.14 
2 6.76 4.92 1.13 11.06 
5 6.69 4.83 1.08 10.92 
10 6.63 4.79 1.04 10.86 
100 6.73 4.87 1.12 11.36 

Table 2. Demonstration the influence of the number of pairs of spatial attention matrixes in the 
𝑅𝐸𝐺 term. 

To study the effects of the hyperparameter 𝑚 , we test 5 different values 𝑚 =
0, 2, 5, 10, 100, as shown in Table 2. We observe the increase of the number of pairs of 
spatial attention matrixes 𝑚, the performance of the model first increases and then de-
creases. Larger 𝑚 can decrease the flexibility and increase the generalization of the 
model at the cost of decrease model complexity and more prune to underfitting. 

5 Conclusion and Future work 

In this paper, we propose a novel deep learning framework STAH for hierarchical ser-
vice part demand forecast. Experiments show that our model not only achieves better 
performances but also increase the interpretability. In the future, we will further apply 
this model on more complicated service supply chain networks that have more levels 
to test the model’s potential capability. Moreover, our proposed model can be applied 
into more general spatial-temporal structured sequence forecasting scenarios, such as 
electricity demand, preference prediction in recommendation system, etc. 
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