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What is Self-supervised Learning?

Patches: Illustration of self-supervised learning

by predicting the relative position of two random patches. 

The Patches pretext task drives the  model to  

learn to understand the spatial context of objects

in order to tell the relative position between parts.

(Image source: Doersch et al., 2015)

Rotation: Illustration of self-supervised learning by rotating the entire input images. The 

model learns to predict which rotation is applied.

This Rotation pretext task drives the model to learn semantic concepts 

of objects: the model has to learn to recognize high-level object parts, 

such as heads, noses, and eyes, and the relative positions of these parts, rather than local patterns. 

(Image source: Gidaris et al. 2018)

 Labels are extracted from the samples
 The tasks require understandingExamples in image-based tasks

https://arxiv.org/abs/1505.05192
https://arxiv.org/abs/1803.07728


What is Self-supervised Learning?

Self-supervised learning in NLP tasks

• Center Word Prediction

• Neighbor Sentence Prediction

• Auto-regressive Language Modeling

• Masked Language Modeling

• Key techniques in GTP-2 and Bert

Example taken from https://amitness.com/2020/05/self-supervised-learning-nlp/



What is Self-supervised Learning?

• Self-supervised training (SSL): a family of 
techniques for converting an unsupervised learning 
problem into a supervised one by creating 
surrogate labels from the unlabeled dataset.

• We can achieve this by framing a supervised 
learning task in a special form to predict only a 
subset of information using the rest.

• SSL: learning intermediate representation with the 
expectation that this representation can carry good 
semantic or structural meanings and can be 
beneficial to a variety of practical downstream tasks.

• Are Generative Models self-supervised?

(Image source: LeCun’s talk)

(Image source: Doersch et al., 2015)

https://www.youtube.com/watch?v=7I0Qt7GALVk
https://arxiv.org/abs/1505.05192


Contrastive Learning: 
the SOTA Self-supervised Learning

• Representative Contrastive learning: SimCLR (Chen et al., 2020), 
MoCo (He et al. 2019), BYOL (Grill et al., 2020) …

https://generallyintelligent.ai/understanding-self-supervised-contrastive-learning.html

𝓁𝑖,𝑗 = − log
exp  sim 𝒛𝑖 , 𝒛𝑗 𝜏

 𝑘=1
2𝑁 1 𝑘≠𝑖 exp  sim 𝒛𝑖 , 𝒛𝑘 𝜏
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Self-supervised Reinforcement Learning

• How to learn better intermediate representation for better estimation of policies 
and Q-values?
• Representation of states

• Contrastive-learning based: task-agnostic representation (CURL) 

• Bisimulation-based: only encode task-relevant information (DBC, deepMDP)

• Representation of policies
• Policy-extended value function (generalization across value function estimation of different policies)

• Representation of actions
• Action representation in RL (action space reduction, generalization across policies and value functions)

• Representation of tasks/environments 
• Task context representation learning for Meta-RL (generalization across new tasks)



Self-supervised Reinforcement Learning

• CV/NLP: Learning useful semantic/structural representation for effective 
downstream tasks (object detection/segmentation, word/sentence generation)

• RL: Learning useful semantic/structural representation for effective 
downstream tasks (planning and control)
• Contrastive-based Representations: the same way of constructing supervised loss for 

image-based deep learning tasks (reconstruction-based and task-agnostic - the models 
represent all dynamic elements they observe in the world, whether they are relevant to 
the task or not)  

• Bisimulation and other metric representation: The bisimulation distance between two 
states corresponds to how behaviorally different these two states are (e.g., DBC, 
deepMDP) 

far away from



CURL – State Representation Learning for RL

• CURL extends the idea of MoCo to reinforcement learning by learning virtual/state 
representation for RL tasks.

(CURL: Srinivas & Laskin, et al., 2020)

We crop a 84 × 84 image from a 100 × 100 

simulation-rendered image. Applying the same random 

crop coordinates across all frames in the stack ensures 

time-consistency

The anchor and positive observations are two different augmentations (random 

crop operation) of the same image while negatives come from other images

During the gradient update step, only the query encoder is updated. The key encoder 

weights are the moving average (EMA) of the query weights similar to MoCo



Grasp2Vec: Object Representation Learning 

Graspa2Vec: Learning Object Representations from Self-Supervised Grasping

Jang & Devin et al., 2018

Let 𝜙𝑠 and 𝜙𝑜 be the embedding functions for the scene and the object respectively. The model learns the representation by minimizing the 

distance between 𝜙𝑠 𝑠pre − 𝜙𝑠 𝑠post and 𝜙𝑜(𝑜) using n-pair loss:

ℒgrasp2vec = NPair 𝜙𝑠 𝑠pre − 𝜙𝑠 𝑠post , 𝜙𝑜(𝑜) + NPair 𝜙𝑜(𝑜),𝜙𝑠 𝑠pre − 𝜙𝑠 𝑠post

Where NPair(𝑎, 𝑝) =  𝑖<𝐵 − log
exp 𝑎𝑖

⊤𝑝𝑗

 𝑗<𝐵,𝑖≠𝑗 exp 𝑎𝑖
⊤𝑝𝑗

+ 𝜆 𝑎𝑖 2
2 + 𝑝𝑖 2

2

Where 𝐵 refers to a batch of (anchor, positive) sample pairs.

https://arxiv.org/abs/1811.06964


DBC: Bisimulation-based self-representation RL

• Image-level self-supervised representation learning (e.g., CURL) can learn irrelevant information

Example 1. Robust representations of the visual scene 
should be insensitive to irrelevant objects (e.g., clouds) 
or details (e.g., car types), and encode two observations 
equivalently if their relevant details are equal (e.g., road 
direction and locations of other cars).

Example 2. Pixel observations in DMC in the default 
setting (top row) of the finger spin (left column), 
cheetah (middle column), and walker (right column), 
and natural video distractors (bottom row).

Example 3. Autonomous Driving, a clear highway 
driving scenario. Clouds and sun position are 
irrelevant.

Deep Bisimulation for Control: https://arxiv.org/pdf/2006.10742.pdf, ICLR21

https://arxiv.org/pdf/2006.10742.pdf


• DBC is effective in learning task-relevant state representation while VAE fails

DBC: Bisimulation-based self-representation RL

Deep Bisimulation for Control: https://arxiv.org/pdf/2006.10742.pdf, ICLR21

Representation visualization. t-SNE of latent spaces learned with a bisimulation metric (left t-SNE) and VAE (right t-SNE) after training has completed, color-
coded with predicted state values (higher value yellow, lower value purple). 

• Neighboring points in the embedding space learned with a bisimulation metric have similar states and correspond to 

observations with the same task-related information (depicted as pairs of images with their corresponding embeddings),

• Whereas no such structure is seen in the embedding space learned by VAE, where the same image pairs are mapped far away 

from each other.

https://arxiv.org/pdf/2006.10742.pdf


• CURL- largely ignore the sequential aspect of RL when learning state 
representation

• DBC: capture representations of states that are suitable to control, while 
discarding any information that is irrelevant for control

• Robust representations of the visual scene should be insensitive to 
irrelevant objects (e.g., clouds) or details (e.g., car types), and encode two 
observations equivalently if their relevant details are equal (e.g., road 
direction and locations of other cars).

• The Deep Bisimulation for Control algorithm learns a bisimulation metric 
representation via learning a reward model and a dynamics model.

• Bisimulation metrics rely on reward information and may not provide a 
meaningful notion of behavioral similarity in certain environments.

𝐽(𝜙) = 𝜙 𝑠𝑖 − 𝜙 𝑠𝑗 1
−  ℛ  𝜙 𝑠𝑖 −  ℛ  𝜙 𝑠𝑗 − 𝛾𝑊2

 𝒫 ⋅∣  𝜙 𝑠𝑖 ,  𝜋  𝜙 𝑠𝑖 ,  𝒫 ⋅∣  𝜙 𝑠𝑗 ,  𝜋  𝜙 𝑠𝑗

2

Where  𝜙 𝑠 denotes 𝜙 𝑠 with stop gradient and  𝜋 is the mean policy output. The learned 

reward model  ℛ is deterministic and the learned forward dynamics model  𝒫 outputs a 

Gaussian distribution.

DBC: Bisimulation-based self-representation RL
-learning behavioral similarity between states

Deep Bisimulation for Control: https://arxiv.org/pdf/2006.10742.pdf, ICLR21

https://arxiv.org/pdf/2006.10742.pdf
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Policy Similarity Measure (PSE)
-generalization across semantically equivalent tasks with similar underlying mechanics

CONTRASTIVE BEHAVIORAL SIMILARITY EMBEDDINGS FOR GENERALIZATION IN REINFORCEMENT LEARNING, ICLR 21

Embedding visualization. (a) Optimal trajectories on original jumping task (visualized as 

coloured blocks) with different obstacle positions. The hidden representations are visualized using 

UMAP, where the color of points indicate the tasks of the corresponding observations. Points with 

the same number label correspond to same distance of the agent from the obstacle, the underlying 

optimal invariant feature across tasks.

• The figure shows that PSEs partition the states into two sets: (1) states where a single suboptimal action leads to failure 

(all states before jump) and (2) states where actions do not affect the final outcome (states after jump). PSEs align the 

numbered states in the first set, which have the same distance from the obstacle, the invariant feature that generalizes 

across tasks. 

• While 𝑙2-embeddings (in DBC) with PSM do not align states with zero PSM except the state with the jump action –

poor generalization.



Policy Similarity Measure
-generalization across semantically equivalent tasks with similar underlying mechanics

• Policy similarity metric (PSM): defines a notion of 
similarity between states originated from different 
environments by the proximity of the long-term 
optimal behavior from these states. 

• the agent is optimized to learn an embedding in which 
states are close when the agent’s optimal policies in 
these states and future states are similar.

Framework for Learning Contrastive Metric Embeddings

CONTRASTIVE BEHAVIORAL SIMILARITY EMBEDDINGS FOR GENERALIZATION IN REINFORCEMENT LEARNING, ICLR 21

Different tasks consist in shifting the floor height and/or the obstacle position. To 

generalize, the agent needs to be invariant to the floor height while jump based on the 

obstacle position (26 locations*11 heights-286 tasks)

Deep RLagents trained on a few of these jumping tasks with different obstacle 
positions struggle to successfully jump in test tasks where obstacles are at previously 

unseen locations.

soft version of the SimCLR contrastive loss

𝐿𝜃 ℳ𝒳, ℳ𝑦 = 𝔼𝑦∼𝜏𝑦
∗ 𝓁𝜃  𝑥𝑦, 𝑦; 𝜏𝒳

∗ where  𝑥𝑦 = argmax
𝑥∈𝜏𝑥

∗
Γ(𝑥, 𝑦)

𝓁𝜃  𝑥𝑦, 𝑦; 𝒳′ = −log
Γ  𝑥𝑦, 𝑦 exp 𝜆𝑠𝜃  𝑥𝑦, 𝑦

Γ  𝑥𝑦, 𝑦 exp 𝜆𝑠𝜃  𝑥𝑦, 𝑦 +  
𝑥′∈𝒳′∖  𝑥𝑦

1 − Γ 𝑥′, 𝑦 exp 𝜆𝑠𝜃 𝑥′, 𝑦

Γ(𝑥, 𝑦) = exp(−𝑑(𝑥, 𝑦)/𝛽)

𝑑∗(𝑥, 𝑦) = Dist 𝜋∗(𝑥), 𝜋∗(𝑦)
(A)

+ 𝛾𝒲1 𝑑∗ 𝑃𝜋∗
(⋅∣ 𝑥),𝑃𝜋∗

(⋅∣ 𝑦)

(B)

The Dist term captures the difference in local optimal behavior (A) while 𝒲1

captures long-term optimal behavior difference (B); the exact weights assigned to 

the two are given by the discount 



Self-supervised Reinforcement Learning

• How to learn better intermediate representation for better estimation of policies 
and Q-values?
• Representation of states

• Contrastive-learning based: task-agnostic representation (CURL) 

• Bisimulation-based: only encode task-relevant information (DBC, deepMDP, PSM) 

• Representation of policies
• Policy-extended value function (generalization across value function estimation of different policies)

• Representation of actions
• Action representation in RL (action space reduction, generalization across policies and value functions)

• Representation of tasks/environments 
• Task context representation learning for Meta-RL (generalization across new tasks)



Policy  Representation In RL 

• Policy: mapping from state to action 
distribution

• Policy network = representation 
learning + policy learning

• Origin policy Representation: extract 
policy representation from the policy 
network parameters

• Surface policy representation: extract 
policy representation from state-
action pairs (trajectories)

DQN: Human-level control through deep reinforcement learning,

Nature 2015



Policy extended value function(PeVF)

• Generalized Policy Iteration (GPI) with function approximation

23

• Policy-extended Value Function Approximator (PeVFA)

What About Taking Policy as Input of Value Function: Policy-extended Value Function Approximator. https://arxiv.org/abs/2010.09536



PeVF: Global vs. Local Generalization

24
What About Taking Policy as Input of Value Function: Policy-extended Value Function Approximator. https://arxiv.org/abs/2010.09536



PeVF: Global vs. Local Generalization

25
What About Taking Policy as Input of Value Function: Policy-extended Value Function Approximator. https://arxiv.org/abs/2010.09536



Policy extended value function(PeVF)

26

Framework of policy representation training

What About Taking Policy as Input of Value Function: Policy-extended Value Function Approximator. https://arxiv.org/abs/2010.09536



Policy extended value function(PeVF)

• Origin policy Representation: extract policy representation from the policy 
network parameters

• Surface policy representation: extract policy representation from state-action 
pairs (trajectories)

27
What About Taking Policy as Input of Value Function: Policy-extended Value Function Approximator. https://arxiv.org/abs/2010.09536



Self-supervised Reinforcement Learning

• How to learn better intermediate representation for better estimation of policies 
and Q-values?
• Representation of states

• Contrastive-learning based: task-agnostic representation (CURL) 

• Bisimulation-based: only encode task-relevant information (DBC, deepMDP, ourwork)

• Representation of policies
• Policy-extended value function (generalization across value function estimation of different policies)

• Representation of actions
• Action representation in RL (action space reduction, generalization across policies and value functions)

• Representation of tasks/environments 
• Task context representation learning for Meta-RL (generalization across new tasks)



Action Representation in RL

Learning Action Representations for Reinforcement Learning, ICML 2019

 Applications with large action space: maximizing 

long-term portfolio value in finance using various 

trading strategies; Smart-grid power control by 

regulating voltage level of all the units; recommending 

millions of items in e-commence systems

 Succinct Action Embedding is important for reducing 

policy space and also providing generalization ability of 

policy and value function over action space, thus 

significantly speed up learning

 Internal policy is defined over action embedding space 

and function f maps action embedding back to the 

original action space

An RL agent interacting with environments with action embedding 

Each color is associated with a specific action



Action Representation in RL

Learning Action Representations for Reinforcement Learning, ICML 2019

 How to construct Self-supervised Learning 

for action representation?

 exploits the structure in the action set 

by aligning actions based on the 

similarity of their impact on states.

 Action Encoder g and Decoder f are trained 

to maximize the prediction accuracy of the 

exact action that cause the transition between 

state s(t) and s(t+1). 

 The internal policy is optimized over the 

action embedding space following policy 

gradient theorem (equivalent with the 

gradient of the performance function over the 

original action space), which is also relatively 

independent of the action embedding learning.

Reward-independent - mitigating sparse and 

stochastic rewards problem

Gradient optimization over embedding 

action space is equivalent with original 

action space

𝜕𝐽𝑜(𝜃, 𝑓)

𝜕𝜃
=

𝜕𝐽𝑖 𝜃

𝜕𝜃

𝜕𝐽𝑖 𝜃

𝜕𝜃
=  

𝑡=0

∞

𝐄 𝛾𝑡  
e

𝑞𝜋𝑖 𝑆𝑡 , 𝑒
𝜕

𝜕𝜃
𝜋𝑖 𝑒 ∣ 𝑆𝑡 d𝑒

Approximation：

 𝑃 𝐴𝑡 ∣ 𝑆𝑡 , 𝑆𝑡+1 =  
e

 𝑓 𝐴𝑡 ∣ 𝐸𝑡 = 𝑒  𝑔 𝐸𝑡 = 𝑒 ∣ 𝑆𝑡 , 𝑆𝑡+1 d𝑒

ℒ  𝑓  𝑔 = −𝐄 ln  𝑃 𝐴𝑡 ∣ 𝑆𝑡 , 𝑆𝑡+1

𝑫𝒌𝒍 = −𝐸  

𝑎∈𝒜

𝑃 𝑎 ∣ 𝑆𝑡 , 𝑆𝑡+1 l n
 𝑃 𝑎 ∣ 𝑆𝑡 , 𝑆𝑡+1

𝑃 𝑎 ∣ 𝑆𝑡 , 𝑆𝑡+1

= −𝐸 ln
 𝑃 𝐴𝑡 ∣ 𝑆𝑡 , 𝑆𝑡+1

𝑃 𝐴𝑡 ∣ 𝑆𝑡 , 𝑆𝑡+1

Assumption:

𝑃 𝐴𝑡 ∣ 𝑆𝑡 , 𝑆𝑡+1 =  
e

𝑃 𝐴𝑡 ∣ 𝐸𝑡 = 𝑒 𝑃 𝐸𝑡 = 𝑒 ∣ 𝑆𝑡 , 𝑆𝑡+1 d𝑒

𝑠𝑡

𝑠𝑡+1

𝑒𝑡 𝑎𝑡 𝑠𝑡 𝑒𝑡 𝑎𝑡

𝑔 𝑓 𝜋𝑖 𝑓

𝛻ℒ 𝛻𝐽

on-policy sample estimation



Action Representation in RL

Learning Action Representations for Reinforcement Learning, ICML 2019

The size of the action set is exponential in the number of actuators (a); 

2-D representations for the displacements in the Cartesian co-ordinates 

caused by each action (b) and the learned action embedding (c)



HyAR: Hybrid Action Representation in RL

Applications with Discrete-continuous hybrid 
action space: Robotics control, Game AI, et al.

Solution 1: Discretization/continualization: 
scalability issue or non-smooth piecewise-
function action subspace (difficult to estimate)

Solution 2: Learning directly over hybrid action 
spaces with one policy network (e.g., PADDPG 
ICLR16, HPPO IJCAI19) 

Solution 3: Learning directly over hybrid action 
space with a hybrid structure of DQN and 
DDPG (PDQN Arixv2018, HHQN IJCAI19) 

Three key properties should be well-captured: 
Scalability to large action space, stationarity
between high and low-level learning, and 
Correlation/dependence between discrete and 
continuous actions

How to learn a coherent action embedding 
space to achieve this?

Learning with Hybrid Action space

Desirable Properties of RL algorithm

with hybrid action space

HyAR: Addressing Discrete-Continuous Action Reinforcement Learning via Hybrid Action Representation, arxiv 2021



HyAR: Hybrid Action Representation in RL
Dependence-aware encoding and decoding

A embedding table is used to map discrete 
actions while a VAE is used to learn embedding 
for continuous actions, while these two 
embedding are trained altogether to align them to 
the same space 

Hybrid action representations that are closer in 
the space reflects similar influence on 
environmental dynamics of their corresponding 
original hybrid actions.

A subnetwork that cascaded after the main body 
of the conditional VAE decoder to produce the 
prediction of the state residual of transition 
dynamics

𝐿VAE(𝜙, 𝜓, 𝜁) = 𝔼𝑠,𝑘,𝑥𝑘
∥ 𝑥𝑘 −  𝑥𝑘 ∥2

2 + 𝐷KL 𝑞𝜙 ⋅∣ 𝑥𝑘 , 𝑠, 𝑒𝜁,𝑘 ∥ 𝒩(0, 𝐼)
𝐄𝐧𝐜𝐨𝐝𝐞: 𝑒𝜁,𝑘 = 𝐸𝜁 𝑘 𝑎𝑛𝑑 𝑧𝑥 ∼ 𝑞𝜙 ⋅∣ 𝑥𝑘 , 𝑠, 𝑒𝜁,𝑘 for 𝑠, 𝑘, 𝑥𝑘

𝐃𝐞𝐜𝐨𝐝𝐞: 𝑘 = 𝑔𝐸 𝑧𝑘 = arg 𝑚𝑖𝑛
𝑘∈𝒦

𝑒𝜁,𝑘 − 𝑧𝑘 2
,

𝑥𝑘 = 𝑝𝜓 𝑧𝑥, 𝑠, 𝑒𝜁,𝑘 for 𝑠, 𝑧𝑘 , 𝑧𝑥

𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧:  𝛿𝑠,𝑠′ = 𝑝𝜓 𝑧𝑥, 𝑠, 𝑒𝜁,𝑘 for 𝑠, 𝑘, 𝑥𝑘

Then we minimize the 𝑳𝟐-norm square prediction error:

𝐿Dyn 𝜙, 𝜓, 𝜁 = 𝔼𝑠,𝑘,𝑥𝑘,𝑠′  𝛿𝑠,𝑠′ − 𝛿𝑠,𝑠′
2

2
𝐿HyAR(𝜙, 𝜓, 𝜁) = 𝐿VAE(𝜙, 𝜓, 𝜁) + 𝛽𝐿Dyn(𝜙, 𝜓, 𝜁)



HyAR: Hybrid Action Representation in RL

Eq. 𝟔 ∶ 𝐿HyAR (𝜙, 𝜓, 𝜁) = 𝐿VAE(𝜙, 𝜓, 𝜁) + 𝛽𝐿Dyn(𝜙,𝜓, 𝜁)

Eq. 𝟑 ∶

Eq. 𝟕 ∶ 𝐿CDQ 𝜃𝑖 = 𝔼𝑠,𝑧𝑘,𝑧𝑥,𝑟,𝑠′ 𝑦 − 𝑄𝜃𝑖
𝑠, 𝑧𝑘 , 𝑧𝑥

2
,

where 𝑦 = 𝑟 + 𝛾𝑚𝑖𝑛
𝑗=1,2

𝑄 𝜃𝑗
𝑠′, 𝜋 𝜔 𝑠′

Eq.𝟖 ∶ 𝛻𝜔𝐽 𝜔 = 𝔼𝑠 𝛻𝜋𝜔 𝑠 𝑄𝜃1
𝑠, 𝜋𝜔 𝑠 𝛻𝜔𝜋𝜔 𝑠

𝐄𝐧𝐜𝐨𝐝𝐞: 𝑒𝜁,𝑘 = 𝐸𝜁 𝑘 𝑎𝑛𝑑 𝑧𝑥 ∼ 𝑞𝜙 ⋅∣ 𝑥𝑘 , 𝑠, 𝑒𝜁,𝑘

for 𝑠, 𝑘, 𝑥𝑘

𝐃𝐞𝐜𝐨𝐝𝐞: 𝑘 = 𝑔𝐸 𝑧𝑘 = arg 𝑚𝑖𝑛
𝑘∈𝒦

𝑒𝜁,𝑘 − 𝑧𝑘 2
,

𝑥𝑘 = 𝑝𝜓 𝑧𝑥, 𝑠, 𝑒𝜁,𝑘 for 𝑠, 𝑧𝑘 , 𝑧𝑥

HyAR: Addressing Discrete-Continuous Action Reinforcement Learning via Hybrid Action Representation, arxiv 2021



HyAR: Hybrid Action Representation in RL

HyAR: Addressing Discrete-Continuous Action Reinforcement Learning via Hybrid Action Representation, arxiv 2021



Self-supervised Reinforcement Learning

• How to learn better intermediate representation for better estimation of policies 
and Q-values?
• Representation of states

• Contrastive-learning based: task-agnostic representation (CURL) 

• Bisimulation-based: only encode task-relevant information (DBC, deepMDP)

• Representation of policies
• Policy-extended value function (generalization across value function estimation of different policies)

• Representation of actions
• Action representation in RL (action space reduction, generalization across policies and value functions)

• Representation of tasks/environments 
• Task context representation learning for Meta-RL (generalization across new tasks)



Task Representation in RL

• Meta-Learning RL

Meta-Q: Fakoor et al., ICLR 2020

MAML (on-policy meta-training, 

sample-inefficient )

Multi-task learning (off-policy, 

sample efficient)

General form of Meta-learning

Meta-RL is a technique to learn an inductive bias that accelerates  the learning of new 

task by training on a large of number of training tasks. Formally, meta-training on 

tasks from the meta-training set  𝒟meta = 𝐷𝑘
𝑘=1,…,𝑛 involves learning a policy.

 𝜃meta = arg 𝑚𝑎𝑥
𝜃

1

𝑛
 

𝑘=1

𝑛

𝓁meta
𝑘 (𝜃)

𝓁meta
𝑘 𝜃 = 𝓁𝑘 𝜃 + 𝛼𝛻𝜃𝓁𝑘 𝜃

 𝜃meta = arg 𝑚𝑖𝑛
𝜃

1

𝑛
 

𝑘=1

𝑛

𝔼
𝜏∼𝐷𝑘

TD2(𝜃)

Remark: MQL uses a deterministic context that is not permutation 
invariant. the direction of time affords crucial information about the 
dynamics of a task to the agent, e.g., a Half-Cheetah running forward 
versus backward has arguably the same state trajectory but in a 
different order. Further, the context in MQL is a deterministic function 
of the trajectory. Both these aspects are different than the context 
used by Rakelly et al. (2019) who design an inference network and 
sample a probabilistic context conditioned on a moving window. This 
result demonstrates that a simple context variable is enough is an 
important contribution.

Key idea: adapt to a new environment by inferring latent context from a small 

number of interactions with the environment.

Challenges: how to extract task-specific and remove noisy information?

how to efficiently explore environments to get distinct task

context faced with a new environment?



Task Representation in RL

• Meta-Learning RL

PEARL: Rakelly et al., ICML 2019

MAML (on-policy meta-training, 

sample-inefficient )

Multi-task learning (off-policy, 

sample efficient)

General form of Meta-learning

Key idea: adapt to a new environment by inferring latent context from a small 

number of interactions with the environment.

Challenges: how to extract task-specific and remove noisy information?

how to efficiently explore environments to get distinct task context faced 

with a new environment?

Meta-RL is a technique to learn an inductive bias that accelerates  the learning of new 

task by training on a large of number of training tasks. Formally, meta-training on 

tasks from the meta-training set  𝒟meta = 𝐷𝑘
𝑘=1,…,𝑛 involves learning a policy.

 𝜃meta = arg 𝑚𝑎𝑥
𝜃

1

𝑛
 

𝑘=1

𝑛

𝓁meta
𝑘 (𝜃)

𝓁meta
𝑘 𝜃 = 𝓁𝑘 𝜃 + 𝛼𝛻𝜃𝓁𝑘 𝜃

 𝜃meta = arg 𝑚𝑖𝑛
𝜃

1

𝑛
 

𝑘=1

𝑛

𝔼
𝜏∼𝐷𝑘

TD2(𝜃)
Meta-training procedure. The inference network 𝑞𝜙 uses context 

data to infer the posterior over the latent context variable 𝑍, 
which conditions the actor and critic, and is optimized with 
gradients from the critic as well as from an information 
bottleneck on 𝑍. De-coupling the data sampling strategies for 
context (𝑆𝐶) and RL batches is important for off-policy learning.



Task Representation in RL with contrastive 
learning

Task Representation with Contrastive Learning

• Contrastive context encoder: a general framework, can be 
integrated with any Meta-RL framework

Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning, AAAI21

Contrastive context encoder RL

InfoNCE loss

Concretely, assuming a training task set containing 𝑀 different tasks from task 
distribution 𝑝(𝜇). We first generate trajectories with current policy for each task and 
store them in replay buffer. At each training step, we first sample a task 𝜇𝑛 from the 

training task set, and then randomly sample two batches of transitions 𝑏𝑛
𝑞

, 𝑏𝑛
𝑘 from 

task 𝜇𝑛 independently. 𝑏𝑛
𝑞

serves as a query in contrastive learning framework while 
𝑏𝑛

𝑘 is the corresponding positive key. We also randomly sample 𝑀 − 1 batches of 
transitions from the other tasks as negative keys.

𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 = −𝔼 log
exp sim z𝑞 , 𝑧𝑛

𝑘

 𝑘=1
M exp sim z𝑞 , 𝑧𝑘

sim 𝑧𝑞 , 𝑧𝑘 = 𝑧𝑞⊤𝑊𝑧𝑘

unfold

sim z, 𝑧′

𝑏𝑛
𝑞

𝑏𝑛
𝑘

Transitions
obtained
in task 𝜇



Task Representation in RL with contrastive 
learning
Information-gain-based Exploration for Effective Context

• Exploration policy should collect trajectories as informative as possible

• We achieve this by introducing an additional exploration-encouraging external reward 

• The information gain of collecting a new transition at time step i is equivalent with temporal 
difference of the mutual information between task belief and collected trajectories.

Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning, AAAI 21

𝑟𝑒 = 𝑟𝑒𝑛𝑣 + 𝛼𝑟𝑎𝑢𝑥 , where 𝑟𝑎𝑢𝑥 = 𝐿𝑢𝑝𝑝𝑒𝑟 − 𝐿𝑙𝑜𝑤𝑒𝑟

𝐼 𝑧 𝜏1:𝑖−1; 𝜏𝑖 = 𝐻 𝑧 𝜏1:𝑖−1 − 𝐻 𝑧 𝜏1:𝑖 = 𝐻 𝑧 𝜏1:𝑖−1 + 𝐻 𝑧 − 𝐻(𝑧) − 𝐻(𝑧|𝜏1:𝑖)
= 𝐼 𝑧 𝜏1:𝑖 − 𝐼 𝑧 𝜏1:𝑖−1 𝑧 is the task belief

𝐿𝑢𝑝𝑝𝑒𝑟 − 𝐿𝑙𝑜𝑤𝑒𝑟 = 𝔼𝐶𝑝𝑜𝑠
log

exp sim c1:i, 𝑐𝑝𝑜𝑠

 𝑐𝑗∈𝐶 exp sim c1:i, 𝑐𝑗
− 𝔼𝐶𝑝𝑜𝑠

log
exp sim c1:i, 𝑐𝑝𝑜𝑠

 𝑐𝑗∈𝐶𝑛𝑒𝑔
exp sim c1:i, 𝑐𝑗

= 𝔼𝐶𝑝𝑜𝑠
sim c1:i, 𝑐𝑝𝑜𝑠 − sim c1:i−1, 𝑐𝑝𝑜𝑠 − 𝔼𝐶𝑝𝑜𝑠

log
 𝑐𝑗∈𝐶 exp sim c1:i, 𝑐𝑗

 𝑐𝑗∈𝐶𝑛𝑒𝑔
exp sim c1:i, 𝑐𝑗

Here, we abuse the notion sim 𝑐1, 𝑐2 to denote sim 𝑧1, 𝑧2 = sim 𝑓(𝑐1), 𝑓(𝑐2) for convenience



Task Representation in RL with contrastive 
learning
Information-gain-based Exploration for Effective Context

• Exploration policy should collect trajectories as informative as possible

• We achieve this by introducing an additional exploration-encouraging external reward 

• The information gain of collecting a new transition at time step i is equivalent with temporal 
difference of the mutual information between task belief and collected trajectories.

Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning, AAAI21

𝑟𝑒 = 𝑟𝑒𝑛𝑣 + 𝛼𝑟𝑎𝑢𝑥 , where 𝑟𝑎𝑢𝑥 = 𝐿𝑢𝑝𝑝𝑒𝑟 − 𝐿𝑙𝑜𝑤𝑒𝑟

𝐼 𝑧 𝜏1:𝑖−1; 𝜏𝑖 = 𝐻 𝑧 𝜏1:𝑖−1 − 𝐻 𝑧 𝜏1:𝑖 = 𝐻 𝑧 𝜏1:𝑖−1 + 𝐻 𝑧 − 𝐻(𝑧) − 𝐻(𝑧|𝜏1:𝑖)
= 𝐼 𝑧 𝜏1:𝑖 − 𝐼 𝑧 𝜏1:𝑖−1 𝑧 is the task belief

𝐿𝑢𝑝𝑝𝑒𝑟 − 𝐿𝑙𝑜𝑤𝑒𝑟 = 𝔼𝐶𝑝𝑜𝑠
log

exp sim c1:i, 𝑐𝑝𝑜𝑠

 𝑐𝑗∈𝐶 exp sim c1:i, 𝑐𝑗
− 𝔼𝐶𝑝𝑜𝑠

log
exp sim c1:i, 𝑐𝑝𝑜𝑠

 𝑐𝑗∈𝐶𝑛𝑒𝑔
exp sim c1:i, 𝑐𝑗

= 𝔼𝐶𝑝𝑜𝑠
sim c1:i, 𝑐𝑝𝑜𝑠 − sim c1:i−1, 𝑐𝑝𝑜𝑠 − 𝔼𝐶𝑝𝑜𝑠

log
 𝑐𝑗∈𝐶 exp sim c1:i, 𝑐𝑗

 𝑐𝑗∈𝐶𝑛𝑒𝑔
exp sim c1:i, 𝑐𝑗

estimating how much the similarity score for positive pairs
has improved after collecting new transition

Regularization term: limit the policy not visiting places 
where the negative score enhances as well



Task Representation in RL with Contrastive 
Learning
The Overall Workflow

• Exploration replay buffer and execution replay buffer are 
separated maintained

Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning, AAAI21

Note: To avoid the intrinsic reward being to noisy, we pretrain the 
context encoder for several episodes and set the exploration 
replay buffer to only contain recently collected data

sim z, 𝑧′

𝑏𝑛
𝑞

𝑏𝑛
𝑘

Trajectorie
s obtained 
in task 𝜇

𝑄-Network
𝑠

𝑎

Actor 
Network

𝑠

𝑧

Context



Task Representation in RL with Contrastive 
Learning

Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning, AAAI21



Task Representation in RL with Contrastive 
Learning

Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning, AAAI21



Task Representation in RL with Contrastive 
Learning
• humanoid-dir: The target direction of running changes across tasks.

• ant-mass: The mass of ant changes across tasks to change transition dynamics

• OOD-tasks: CCM+RV (recover value function) outperforms CCM+DP (dynamic prediction) -> contrastive 
loss combined with loss from recovering value function obtains better generalization for different tasks

Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning, AAAI21

ant-mass
cheetah-mass & cheetah-mass-OOD

cheetah-vel-OOD humanoid-dir

Overall Conclusion:our methods CCM + DP and CCM + RV achieve consistently better performance compared to existing methods.



Task Representation in RL with Contrastive 
Learning
• Comparison of Overall Adaptation Performance on Complex Environments

PEARL-CL - a contrastive 

context encoder for a

fair comparison

Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning, AAAI21

walker-sparse cheetah-sparse hard-point-robot



Conclusions and Future Directions

• From Perception to Planning and Control: self-representation learning is 
the key to bridge the gap.

• Self-representation learning in RL: state, policy, action and task level 
representation learning can improve the sample efficiency and policy 
generalization ability of RL across different tasks.

• Policy and environment/task dynamics are entangled: how to disentangle 
environment representation with policy representation?

• The representation of different RL elements are learned separately: how to 
combine them altogether?

• Representation learning in Model-based RL and Opponent modeling in 
MASs



Thanks
Q&A


