
Self-supervised
Reinforcement Learning

Jianye Hao
Jianye.hao@tju.edu.cn

NLPCC 2021 Tutorial

2021-10-14

Outline

• Self-supervised Learning
• Concepts and examples

• Contrastive Learning

• Self-supervised Reinforcement Learning
• Self-supervised Representation of States

• Self-supervised Representation of Actions

• Self-supervised Representation of Policies

• Self-supervised Representation of Tasks/Environments

What is Self-supervised Learning?

Patches: Illustration of self-supervised learning

by predicting the relative position of two random patches.

The Patches pretext task drives the model to

learn to understand the spatial context of objects

in order to tell the relative position between parts.

(Image source: Doersch et al., 2015)

Rotation: Illustration of self-supervised learning by rotating the entire input images. The

model learns to predict which rotation is applied.

This Rotation pretext task drives the model to learn semantic concepts

of objects: the model has to learn to recognize high-level object parts,

such as heads, noses, and eyes, and the relative positions of these parts, rather than local patterns.

(Image source: Gidaris et al. 2018)

 Labels are extracted from the samples
 The tasks require understandingExamples in image-based tasks

https://arxiv.org/abs/1505.05192
https://arxiv.org/abs/1803.07728

What is Self-supervised Learning?

Self-supervised learning in NLP tasks

• Center Word Prediction

• Neighbor Sentence Prediction

• Auto-regressive Language Modeling

• Masked Language Modeling

• Key techniques in GTP-2 and Bert

Example taken from https://amitness.com/2020/05/self-supervised-learning-nlp/

What is Self-supervised Learning?

• Self-supervised training (SSL): a family of
techniques for converting an unsupervised learning
problem into a supervised one by creating
surrogate labels from the unlabeled dataset.

• We can achieve this by framing a supervised
learning task in a special form to predict only a
subset of information using the rest.

• SSL: learning intermediate representation with the
expectation that this representation can carry good
semantic or structural meanings and can be
beneficial to a variety of practical downstream tasks.

• Are Generative Models self-supervised?

(Image source: LeCun’s talk)

(Image source: Doersch et al., 2015)

https://www.youtube.com/watch?v=7I0Qt7GALVk
https://arxiv.org/abs/1505.05192

Contrastive Learning:
the SOTA Self-supervised Learning

• Representative Contrastive learning: SimCLR (Chen et al., 2020),
MoCo (He et al. 2019), BYOL (Grill et al., 2020) …

https://generallyintelligent.ai/understanding-self-supervised-contrastive-learning.html

𝓁𝑖,𝑗 = − log
exp sim 𝒛𝑖 , 𝒛𝑗 𝜏

 𝑘=1
2𝑁 1 𝑘≠𝑖 exp sim 𝒛𝑖 , 𝒛𝑘 𝜏

Outline

• Intro to Self-supervised Learning

• Concepts and examples

• Contrastive Learning

• Self-supervised Reinforcement Learning

• Self-supervised Representation of States

• Self-supervised Representation of Actions

• Self-supervised Representation of Policies

• Self-supervised Representation of Tasks/Environments

Self-supervised Reinforcement Learning

• How to learn better intermediate representation for better estimation of policies
and Q-values?
• Representation of states

• Contrastive-learning based: task-agnostic representation (CURL)

• Bisimulation-based: only encode task-relevant information (DBC, deepMDP)

• Representation of policies
• Policy-extended value function (generalization across value function estimation of different policies)

• Representation of actions
• Action representation in RL (action space reduction, generalization across policies and value functions)

• Representation of tasks/environments
• Task context representation learning for Meta-RL (generalization across new tasks)

Self-supervised Reinforcement Learning

• CV/NLP: Learning useful semantic/structural representation for effective
downstream tasks (object detection/segmentation, word/sentence generation)

• RL: Learning useful semantic/structural representation for effective
downstream tasks (planning and control)
• Contrastive-based Representations: the same way of constructing supervised loss for

image-based deep learning tasks (reconstruction-based and task-agnostic - the models
represent all dynamic elements they observe in the world, whether they are relevant to
the task or not)

• Bisimulation and other metric representation: The bisimulation distance between two
states corresponds to how behaviorally different these two states are (e.g., DBC,
deepMDP)

far away from

CURL – State Representation Learning for RL

• CURL extends the idea of MoCo to reinforcement learning by learning virtual/state
representation for RL tasks.

(CURL: Srinivas & Laskin, et al., 2020)

We crop a 84 × 84 image from a 100 × 100

simulation-rendered image. Applying the same random

crop coordinates across all frames in the stack ensures

time-consistency

The anchor and positive observations are two different augmentations (random

crop operation) of the same image while negatives come from other images

During the gradient update step, only the query encoder is updated. The key encoder

weights are the moving average (EMA) of the query weights similar to MoCo

Grasp2Vec: Object Representation Learning

Graspa2Vec: Learning Object Representations from Self-Supervised Grasping

Jang & Devin et al., 2018

Let 𝜙𝑠 and 𝜙𝑜 be the embedding functions for the scene and the object respectively. The model learns the representation by minimizing the

distance between 𝜙𝑠 𝑠pre − 𝜙𝑠 𝑠post and 𝜙𝑜(𝑜) using n-pair loss:

ℒgrasp2vec = NPair 𝜙𝑠 𝑠pre − 𝜙𝑠 𝑠post , 𝜙𝑜(𝑜) + NPair 𝜙𝑜(𝑜),𝜙𝑠 𝑠pre − 𝜙𝑠 𝑠post

Where NPair(𝑎, 𝑝) = 𝑖<𝐵 − log
exp 𝑎𝑖

⊤𝑝𝑗

 𝑗<𝐵,𝑖≠𝑗 exp 𝑎𝑖
⊤𝑝𝑗

+ 𝜆 𝑎𝑖 2
2 + 𝑝𝑖 2

2

Where 𝐵 refers to a batch of (anchor, positive) sample pairs.

https://arxiv.org/abs/1811.06964

DBC: Bisimulation-based self-representation RL

• Image-level self-supervised representation learning (e.g., CURL) can learn irrelevant information

Example 1. Robust representations of the visual scene
should be insensitive to irrelevant objects (e.g., clouds)
or details (e.g., car types), and encode two observations
equivalently if their relevant details are equal (e.g., road
direction and locations of other cars).

Example 2. Pixel observations in DMC in the default
setting (top row) of the finger spin (left column),
cheetah (middle column), and walker (right column),
and natural video distractors (bottom row).

Example 3. Autonomous Driving, a clear highway
driving scenario. Clouds and sun position are
irrelevant.

Deep Bisimulation for Control: https://arxiv.org/pdf/2006.10742.pdf, ICLR21

https://arxiv.org/pdf/2006.10742.pdf

• DBC is effective in learning task-relevant state representation while VAE fails

DBC: Bisimulation-based self-representation RL

Deep Bisimulation for Control: https://arxiv.org/pdf/2006.10742.pdf, ICLR21

Representation visualization. t-SNE of latent spaces learned with a bisimulation metric (left t-SNE) and VAE (right t-SNE) after training has completed, color-
coded with predicted state values (higher value yellow, lower value purple).

• Neighboring points in the embedding space learned with a bisimulation metric have similar states and correspond to

observations with the same task-related information (depicted as pairs of images with their corresponding embeddings),

• Whereas no such structure is seen in the embedding space learned by VAE, where the same image pairs are mapped far away

from each other.

https://arxiv.org/pdf/2006.10742.pdf

• CURL- largely ignore the sequential aspect of RL when learning state
representation

• DBC: capture representations of states that are suitable to control, while
discarding any information that is irrelevant for control

• Robust representations of the visual scene should be insensitive to
irrelevant objects (e.g., clouds) or details (e.g., car types), and encode two
observations equivalently if their relevant details are equal (e.g., road
direction and locations of other cars).

• The Deep Bisimulation for Control algorithm learns a bisimulation metric
representation via learning a reward model and a dynamics model.

• Bisimulation metrics rely on reward information and may not provide a
meaningful notion of behavioral similarity in certain environments.

𝐽(𝜙) = 𝜙 𝑠𝑖 − 𝜙 𝑠𝑗 1
− ℛ 𝜙 𝑠𝑖 − ℛ 𝜙 𝑠𝑗 − 𝛾𝑊2

 𝒫 ⋅∣ 𝜙 𝑠𝑖 , 𝜋 𝜙 𝑠𝑖 , 𝒫 ⋅∣ 𝜙 𝑠𝑗 , 𝜋 𝜙 𝑠𝑗

2

Where 𝜙 𝑠 denotes 𝜙 𝑠 with stop gradient and 𝜋 is the mean policy output. The learned

reward model ℛ is deterministic and the learned forward dynamics model 𝒫 outputs a

Gaussian distribution.

DBC: Bisimulation-based self-representation RL
-learning behavioral similarity between states

Deep Bisimulation for Control: https://arxiv.org/pdf/2006.10742.pdf, ICLR21

https://arxiv.org/pdf/2006.10742.pdf

• CURL- largely ignore the sequential aspect of RL when learning state
representation

• DBC: capture representations of states that are suitable to control, while
discarding any information that is irrelevant for control

• Robust representations of the visual scene should be insensitive to
irrelevant objects (e.g., clouds) or details (e.g., car types), and encode two
observations equivalently if their relevant details are equal (e.g., road
direction and locations of other cars).

• The Deep Bisimulation for Control algorithm learns a bisimulation metric
representation via learning a reward model and a dynamics model.

• Bisimulation metrics rely on reward information and may not provide a
meaningful notion of behavioral similarity in certain environments.

Deep Bisimulation for Control: https://arxiv.org/pdf/2006.10742.pdf, ICLR21

𝐽(𝜙) = 𝜙 𝑠𝑖 − 𝜙 𝑠𝑗 1
− ℛ 𝜙 𝑠𝑖 − ℛ 𝜙 𝑠𝑗 − 𝛾𝑊2

 𝒫 ⋅∣ 𝜙 𝑠𝑖 , 𝜋 𝜙 𝑠𝑖 , 𝒫 ⋅∣ 𝜙 𝑠𝑗 , 𝜋 𝜙 𝑠𝑗

2

Where 𝜙 𝑠 denotes 𝜙 𝑠 with stop gradient and 𝜋 is the mean policy output. The learned

reward model ℛ is deterministic and the learned forward dynamics model 𝒫 outputs a

Gaussian distribution.

DBC: Bisimulation-based self-representation RL
-learning behavioral similarity between states

https://arxiv.org/pdf/2006.10742.pdf

Policy Similarity Measure (PSE)
-generalization across semantically equivalent tasks with similar underlying mechanics

CONTRASTIVE BEHAVIORAL SIMILARITY EMBEDDINGS FOR GENERALIZATION IN REINFORCEMENT LEARNING, ICLR 21

Embedding visualization. (a) Optimal trajectories on original jumping task (visualized as

coloured blocks) with different obstacle positions. The hidden representations are visualized using

UMAP, where the color of points indicate the tasks of the corresponding observations. Points with

the same number label correspond to same distance of the agent from the obstacle, the underlying

optimal invariant feature across tasks.

• The figure shows that PSEs partition the states into two sets: (1) states where a single suboptimal action leads to failure

(all states before jump) and (2) states where actions do not affect the final outcome (states after jump). PSEs align the

numbered states in the first set, which have the same distance from the obstacle, the invariant feature that generalizes

across tasks.

• While 𝑙2-embeddings (in DBC) with PSM do not align states with zero PSM except the state with the jump action –

poor generalization.

Policy Similarity Measure
-generalization across semantically equivalent tasks with similar underlying mechanics

• Policy similarity metric (PSM): defines a notion of
similarity between states originated from different
environments by the proximity of the long-term
optimal behavior from these states.

• the agent is optimized to learn an embedding in which
states are close when the agent’s optimal policies in
these states and future states are similar.

Framework for Learning Contrastive Metric Embeddings

CONTRASTIVE BEHAVIORAL SIMILARITY EMBEDDINGS FOR GENERALIZATION IN REINFORCEMENT LEARNING, ICLR 21

Different tasks consist in shifting the floor height and/or the obstacle position. To

generalize, the agent needs to be invariant to the floor height while jump based on the

obstacle position (26 locations*11 heights-286 tasks)

Deep RLagents trained on a few of these jumping tasks with different obstacle
positions struggle to successfully jump in test tasks where obstacles are at previously

unseen locations.

soft version of the SimCLR contrastive loss

𝐿𝜃 ℳ𝒳, ℳ𝑦 = 𝔼𝑦∼𝜏𝑦
∗ 𝓁𝜃 𝑥𝑦, 𝑦; 𝜏𝒳

∗ where 𝑥𝑦 = argmax
𝑥∈𝜏𝑥

∗
Γ(𝑥, 𝑦)

𝓁𝜃 𝑥𝑦, 𝑦; 𝒳′ = −log
Γ 𝑥𝑦, 𝑦 exp 𝜆𝑠𝜃 𝑥𝑦, 𝑦

Γ 𝑥𝑦, 𝑦 exp 𝜆𝑠𝜃 𝑥𝑦, 𝑦 +
𝑥′∈𝒳′∖ 𝑥𝑦

1 − Γ 𝑥′, 𝑦 exp 𝜆𝑠𝜃 𝑥′, 𝑦

Γ(𝑥, 𝑦) = exp(−𝑑(𝑥, 𝑦)/𝛽)

𝑑∗(𝑥, 𝑦) = Dist 𝜋∗(𝑥), 𝜋∗(𝑦)
(A)

+ 𝛾𝒲1 𝑑∗ 𝑃𝜋∗
(⋅∣ 𝑥),𝑃𝜋∗

(⋅∣ 𝑦)

(B)

The Dist term captures the difference in local optimal behavior (A) while 𝒲1

captures long-term optimal behavior difference (B); the exact weights assigned to

the two are given by the discount

Self-supervised Reinforcement Learning

• How to learn better intermediate representation for better estimation of policies
and Q-values?
• Representation of states

• Contrastive-learning based: task-agnostic representation (CURL)

• Bisimulation-based: only encode task-relevant information (DBC, deepMDP, PSM)

• Representation of policies
• Policy-extended value function (generalization across value function estimation of different policies)

• Representation of actions
• Action representation in RL (action space reduction, generalization across policies and value functions)

• Representation of tasks/environments
• Task context representation learning for Meta-RL (generalization across new tasks)

Policy Representation In RL

• Policy: mapping from state to action
distribution

• Policy network = representation
learning + policy learning

• Origin policy Representation: extract
policy representation from the policy
network parameters

• Surface policy representation: extract
policy representation from state-
action pairs (trajectories)

DQN: Human-level control through deep reinforcement learning,

Nature 2015

Policy extended value function(PeVF)

• Generalized Policy Iteration (GPI) with function approximation

23

• Policy-extended Value Function Approximator (PeVFA)

What About Taking Policy as Input of Value Function: Policy-extended Value Function Approximator. https://arxiv.org/abs/2010.09536

PeVF: Global vs. Local Generalization

24
What About Taking Policy as Input of Value Function: Policy-extended Value Function Approximator. https://arxiv.org/abs/2010.09536

PeVF: Global vs. Local Generalization

25
What About Taking Policy as Input of Value Function: Policy-extended Value Function Approximator. https://arxiv.org/abs/2010.09536

Policy extended value function(PeVF)

26

Framework of policy representation training

What About Taking Policy as Input of Value Function: Policy-extended Value Function Approximator. https://arxiv.org/abs/2010.09536

Policy extended value function(PeVF)

• Origin policy Representation: extract policy representation from the policy
network parameters

• Surface policy representation: extract policy representation from state-action
pairs (trajectories)

27
What About Taking Policy as Input of Value Function: Policy-extended Value Function Approximator. https://arxiv.org/abs/2010.09536

Self-supervised Reinforcement Learning

• How to learn better intermediate representation for better estimation of policies
and Q-values?
• Representation of states

• Contrastive-learning based: task-agnostic representation (CURL)

• Bisimulation-based: only encode task-relevant information (DBC, deepMDP, ourwork)

• Representation of policies
• Policy-extended value function (generalization across value function estimation of different policies)

• Representation of actions
• Action representation in RL (action space reduction, generalization across policies and value functions)

• Representation of tasks/environments
• Task context representation learning for Meta-RL (generalization across new tasks)

Action Representation in RL

Learning Action Representations for Reinforcement Learning, ICML 2019

 Applications with large action space: maximizing

long-term portfolio value in finance using various

trading strategies; Smart-grid power control by

regulating voltage level of all the units; recommending

millions of items in e-commence systems

 Succinct Action Embedding is important for reducing

policy space and also providing generalization ability of

policy and value function over action space, thus

significantly speed up learning

 Internal policy is defined over action embedding space

and function f maps action embedding back to the

original action space

An RL agent interacting with environments with action embedding

Each color is associated with a specific action

Action Representation in RL

Learning Action Representations for Reinforcement Learning, ICML 2019

 How to construct Self-supervised Learning

for action representation?

 exploits the structure in the action set

by aligning actions based on the

similarity of their impact on states.

 Action Encoder g and Decoder f are trained

to maximize the prediction accuracy of the

exact action that cause the transition between

state s(t) and s(t+1).

 The internal policy is optimized over the

action embedding space following policy

gradient theorem (equivalent with the

gradient of the performance function over the

original action space), which is also relatively

independent of the action embedding learning.

Reward-independent - mitigating sparse and

stochastic rewards problem

Gradient optimization over embedding

action space is equivalent with original

action space

𝜕𝐽𝑜(𝜃, 𝑓)

𝜕𝜃
=

𝜕𝐽𝑖 𝜃

𝜕𝜃

𝜕𝐽𝑖 𝜃

𝜕𝜃
=

𝑡=0

∞

𝐄 𝛾𝑡
e

𝑞𝜋𝑖 𝑆𝑡 , 𝑒
𝜕

𝜕𝜃
𝜋𝑖 𝑒 ∣ 𝑆𝑡 d𝑒

Approximation：

 𝑃 𝐴𝑡 ∣ 𝑆𝑡 , 𝑆𝑡+1 =
e

 𝑓 𝐴𝑡 ∣ 𝐸𝑡 = 𝑒 𝑔 𝐸𝑡 = 𝑒 ∣ 𝑆𝑡 , 𝑆𝑡+1 d𝑒

ℒ 𝑓 𝑔 = −𝐄 ln 𝑃 𝐴𝑡 ∣ 𝑆𝑡 , 𝑆𝑡+1

𝑫𝒌𝒍 = −𝐸

𝑎∈𝒜

𝑃 𝑎 ∣ 𝑆𝑡 , 𝑆𝑡+1 l n
 𝑃 𝑎 ∣ 𝑆𝑡 , 𝑆𝑡+1

𝑃 𝑎 ∣ 𝑆𝑡 , 𝑆𝑡+1

= −𝐸 ln
 𝑃 𝐴𝑡 ∣ 𝑆𝑡 , 𝑆𝑡+1

𝑃 𝐴𝑡 ∣ 𝑆𝑡 , 𝑆𝑡+1

Assumption:

𝑃 𝐴𝑡 ∣ 𝑆𝑡 , 𝑆𝑡+1 =
e

𝑃 𝐴𝑡 ∣ 𝐸𝑡 = 𝑒 𝑃 𝐸𝑡 = 𝑒 ∣ 𝑆𝑡 , 𝑆𝑡+1 d𝑒

𝑠𝑡

𝑠𝑡+1

𝑒𝑡 𝑎𝑡 𝑠𝑡 𝑒𝑡 𝑎𝑡

𝑔 𝑓 𝜋𝑖 𝑓

𝛻ℒ 𝛻𝐽

on-policy sample estimation

Action Representation in RL

Learning Action Representations for Reinforcement Learning, ICML 2019

The size of the action set is exponential in the number of actuators (a);

2-D representations for the displacements in the Cartesian co-ordinates

caused by each action (b) and the learned action embedding (c)

HyAR: Hybrid Action Representation in RL

Applications with Discrete-continuous hybrid
action space: Robotics control, Game AI, et al.

Solution 1: Discretization/continualization:
scalability issue or non-smooth piecewise-
function action subspace (difficult to estimate)

Solution 2: Learning directly over hybrid action
spaces with one policy network (e.g., PADDPG
ICLR16, HPPO IJCAI19)

Solution 3: Learning directly over hybrid action
space with a hybrid structure of DQN and
DDPG (PDQN Arixv2018, HHQN IJCAI19)

Three key properties should be well-captured:
Scalability to large action space, stationarity
between high and low-level learning, and
Correlation/dependence between discrete and
continuous actions

How to learn a coherent action embedding
space to achieve this?

Learning with Hybrid Action space

Desirable Properties of RL algorithm

with hybrid action space

HyAR: Addressing Discrete-Continuous Action Reinforcement Learning via Hybrid Action Representation, arxiv 2021

HyAR: Hybrid Action Representation in RL
Dependence-aware encoding and decoding

A embedding table is used to map discrete
actions while a VAE is used to learn embedding
for continuous actions, while these two
embedding are trained altogether to align them to
the same space

Hybrid action representations that are closer in
the space reflects similar influence on
environmental dynamics of their corresponding
original hybrid actions.

A subnetwork that cascaded after the main body
of the conditional VAE decoder to produce the
prediction of the state residual of transition
dynamics

𝐿VAE(𝜙, 𝜓, 𝜁) = 𝔼𝑠,𝑘,𝑥𝑘
∥ 𝑥𝑘 − 𝑥𝑘 ∥2

2 + 𝐷KL 𝑞𝜙 ⋅∣ 𝑥𝑘 , 𝑠, 𝑒𝜁,𝑘 ∥ 𝒩(0, 𝐼)
𝐄𝐧𝐜𝐨𝐝𝐞: 𝑒𝜁,𝑘 = 𝐸𝜁 𝑘 𝑎𝑛𝑑 𝑧𝑥 ∼ 𝑞𝜙 ⋅∣ 𝑥𝑘 , 𝑠, 𝑒𝜁,𝑘 for 𝑠, 𝑘, 𝑥𝑘

𝐃𝐞𝐜𝐨𝐝𝐞: 𝑘 = 𝑔𝐸 𝑧𝑘 = arg 𝑚𝑖𝑛
𝑘∈𝒦

𝑒𝜁,𝑘 − 𝑧𝑘 2
,

𝑥𝑘 = 𝑝𝜓 𝑧𝑥, 𝑠, 𝑒𝜁,𝑘 for 𝑠, 𝑧𝑘 , 𝑧𝑥

𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧: 𝛿𝑠,𝑠′ = 𝑝𝜓 𝑧𝑥, 𝑠, 𝑒𝜁,𝑘 for 𝑠, 𝑘, 𝑥𝑘

Then we minimize the 𝑳𝟐-norm square prediction error:

𝐿Dyn 𝜙, 𝜓, 𝜁 = 𝔼𝑠,𝑘,𝑥𝑘,𝑠′ 𝛿𝑠,𝑠′ − 𝛿𝑠,𝑠′
2

2
𝐿HyAR(𝜙, 𝜓, 𝜁) = 𝐿VAE(𝜙, 𝜓, 𝜁) + 𝛽𝐿Dyn(𝜙, 𝜓, 𝜁)

HyAR: Hybrid Action Representation in RL

Eq. 𝟔 ∶ 𝐿HyAR (𝜙, 𝜓, 𝜁) = 𝐿VAE(𝜙, 𝜓, 𝜁) + 𝛽𝐿Dyn(𝜙,𝜓, 𝜁)

Eq. 𝟑 ∶

Eq. 𝟕 ∶ 𝐿CDQ 𝜃𝑖 = 𝔼𝑠,𝑧𝑘,𝑧𝑥,𝑟,𝑠′ 𝑦 − 𝑄𝜃𝑖
𝑠, 𝑧𝑘 , 𝑧𝑥

2
,

where 𝑦 = 𝑟 + 𝛾𝑚𝑖𝑛
𝑗=1,2

𝑄 𝜃𝑗
𝑠′, 𝜋 𝜔 𝑠′

Eq.𝟖 ∶ 𝛻𝜔𝐽 𝜔 = 𝔼𝑠 𝛻𝜋𝜔 𝑠 𝑄𝜃1
𝑠, 𝜋𝜔 𝑠 𝛻𝜔𝜋𝜔 𝑠

𝐄𝐧𝐜𝐨𝐝𝐞: 𝑒𝜁,𝑘 = 𝐸𝜁 𝑘 𝑎𝑛𝑑 𝑧𝑥 ∼ 𝑞𝜙 ⋅∣ 𝑥𝑘 , 𝑠, 𝑒𝜁,𝑘

for 𝑠, 𝑘, 𝑥𝑘

𝐃𝐞𝐜𝐨𝐝𝐞: 𝑘 = 𝑔𝐸 𝑧𝑘 = arg 𝑚𝑖𝑛
𝑘∈𝒦

𝑒𝜁,𝑘 − 𝑧𝑘 2
,

𝑥𝑘 = 𝑝𝜓 𝑧𝑥, 𝑠, 𝑒𝜁,𝑘 for 𝑠, 𝑧𝑘 , 𝑧𝑥

HyAR: Addressing Discrete-Continuous Action Reinforcement Learning via Hybrid Action Representation, arxiv 2021

HyAR: Hybrid Action Representation in RL

HyAR: Addressing Discrete-Continuous Action Reinforcement Learning via Hybrid Action Representation, arxiv 2021

Self-supervised Reinforcement Learning

• How to learn better intermediate representation for better estimation of policies
and Q-values?
• Representation of states

• Contrastive-learning based: task-agnostic representation (CURL)

• Bisimulation-based: only encode task-relevant information (DBC, deepMDP)

• Representation of policies
• Policy-extended value function (generalization across value function estimation of different policies)

• Representation of actions
• Action representation in RL (action space reduction, generalization across policies and value functions)

• Representation of tasks/environments
• Task context representation learning for Meta-RL (generalization across new tasks)

Task Representation in RL

• Meta-Learning RL

Meta-Q: Fakoor et al., ICLR 2020

MAML (on-policy meta-training,

sample-inefficient)

Multi-task learning (off-policy,

sample efficient)

General form of Meta-learning

Meta-RL is a technique to learn an inductive bias that accelerates the learning of new

task by training on a large of number of training tasks. Formally, meta-training on

tasks from the meta-training set 𝒟meta = 𝐷𝑘
𝑘=1,…,𝑛 involves learning a policy.

 𝜃meta = arg 𝑚𝑎𝑥
𝜃

1

𝑛

𝑘=1

𝑛

𝓁meta
𝑘 (𝜃)

𝓁meta
𝑘 𝜃 = 𝓁𝑘 𝜃 + 𝛼𝛻𝜃𝓁𝑘 𝜃

 𝜃meta = arg 𝑚𝑖𝑛
𝜃

1

𝑛

𝑘=1

𝑛

𝔼
𝜏∼𝐷𝑘

TD2(𝜃)

Remark: MQL uses a deterministic context that is not permutation
invariant. the direction of time affords crucial information about the
dynamics of a task to the agent, e.g., a Half-Cheetah running forward
versus backward has arguably the same state trajectory but in a
different order. Further, the context in MQL is a deterministic function
of the trajectory. Both these aspects are different than the context
used by Rakelly et al. (2019) who design an inference network and
sample a probabilistic context conditioned on a moving window. This
result demonstrates that a simple context variable is enough is an
important contribution.

Key idea: adapt to a new environment by inferring latent context from a small

number of interactions with the environment.

Challenges: how to extract task-specific and remove noisy information?

how to efficiently explore environments to get distinct task

context faced with a new environment?

Task Representation in RL

• Meta-Learning RL

PEARL: Rakelly et al., ICML 2019

MAML (on-policy meta-training,

sample-inefficient)

Multi-task learning (off-policy,

sample efficient)

General form of Meta-learning

Key idea: adapt to a new environment by inferring latent context from a small

number of interactions with the environment.

Challenges: how to extract task-specific and remove noisy information?

how to efficiently explore environments to get distinct task context faced

with a new environment?

Meta-RL is a technique to learn an inductive bias that accelerates the learning of new

task by training on a large of number of training tasks. Formally, meta-training on

tasks from the meta-training set 𝒟meta = 𝐷𝑘
𝑘=1,…,𝑛 involves learning a policy.

 𝜃meta = arg 𝑚𝑎𝑥
𝜃

1

𝑛

𝑘=1

𝑛

𝓁meta
𝑘 (𝜃)

𝓁meta
𝑘 𝜃 = 𝓁𝑘 𝜃 + 𝛼𝛻𝜃𝓁𝑘 𝜃

 𝜃meta = arg 𝑚𝑖𝑛
𝜃

1

𝑛

𝑘=1

𝑛

𝔼
𝜏∼𝐷𝑘

TD2(𝜃)
Meta-training procedure. The inference network 𝑞𝜙 uses context

data to infer the posterior over the latent context variable 𝑍,
which conditions the actor and critic, and is optimized with
gradients from the critic as well as from an information
bottleneck on 𝑍. De-coupling the data sampling strategies for
context (𝑆𝐶) and RL batches is important for off-policy learning.

Task Representation in RL with contrastive
learning

Task Representation with Contrastive Learning

• Contrastive context encoder: a general framework, can be
integrated with any Meta-RL framework

Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning, AAAI21

Contrastive context encoder RL

InfoNCE loss

Concretely, assuming a training task set containing 𝑀 different tasks from task
distribution 𝑝(𝜇). We first generate trajectories with current policy for each task and
store them in replay buffer. At each training step, we first sample a task 𝜇𝑛 from the

training task set, and then randomly sample two batches of transitions 𝑏𝑛
𝑞

, 𝑏𝑛
𝑘 from

task 𝜇𝑛 independently. 𝑏𝑛
𝑞

serves as a query in contrastive learning framework while
𝑏𝑛

𝑘 is the corresponding positive key. We also randomly sample 𝑀 − 1 batches of
transitions from the other tasks as negative keys.

𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 = −𝔼 log
exp sim z𝑞 , 𝑧𝑛

𝑘

 𝑘=1
M exp sim z𝑞 , 𝑧𝑘

sim 𝑧𝑞 , 𝑧𝑘 = 𝑧𝑞⊤𝑊𝑧𝑘

unfold

sim z, 𝑧′

𝑏𝑛
𝑞

𝑏𝑛
𝑘

Transitions
obtained
in task 𝜇

Task Representation in RL with contrastive
learning
Information-gain-based Exploration for Effective Context

• Exploration policy should collect trajectories as informative as possible

• We achieve this by introducing an additional exploration-encouraging external reward

• The information gain of collecting a new transition at time step i is equivalent with temporal
difference of the mutual information between task belief and collected trajectories.

Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning, AAAI 21

𝑟𝑒 = 𝑟𝑒𝑛𝑣 + 𝛼𝑟𝑎𝑢𝑥 , where 𝑟𝑎𝑢𝑥 = 𝐿𝑢𝑝𝑝𝑒𝑟 − 𝐿𝑙𝑜𝑤𝑒𝑟

𝐼 𝑧 𝜏1:𝑖−1; 𝜏𝑖 = 𝐻 𝑧 𝜏1:𝑖−1 − 𝐻 𝑧 𝜏1:𝑖 = 𝐻 𝑧 𝜏1:𝑖−1 + 𝐻 𝑧 − 𝐻(𝑧) − 𝐻(𝑧|𝜏1:𝑖)
= 𝐼 𝑧 𝜏1:𝑖 − 𝐼 𝑧 𝜏1:𝑖−1 𝑧 is the task belief

𝐿𝑢𝑝𝑝𝑒𝑟 − 𝐿𝑙𝑜𝑤𝑒𝑟 = 𝔼𝐶𝑝𝑜𝑠
log

exp sim c1:i, 𝑐𝑝𝑜𝑠

 𝑐𝑗∈𝐶 exp sim c1:i, 𝑐𝑗
− 𝔼𝐶𝑝𝑜𝑠

log
exp sim c1:i, 𝑐𝑝𝑜𝑠

 𝑐𝑗∈𝐶𝑛𝑒𝑔
exp sim c1:i, 𝑐𝑗

= 𝔼𝐶𝑝𝑜𝑠
sim c1:i, 𝑐𝑝𝑜𝑠 − sim c1:i−1, 𝑐𝑝𝑜𝑠 − 𝔼𝐶𝑝𝑜𝑠

log
 𝑐𝑗∈𝐶 exp sim c1:i, 𝑐𝑗

 𝑐𝑗∈𝐶𝑛𝑒𝑔
exp sim c1:i, 𝑐𝑗

Here, we abuse the notion sim 𝑐1, 𝑐2 to denote sim 𝑧1, 𝑧2 = sim 𝑓(𝑐1), 𝑓(𝑐2) for convenience

Task Representation in RL with contrastive
learning
Information-gain-based Exploration for Effective Context

• Exploration policy should collect trajectories as informative as possible

• We achieve this by introducing an additional exploration-encouraging external reward

• The information gain of collecting a new transition at time step i is equivalent with temporal
difference of the mutual information between task belief and collected trajectories.

Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning, AAAI21

𝑟𝑒 = 𝑟𝑒𝑛𝑣 + 𝛼𝑟𝑎𝑢𝑥 , where 𝑟𝑎𝑢𝑥 = 𝐿𝑢𝑝𝑝𝑒𝑟 − 𝐿𝑙𝑜𝑤𝑒𝑟

𝐼 𝑧 𝜏1:𝑖−1; 𝜏𝑖 = 𝐻 𝑧 𝜏1:𝑖−1 − 𝐻 𝑧 𝜏1:𝑖 = 𝐻 𝑧 𝜏1:𝑖−1 + 𝐻 𝑧 − 𝐻(𝑧) − 𝐻(𝑧|𝜏1:𝑖)
= 𝐼 𝑧 𝜏1:𝑖 − 𝐼 𝑧 𝜏1:𝑖−1 𝑧 is the task belief

𝐿𝑢𝑝𝑝𝑒𝑟 − 𝐿𝑙𝑜𝑤𝑒𝑟 = 𝔼𝐶𝑝𝑜𝑠
log

exp sim c1:i, 𝑐𝑝𝑜𝑠

 𝑐𝑗∈𝐶 exp sim c1:i, 𝑐𝑗
− 𝔼𝐶𝑝𝑜𝑠

log
exp sim c1:i, 𝑐𝑝𝑜𝑠

 𝑐𝑗∈𝐶𝑛𝑒𝑔
exp sim c1:i, 𝑐𝑗

= 𝔼𝐶𝑝𝑜𝑠
sim c1:i, 𝑐𝑝𝑜𝑠 − sim c1:i−1, 𝑐𝑝𝑜𝑠 − 𝔼𝐶𝑝𝑜𝑠

log
 𝑐𝑗∈𝐶 exp sim c1:i, 𝑐𝑗

 𝑐𝑗∈𝐶𝑛𝑒𝑔
exp sim c1:i, 𝑐𝑗

estimating how much the similarity score for positive pairs
has improved after collecting new transition

Regularization term: limit the policy not visiting places
where the negative score enhances as well

Task Representation in RL with Contrastive
Learning
The Overall Workflow

• Exploration replay buffer and execution replay buffer are
separated maintained

Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning, AAAI21

Note: To avoid the intrinsic reward being to noisy, we pretrain the
context encoder for several episodes and set the exploration
replay buffer to only contain recently collected data

sim z, 𝑧′

𝑏𝑛
𝑞

𝑏𝑛
𝑘

Trajectorie
s obtained
in task 𝜇

𝑄-Network
𝑠

𝑎

Actor
Network

𝑠

𝑧

Context

Task Representation in RL with Contrastive
Learning

Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning, AAAI21

Task Representation in RL with Contrastive
Learning

Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning, AAAI21

Task Representation in RL with Contrastive
Learning
• humanoid-dir: The target direction of running changes across tasks.

• ant-mass: The mass of ant changes across tasks to change transition dynamics

• OOD-tasks: CCM+RV (recover value function) outperforms CCM+DP (dynamic prediction) -> contrastive
loss combined with loss from recovering value function obtains better generalization for different tasks

Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning, AAAI21

ant-mass
cheetah-mass & cheetah-mass-OOD

cheetah-vel-OOD humanoid-dir

Overall Conclusion:our methods CCM + DP and CCM + RV achieve consistently better performance compared to existing methods.

Task Representation in RL with Contrastive
Learning
• Comparison of Overall Adaptation Performance on Complex Environments

PEARL-CL - a contrastive

context encoder for a

fair comparison

Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning, AAAI21

walker-sparse cheetah-sparse hard-point-robot

Conclusions and Future Directions

• From Perception to Planning and Control: self-representation learning is
the key to bridge the gap.

• Self-representation learning in RL: state, policy, action and task level
representation learning can improve the sample efficiency and policy
generalization ability of RL across different tasks.

• Policy and environment/task dynamics are entangled: how to disentangle
environment representation with policy representation?

• The representation of different RL elements are learned separately: how to
combine them altogether?

• Representation learning in Model-based RL and Opponent modeling in
MASs

Thanks
Q&A

