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What is Self-supervised Learning?

v’ Labels are extracted from the samples
Examples in image-based tasks v The tasks require understanding

| Objectives:
ConvNet Maximize prob.
» g(X,y=0) > 7 | P model F(.) 1 > F'(x°)
Rotate 0 degrees ‘ Predict 0 degrees rotation (y=0)

Rotated image: X"

Example:

Maximize prob.
F'(x")
Predict 90 degrees rotation (y=1)
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Rotated image: X'
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mage gree Rotgietiages ¥ ‘ Predict 180 degrees rotation (y=2)
|
2 ) & ConvNet | 5, Maximize prob.
—» g(X,y=3) —» * odslE () ‘ Fx)
Rotate 270 degrees Rotated image: X | Predict 270 degrees rotation (y=3)
Rotation: lllustration of self-supervised learning by rotating the entire input images. The Patches: Illustration of self-supervised learning
model learns to predict which rotation is applied. by predicting the relative position of two random patches.
This Rotation pretext task drives the model to learn semantic concepts The Patches pretext task drives the model to
of objects: the model has to learn to recognize high-level object parts, learn to understand the spatial context of objects
such as heads, noses, and eyes, and the relative positions of these parts, rather than local patterns. in order to tell the relative position between parts.

(Image source: Gidaris et al. 2018) (Image source: Doersch et al., 2015)



https://arxiv.org/abs/1505.05192
https://arxiv.org/abs/1803.07728

What is Self-supervised Learning?
Self-supervised learning in NLP tasks

e Center Word Prediction A quick brown fox jumps over the lazy dog

Previous sentence | Iron man fails to lift Thor's hammer

Neighbor Sentence Prediction

Center Sentence ‘ Captain America tries lifting Thor's hammer'> predict

Next Sentence ‘The hammer moves a bit ‘

* Auto-regressive Language Modeling Text Corpus Laiﬁ?r‘ed"d from past
AR othing
e eterd | — Nothing is
» Masked Language Modeling . onng s impossbie

A quick [MASK] fox jumps over the [MASK] dog
Key techniques in GTP-2 and Bert | v

A quick brown fox jumps over the lazy dog

Example taken from https://amitness.com/2020/05/self-supervised-learning-nlp/



What is Self-supervised Learning?

Self-supervised training (SSL): a family of ey put LR inpULTomany %*
techniques for converting an unsupervised learning > Predict the future from the past. B,
problem into a supervised one by creating > Predict the future from the recent past. [ ’—’
surrogate labels from the unlabeled dataset. T — ’

> Predict the top from the bottom. ‘ : ’
We can achieve this by framing a supervised Al e p't Future
learning task in a special form to predict only a i e
subset of information using the rest. (Image source: LeCun’s talk)

Example:

SSL: learning intermediate representation with the
expectation that this representation can carry good
semantic or structural meanings and can be
beneficial to a variety of practical downstream tasks.
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(Image source: Doersch et al., 2015)

Are Generative Models self-supervised?



https://www.youtube.com/watch?v=7I0Qt7GALVk
https://arxiv.org/abs/1505.05192

Contrastive Learning:
the SOTA Self-supervised Learning

* Representative Contrastive learning: SimCLR (Chen et al., 2020),
MoCo (He et al. 2019), BYOL (Grill et al., 2020) ...
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https://generallyintelligent.ai/understanding-self-supervised-contrastive-learning.html
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Self-supervised Reinforcement Learning

« How to learn better intermediate representation for better estimation of policies
and Q-values?
« Representation of states
 Contrastive-learning based: task-agnostic representation (CURL)
» Bisimulation-based: only encode task-relevant information (DBC, deepMDP)

 Representation of policies
 Policy-extended value function (generalization across value function estimation of different policies)

 Representation of actions
 Action representation in RL (action space reduction, generalization across policies and value functions)

 Representation of tasks/environments
 Task context representation learning for Meta-RL (generalization across new tasks)



Self-supervised Reinforcement Learning

* CV/NLP: Learning useful semantic/structural representation for effective
downstream tasks (object detection/segmentation, word/sentence generation)

« RL: Learning useful semantic/structural representation for effective
downstream tasks (planning and control)

« Contrastive-based Representations: the same way of constructing supervised loss for
Image-based deep learning tasks (reconstruction-based and task-agnostic - the models
represent all dynamic elements they observe in the world, whether they are relevant to
the task or not)

 Bisimulation and other metric representation: The bisimulation distance between two
states corresponds to how behaviorally different these two states are (e.g., DBC,
deepMDP)



CURL — State Representation Learning for RL

« CURL extends the idea of MoCo to reinforcement learning by learning virtual/state
representation for RL tasks.

Anchor
Keplay buffer \ / \
Input .
% = _'_ﬁ_’v_(_"j'_)_ | Reinforcement y
: . 7 B Learning i
: : Query 2
: i . Encoder
> L : \ / Positive
. : & D
Observation (/. / : Contrastive
A -:“ .k.: ........ « P Unsupe,vised 100 " 100
LpJ Key =Jo (00 Learning
K O 57 Encoder k )

We crop a 84 x 84 image from a 100 x 100
simulation-rendered image. Applying the same random
crop coordinates across all frames in the stack ensures

time-consistency

The anchor and positive observations are two different augmentations (random
crop operation) of the same image while negatives come from other images

During the gradient update step, only the query encoder is updated. The key encoder
weights are the moving average (EMA) of the query weights similar to MoCo (CURL: Srinivas & Laskin, et al., 2020)



Grasp2Vec: Object Representation Learning

Instance Grasping Representation Learning

Outcome

Before After Outcome
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Let ¢ and ¢, be the embedding functions for the scene and the object respectively. The model learns the representation by minimizing the
distance between ¢ (Spre ) — ¢s(5post ) and ¢,(0) using n-pair loss:

Lgrasvaec = NPair(¢s(5pre ) — s (SpOSt )' ®o (0)) + NPair (¢0 (0), ¢s(5pre ) - ¢s(5post ))

. B exp(a/ p)) 2 2
Where NPair(a,p) = Xjcp — logz' — exp(aTp)) + /1(||0Li||2 + ||Pi||2)
j<Biizj SXPAALPj . Graspa2Vec: Learning Object Representations from Self-Supervised Grasping
Where B refers to a batch of (anchor, positive) sample pairs. Jana & Devin et al.. 2018



https://arxiv.org/abs/1811.06964

DBC: Bisimulation-based self-representation RL

» Image-level self-supervised representation learning (e.g., CURL) can learn irrelevant information

Irrelevant Relevant

Latent Space \

Example 1. Robust representations of the visual scene Example 2. Pixel observationsin DMC in the default Example 3. Autonomous Driving, a clear highway
should be insensitive to irrelevant objects (e.g., clouds) setting (top row) of the finger spin (left column), driving scenario. Clouds and sun position are

or details (e.g., car types), and encode two observations cheetah (middle column), and walker (right column), irrelevant.

equivalently if their relevant details are equal (e.g., road and natural video distractors (bottom row).

direction and locations of other cars).

Deep Bisimulation for Control: https://arxiv.org/pdf/2006.10742.pdf, ICLR21



https://arxiv.org/pdf/2006.10742.pdf

DBC: Bisimulation-based self-representation RL

* DBC s effective in learning task-relevant state representation while VAE fails
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Representation visualization. t-SNE of latent spaces learned with a bisimulation metric (left t-SNE) and VAE (right t-SNE) after training has completed, color-
coded with predicted state values (higher value yellow, lower value purple).

* Neighboring points in the embedding space learned with a bisimulation metric have similar states and correspond to
observations with the same task-related information (depicted as pairs of images with their corresponding embeddings),

« Whereas no such structure is seen in the embedding space learned by VAE, where the same image pairs are mapped far away
from each other.

Deep Bisimulation for Control: https://arxiv.org/pdf/2006.10742.pdf, ICLR21



https://arxiv.org/pdf/2006.10742.pdf

DBC: Bisimulation-based self-representation RL

-learning behavioral similarity between states

CURL- largely ignore the sequential aspect of RL when learning state
representation

DBC.: capture representations of states that are suitable to control, while
discarding any information that is irrelevant for control

Robust representations of the visual scene should be insensitive to
irrelevant objects (e.g., clouds) or details (e.%.,_car types), and encode two
observations equivalently if their relevant details are equal (e.g., road
direction and locations of other cars).

The Deep Bisimulation for Control algorithm learns a bisimulation metric
representation via learning a reward model and a dynamics model.

J(¢) = (Ilqb(si) ~ (sl — |R(8(sD) - R ((s))| - yws (rﬁ (18607 (860)).2 (1 8(s). 7 (é(s;)))))

Where ¢ (s) denotes ¢ (s) with stop gradient and 7 is the mean policy output. The learned
reward model R is deterministic and the learned forward dynamics model P outputs a
Gaussian distribution.

Bisimulation metrics relh/ on reward information and may not provide a
meaningful notion of behavioral similarity in certain environments.
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Deep Bisimulation for Control: https://arxiv.org/pdf/2006.10742.pdf, ICLR21
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https://arxiv.org/pdf/2006.10742.pdf

DBC: Bisimulation-based self-representation RL

-learning behavioral similarity between states

CURL- largely ignore the sequential aspect of RL when learning state
representation

DBC.: capture representations of states that are suitable to control, while
discarding any information that is irrelevant for control

Robust representations of the visual scene should be insensitive to
irrelevant objects (e.g., clouds) or details (e.%.,_car types), and encode two
observations equivalently if their relevant details are equal (e.g., road
direction and locations of other cars).

The Deep Bisimulation for Control algorithm learns a bisimulation metric
representation via learning a reward model and a dynamics model.

J(¢) = (Ilqb(si) ~ (sl — |R(8(sD) - R ((s))| - yws (:73 (1660.7(860)).2 (16(s).7 (qS(s,-)))))

Where ¢ (s) denotes ¢ (s) with stop gradient and 7 is the mean policy output. The learned
reward model R is deterministic and the learned forward dynamics model P outputs a
Gaussian distribution.

Bisimulation metrics relh/ on reward information and may not provide a
meaningful notion of behavioral similarity in certain environments.

Algorithm 1 Deep Bisimulation for Control (DBC)

for Time t = 0 to oo do
Encode observation z: = ¢(s;)
Execute action a; ~ m(z¢)

Record data: D <— D U {s¢, a¢, St41, Ie41}

Sample batch B; ~ D

Train policy: Eg, [J(7)]
Train encoder: Ep, 5, [J(®)]
Train dynamics: .J(P,¢)

10:  Train reward: J(R.P,o) ;(Q(P(gb(st),at))

l:
2
3
4
5:
6:  Permute batch randomly: B; = permute(B5;)
7.
8
9
0

> Algorithm 2
> Equation (4)

(P(¢(st), ar)—Zi11)?
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Deep Bisimulation for Control: https://arxiv.org/pdf/2006.10742.pdf, ICLR21



https://arxiv.org/pdf/2006.10742.pdf

Policy Similarity Measure (PSE)

-generalization across semantically equivalent tasks with similar underlying mechanics

(c) PSM + {5 embed-
dings

(a) Optimal Trajectories (b) PSEs

Embedding visualization. (a) Optimal trajectories on original jumping task (visualized as
coloured blocks) with different obstacle positions. The hidden representations are visualized using
UMAP, where the color of points indicate the tasks of the corresponding observations. Points with
the same number label correspond to same distance of the agent from the obstacle, the underlying
optimal invariant feature across tasks.

« The figure shows that PSEs partition the states into two sets: (1) states where a single suboptimal action leads to failure
(all states before jump) and (2) states where actions do not affect the final outcome (states after jump). PSEs align the
numbered states in the first set, which have the same distance from the obstacle, the invariant feature that generalizes
across tasks.

* While l,-embeddings (in DBC) with PSM do not align states with zero PSM except the state with the jump action —
poor generalization.

CONTRASTIVE BEHAVIORAL SIMILARITY EMBEDDINGS FOR GENERALIZATION IN REINFORCEMENT LEARNING, ICLR 21



Policy Similarity Measure

-generalization across semantically equivalent tasks with similar underlying mechanics

TrAIN ENv  TRAIN ENV TEST ENV

 Policy similarity metric (PSM): defines a notion of
similarity between states originated from different
environments by the proximity of the long-term . . E
optimal behavior from these states.

» the agent IS Optimized to learn an embedding in which Different tasks consist in shifting the floor height and/or the obstacle position. To
s . A1 . generalize, the agent needs to be invariant to the floor height while jump based on the
states are close when the agent S Op t_lmal pOllClGS n obstacle position (26 locations*11 heights-286 tasks)
these states and future states are similar. Deep RLagents trained on a few of these jumping tasks with different obstacle
positions struggle to successfully jump in test tasks where obstacles are at previously
Lg(Mx, ]\/[y) =Ey.g, [{’9 (J?y,y; T})] where X, = arxgenrl*ax I'(x,y) unseen locations.

X

Augmentation Representation Projection

I'(%y,y)exp (/159 (%y.y ))

Lol % ) ;X' = —lo Input - ~ f - h
9( wY ) gp(fcy,y)exp (/159 (J~Cy, y)) + Zx’ex’\{azy} (1 —I'(x’, y))exp(/lse (x', y)) _,LJI 0 j & . z |
. Contrastive
soft version of the SIMCLR contrastive loss  T'(x,y) = exp(—d(x,y)/B) {: o [Z_} Learning
d*(x,y) = Dist(z* (x), 7*(3)) + YWy (d*) (P™ (-1 x), P™ (- )) ) ) e (L2
(A) (B) w! ? Reinforcement
The Dist term captures the difference in local optimal behavior (A) while W, FW)::yJ Learning

captures long-term optimal behavior difference (B); the exact weights assigned to

the two are given by the discount Framework for Learning Contrastive Metric Embeddings

CONTRASTIVE BEHAVIORAL SIMILARITY EMBEDDINGS FOR GENERALIZATION IN REINFORCEMENT LEARNING, ICLR 21



Self-supervised Reinforcement Learning

« How to learn better intermediate representation for better estimation of policies
and Q-values?
* Representation of states
 Contrastive-learning based: task-agnostic representation (CURL)
 Bisimulation-based: only encode task-relevant information (DBC, deepMDP, PSM)

* Representation of policies
 Policy-extended value function (generalization across value function estimation of different policies)

 Representation of actions
 Action representation in RL (action space reduction, generalization across policies and value functions)

 Representation of tasks/environments
 Task context representation learning for Meta-RL (generalization across new tasks)



Policy Representation In RL

. P_olic%: mapping from state to action
distribution A

g

- - g E /e
* Policy network = representation |
learning + policy learning e
P-oeom -0 0 =
» Origin policy Representation: extract >t Bhe
policy repreSentation from the policy of] [ \=
network parameters

° Sur_faCe pOllcy rep_resentatiOn: extract DQN: Human-level control through deep reinforcement learning,

policy representation from state- Nature 2015

action pairs (trajectories)



Policy extended value function(PeVF)

* Generalized Policy Iteration (GPI) with function approximation

T o T 2
o N\ " i ~ pTo ~ v™
o \Uﬂl C {
P e J J
\a:} =-;} wﬂﬂ, (X;rfﬂ.) Wﬁl (Xni)
V}rﬂ VTID I_;Tfi
Py $o b1 ‘Uﬁ._l (-X'.’Tg) Wen (‘Xﬂ:l) Wﬁ'l (X?TZ)
Improvement Evaluation Approximation Generalization

* Policy-extended Value Function Approximator (PeVFA)

V(s,m) =v"(s) = E; [Z 7"'1""f+l|-""{l _ H]

t=0

What About Taking Policy as Input of Value Function: Policy-extended Value Function Approximator. https://arxiv.org/abs/2010.09536



PeVF: Global vs. Local Generalization

V™o | PALEY Ve Vet
¢ % e e e e
¥ I a. LI - g MTt41
Ak ] O e ol Ty r
‘ T . 8o o) | h__/ Brsa O
* —‘-I-n _qa i O E Ve, J
o 2 ;
A ." O A_J,.’”“ fa, (1) Ve, . True Value, e.g., V™
‘Ugo . / O Value Approximation, e.g., Vg (m,)
@ Learned €2 Unlearned Value Space A/ A value Generalization, e.g., Vg, (.+1)
— = * Generalization (p.s., fo(m) = ||Vg(m) — V™) —/--- PeVFA, e.g., Vg,
(a) Global Generalization (b) Local Generalization

Figure 2: Illustrations of value generalization among policies of PeVFA. Each circle denotes value
function (estimate) of a policy. (a) Global Generalization: values learned from known policies can be
generalized to unknown policies. (b) Local Generalization: values of previous policies (e.g., 7¢) can
be generalized to successive policies (e.g., m¢1) along policy improvement path.

) P R - Pr , e
Theorem 1 During 0_; — g —— 0 —= ..., forany t > 0, if fo, (7)) + fo,(mi11) <

Ve = Vme || then fo, (Te41) < ||Ve, () — VTerr]].

What About Taking Policy as Input of Value Function: Policy-extended Value Function Approximator. https://arxiv.org/abs/2010.09536

24



PeVF: Global vs. Local Generalization
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Figure 3: Empirical evidences of two kinds of generalization of PeVFA. (a) Global generalization:
PeVFA shows comparable value estimation performance on testing policy set (red) after learning
on training policy set (blue). (b) Local generalization: PeVFA (Vy(x)) shows lower losses than
conventional VFA (V) before and after the value approximation training for successive policies
along policy improvement path. In (b), the left axis is for approximation loss (lower is better) and the
right axis is for average return as a reference of the policy learning process (green curve).

What About Taking Policy as Input of Value Function: Policy-extended Value Function Approximator. https://arxiv.org/abs/2010.09536
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Policy extended value function(PeVF)

Data Source/Input

q 3
Policy Params
( (OPR) 1\

|/- -\I

Policy (s,a)

Policy Encoder

-

Pl
)

MLP
o Trans

\ /

Pairs (SPR)

-

N

Policy Decoder

‘ MLP > ad € a
R i C S J Auxiliary Loss

!

' Contrastive Unsupervised

: Learning Learning

7/
Xn
“--=— ( ) (End-to-End)
gradients N MLP

MLP ——> V(s, x)
S MLP
\_ PEVFA_/

Framework of policy representation training

What About Taking Policy as Input of Value Function: Policy-extended Value Function Approximator. https://arxiv.org/abs/2010.09536
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Policy extended value function(PeVF)

* Origin policy Representation: extract policy representation from the policy
network parameters

« Surface policy representation: extract policy representation from state-action

pairs (trajectories)

\ Benchmarks

Origin Policy Representation (Ours)

Surface Policy Representation (Ours)

Environments | PPO  RanPR | E2E CL AUX E2E CL AUX
HalfCheetah-vl | 2621 2470 3171 £ 427.63 3725 + 348.55 3175+ 517.52 2774 +233.39 3349 + 34142 3216 +506.39
Hopper-vl1 1639 1226 2085 £31091 2351 £231.11 2214 £+ 360.78 2227 +297.35 2302 +263.93 2577 +217.73
Walker2d-v1 1505 1269 1856 £305.51 2038 £315.51 2044 + 316.32 | 1930.57 £456.02 2203 +381.95 1980 + 325.54
Ant-vl 2835 2742 3581 £18543 4019 +162.47 3784 + 268.99 3173 + 18475 3632 £ 13427 3397 +£200.03
[nvDouPend-v1 | 9344 0355 0357 +0.29 0355 +0.64 0355 +0.68 0355 +0.89 9356 + 0.96 0355+ 142
LunarLander-v2 | 219 226 238 +3.37 239 +£3.70 234 +3.47 236 £ 3.13 234 +£3.13 235 +5.70

What About Taking Policy as Input of Value Function: Policy-extended Value Function Approximator. https://arxiv.org/abs/2010.09536
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Self-supervised Reinforcement Learning

« How to learn better intermediate representation for better estimation of policies
and Q-values?
* Representation of states
 Contrastive-learning based: task-agnostic representation (CURL)
 Bisimulation-based: only encode task-relevant information (DBC, deepMDP, ourwork)

 Representation of policies
 Policy-extended value function (generalization across value function estimation of different policies)

* Representation of actions
 Action representation in RL (action space reduction, generalization across policies and value functions)

 Representation of tasks/environments
 Task context representation learning for Meta-RL (generalization across new tasks)



Action Representation in RL

O Applications with large action space: maximizing a
long-term portfolio value in finance using various
trading strategies; Smart-grid power control by P

. . . I, Z Action [ 7T5)
regulating voltage level of all the units; recommending &/ '
millions of items in e-commence systems

. *, /
Y Representation -~

I
I

-
I

O Succinct Action Embedding is important for reducing N e e e ’
pOI!Cy space and also PrOdeg ge_nerallzatlon ablllty of An RL agent interacting with environments with action embedding
policy and value function over action space, thus
significantly speed up learning ©e

Probability
Q
2
| ]

O Internal policy is defined over action embedding space ® a3
and function f maps action embedding back to the

original action space T ¢

][- Irl- \ . |r. 5 1
S Hm) [ (a2) £~ (as)

Each color is associated with a specific action

Learning Action Representations for Reinforcement Learning, ICML 2019



Action Representation in RL

O How to construct Self-supervised Learning @_
for action representation? g f

O exploits the structure in the action set
by aligning actions based on the @ P
similarity of their impact on states. VL

Assumption:

O Action Encoder g and Decoder f are trained
to maximize the prediction accuracy of the e
exact action that cause the transition between  Approximation:

state s(t) and s(t+1). P4, 1 S;,S41) = f FA 1 E, =e)G(E, = e | Sy, Sey1)de

O The internal policy is optimized over the
action embedding space following policy £
gradient theorem (equivalent with the P(A; 1Sy, Ses1)
gradient of the performance function over the T [n<P(At |St:St+1)>l
original action space), which is also relatively

independent of the action embedding learning. L(79) = ;E [in(P I(At |.5t,5.t+1))]
on-policy sampie estimation

Dy, = -E

Reward-independent - mitigating sparse and

stochastic rewards problem

Learning Action Representations for Reinforcement Learning, ICML 2019

P(At | St'5t+1) == f P(At | Et == e)P(Et =e I St,St+1)de

ﬁ(a | St'5t+1)
P(alS;,S )ln(—
Z el P(alS;, Sipr)

Tl,'if
(s)—(e)—(w

< V]

9/,(0) < | 9
]6—9 = ; Elytfeq”l(St,e)%ﬂi(e I St)del

dJ,(0,f) 9J:(6)
6 06

Gradient optimization over embedding
action space is equivalent with original
action space



Action Representation in RL

Algorithm 3: Policy-Gradient with Representations for Action (PG-RA)

Initialize internal policy s, initialized critic (if any)

2 Initialize action representations f, §

Prepare replay buffer D

repeat Stage @

Update f, § using samples in D to minimize £(f,§) = E [ln (f’ (Ae | S, 31_1})]

ntil reaching maximum warm-up steps;

epeat Stage @

for t+ 1 toT do

Sample action embedding E:, from 7, (- | St)

Decode action A; = .fn'{Et}

Execute A:, observe H: and new state S

Store {Sa._ :"11 B, Ry, Sf.;.] } D

Update internal policy m; with any policy gradient algorithm (e.g., A2C, PPO, DDPG)
Update critie (if any) to minimize TD error

Update f.a using samples in D to minimize .C.I[.fﬂ'._ gl=-E [111 (fﬂ’ (A¢ | Sty St ))]

e I

until reaching maximum training steps;

Cartesian

S

Learned

The size of the action set is exponential in the number of actuators (a);
2-D representations for the displacements in the Cartesian co-ordinates
caused by each action (b) and the learned action embedding (c)

Maze with 24 actions

Total Expected Return
Total Expected Return

o 1 2 3 4 5
. .
Episodes 10

Learning Action Representations for Reinforcement Learning, ICML 2019
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HyAR: Hybrid Action Representation in RL

» Applications with Discrete-continuous hybrid

action SpaCeZ RObOthS Contl’0|, Game AI, et al Algorithm Sczllj:ilily Sliltii‘_')/lldl'it}" Dcpc;;lcncc Lﬂ;nl
» Solution 1: Discretization/continualization: N one x / X P
scalability issue or non-smooth piecewise- PDON X / % X
Q
function action subspace (difficult to estimate) HHON v/ X v X
> Solution_tZH Learninlg directtly oxe(r hybrF;'cAl\ B%igg HyAR (Ours)
spaces with one policy network (e.g., . _ _
ICLR16, HPPO [ICAT19) e "
» Solution 3: Learning directly over hybrid action atent Policy e
space with a hybrid structure of DéN and AR Y
DPG (PDQON Arixv2018, HHQN IJCAI19) ) tatent [ ® Latent
> Three key properties should be well-captured: X Acton w )
Scalability to large action space, stationarity I
between high and low-level learning, and State| Reward PIETETE ST Er T, \
Correlation/dependence between discrete and o ;
continuous actions Eny SRy & )
» How to learn a coherent action embedding ! Disrete  Continuous

space to achieve this?
Learning with Hybrid Action space

HyAR: Addressing Discrete-Continuous Action Reinforcement Learning via Hybrid Action Representation, arxiv 2021



HyAR: Hybrid Action Rep

Dependence-aware encoding and decoding

» A embedding table is used to map discrete
actions while a VAE is used to learn embedding
for continuous actions, while these two
embedding are trained altogether to align them to
the same space

skl Xk = X 15 + Dir(q (1 Xk s, e2) 1 (0, 1))]

Lvae(é,¥,{) = E
> Hybrid action representations that are closer in
the space reflects similar influence on _
environmental dynamics of their corresponding

original hybrid actions.

» A subnetwork that cascaded after the main body
of the conditional VAE decoder to produce the
prediction of the state residual of transition

dynamlcs Prediction: &,y = p¢(zx, S, egjk) for s, k, x;,
Then we minimize the L,-norm square prediction error:

LDyn(¢' l)bi Z) = ]E 65:5,"2]

s,kxi,s’ [”Ss,s' -

resentation in RL

Reinforcement Learning with Hybrid Action Representation

Representation Decoding

Latent Actions Original Actions

Embedding Table

(z,,) —» ( for discrete actions) — (k)
o discrete discrete
.2
°
=¥ 5 Autoencoder )
| for continuous parameters A
(Z x) —> l[)L k}

continuous
s - —
o Representation Training
Ny,
o e —
&
s

Environment

continuous

Encode: e; , = E;(k) and z, ~ q¢(-| Xk S, eg’k) for s, k, x
Decode: k = g5(z) = argmin [l — z,

X = pll,(zx, s, e(,k) fors, zy, z,

Hybrid Action Representation Model

Embedding Table Encoder Decoder
Plece ] s |"Dl l _
f I
[ R—— |
k look up: : - -El ﬂ .
] B
L
| |

Multi-layer Perceptron (MLP)
Element-wise product operation

— o
® :

LHyAR((.b: l/J, () = LVAE (¢' l/J, () + BLDyn((p; ll), ()
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HyAR: Hybrid Action Representation in RL

Algorithm 2: HyAR-TD3

Initialize actor 7, and critic networks (Jg, , (), with random parameters w, €1, 02

Initialize discrete action embedding table v+ and conditional VAE g, p,, with random parameters ¢, ¢, 1 Eq.3:

Prepare replay buffer D
repeat Stage @
| Update ¢ and ¢, v using samples in D > see Eq. 6
until reaching maximum warm-up steps;
repeat Stage @
fort < I 10T do
// select latent actions in representation space
Zy Zp = Tu(8) + €a, with €, ~ N(0, o)
/I decode into original hybrid actions
k= ge(zr), e = py(2zz, s, €c.k) > see Eq. 3

Store {s, k, x, 2z, 22,7, 8 } In D

Sample a mini-batch of NV experience from D

Update Qs, , Qs, > see Eq. 7
Update ., with policy gradient > see Eq. 8

| Update ¢ and ¢, 2 using samples in D - see Eq. 6
until reaching maximum represeniation training steps,

21 until reaching maximum training steps;

Eq.6:

Execute (k, xr), observe r; and new state s’ Eq.7:

repeat Eq.8:

Encode: e; x = E;(k) and z, ~ q¢(-| Xk, S, eg’k)
fors, k, x
Decode: k = gg(z) = argmin llec,c — 7l

X = plp(zx, s, eZ,k) fors, zy, z,

LHyAR (¢r l/}, () = LVAE(¢; l/j' () + ﬁLDyn(¢' l/jr ()

2
Lepq(6)) = Bz zoms' [(y - Qgi(s, zk,zx)) ],

where y = r + ymin ng(s’, n5(s")
j=1,

Vo (w) = ]Es[Vnw(s)Qel(sx T[w(s)) Vwﬂw(s)]

HyAR: Addressing Discrete-Continuous Action Reinforcement Learning via Hybrid Action Representation, arxiv 2021



HyAR: Hybrid Action Representation in RL

Target point Target area
‘F @
Current action: move
F
....-*.. actuators
Fad to chooze
L5y :
RPERL
Valid catch distance -

{a) Platform (b} Goal {c} Catch Pomnt (d} Hard Move

Figure 4: Benchmarks with discrete-continuous actions: (a) the agent selects a discrete action (run,
hop, leap) and the corresponding continuous parameter (horizontal displacement) to reach the goal;
(b) The agent selects a discrete strategy (move, shoot) and the continuous 2-D coordinate to score;
(c¢) The agent selects a discrete action (move, catch) and the continuous parameter (direction) to grab
the target point; (d) The agent has n equally spaced actuators. It can choose whether each actuator
should be on or off (thus 2" combination in total) and determine the corresponding continuous
parameter for each actuator (moving distance) to reach the target area.

HFFO | PADDFPG PDON HHOMN HyAR-DDPG PATD3  PDON-TD3 HHQN-TD3 HyAR-TD3

ENV

PPO-hased | DDPG-hased | TD3-hased
Croal 0.0+ 00 005 0,10  0.70 +£0.07 0.0+0.0 0.5340.02 0000 071010 0.040.0 0.78-4+0.03
Hard Goal 0.0+ 00 0.0+ 0.0 0.0 £ 0.0 0.0+0.0 0.300.08 0.4440.05 0.060.07 0.010.01 0.00-£0.07
Platform 080 £002 | 036 2006 0932005 0464025 (L7006 0944010 093003 0.624H0.23 0,98 +-0.01
Catch Point 069009 | 0821006 077007 0311006 (.890.01 0824010 (L800.07 02741005 0.90-+0.03

Hard Move (n=4) 0.00+002 | 0.03 +£0.01 069 +007 039+0.14 0.91+0.03 066+0.13  085+0.10 05240.17 0.93+0.02
Hard Move (n=6) 005001 | 0.04 £ 001 041 £005 032+0.17 0.910.04 004002 074008 02940.13 0.92+0.04
Hard Move (n=8) 0.4 =001 | 006 £003 004 £0.01 0052002 0.850.06 0062002 0.05£001 0.05:0.02 0.890.03
Hard Move (n=10) 005 +001 | 0.04 £ 001 006 £0.02 004001 0.82+0.06 0.07+002 005002 0.054+0.02 0.754+0.05

HyAR: Addressing Discrete-Continuous Action Reinforcement Learning via Hybrid Action Representation, arxiv 2021



Self-supervised Reinforcement Learning

« How to learn better intermediate representation for better estimation of policies
and Q-values?
* Representation of states
 Contrastive-learning based: task-agnostic representation (CURL)
» Bisimulation-based: only encode task-relevant information (DBC, deepMDP)

 Representation of policies
 Policy-extended value function (generalization across value function estimation of different policies)

 Representation of actions
 Action representation in RL (action space reduction, generalization across policies and value functions)

« Representation of tasks/environments
 Task context representation learning for Meta-RL (generalization across new tasks)



Task Representation in RL

* Meta-Learning RL

Meta-RL is a technique to learn an inductive bias that accelerates the learning of new
task by training on a large of number of training tasks. Formally, meta-training on
tasks from the meta-training set Dyetqg = {Dk}kzlp_m involves learning a policy.

n
- 1 :
Ometa = arggwxﬁz reta (0)  General form of Meta-learning
k=1

£ o (0) = ¢ (0 + aTpe*(6))  MAML (on-policy meta-training,
sample-inefficient )

B i = argmin— E_[TD?(6)] Multi-task learning (off-policy,
= sample efficient)

Key idea: adapt to a new environment by inferring latent context from a small
number of interactions with the environment.
Challenges: how to extract task-specific and remove noisy information?
how to efficiently explore environments to get distinct task
context faced with a new environment?

® MAML = TD3-context PEARL
2000

1000

D I

-1000

II L]

Ant-Dir Ant-Goal Half-Cheetah-FB Half-Cheetah-Vel

Remark: MQL uses a deterministic context that is not permutation
invariant. the direction of time affords crucial information about the
dynamics of a task to the agent,_e.g., a Half-Cheetah running forward
versus backward has arguably the same state trajectory butin a
different order. Further, the contextin MQL is a deterministic function
of the trajectory. Both these aspects are different than the context
used by Rakelly et al. (2019) who design an inference network and
sample a probabilistic context conditioned on a moving window. This
result demonstrates that a simple context variable is enough is an
important contribution.

Meta-Q: Fakooret al., ICLR 2020



Task Representation in RL

* Meta-Learning RL

Meta-RL is a technique to learn an inductive bias that accelerates the learning of new

task by training on a large of number of training tasks. Formally, meta-training on 9o (Z|C) N(0,1)
tasks from the meta-training set Dypeta = {D*}x=1..., involves learning a policy. . Dxi,
repla - SC; _P_’
A ¢, _ N A A
Ometa = arggnax%z ‘meta (6)  General form of Meta-learning — |z
k=1 T
. .. - Q9 (S} a, Z) — ECT‘?:tZ'C
25 a (0) = £F (9 +al, gk(g)) MAML (on-policy meta-training, % .
sample-inefficient ) . g mo(als, z)| .| Lactor
n train tasks
1 - - .
) — n— 2 Multi-task learning (off-policy,
Ometa argemln n r~]FZ)k[TD (©)] le effici J ( P Y Meta-training procedure. The inference network gy uses context
k=1 Samp ce ICIent) data to infer the posterior over the latent context variable Z,
. . ] ) which conditions the actor and critic, and is optimized with
Key idea: adapt to a new environment by inferring latent context from a small gradients from the critic as well as from an information
number of interactions with the environment. bottleneck on Z. De—coupling t.he data sampling strz?tegies fgr
Challenges: how to extract task-specific and remove noisy information? context(Sc) and RL batches is important for off-policy learning.
how to efficiently explore environments to get distinct task context faced PEARL: Rakelly et al., ICML 2019

with a new environment?



Task Representation in RL with contrastive

learning o

L {_hf['__ .hf'j. cee hﬂf} ()’:"
Task Representation with Contrastive Learning /[ _ 1" -
: |
- Contrastive context encoder: a general framework, can be : 7k ! 24
integrated with any Meta-RL framework | ' | —
|\ [Contrasti\'c Loss] | [ Rc;ﬁl‘fl‘::m J
/ =

Concretely, assuming a training task set containing M different tasks from task
distribution p(u). We first generate trajectories with current policy for each task and
store them in replay buffer. At each training step, we first sample a task u, from the

Contrastive context encoder RL

training task set, and then randomly sample two batches of transitions bg, bk from unfold
task u, independently. bg serves as a query in contrastive learning framework while bz
b¥ is the corresponding positive key. We also randomly sample M — 1 batches of B
transitions from the other tasks as negative keys. f 7
0 ¥
exp(51m(zq, Zn)) | — | Contrastive
= — momentum
Leontrastive = —E logzM ox (Sim(zq K )) InfoNCE loss | loss
k=1 p ) *
Transitions ft z’
: K\ _ .gT k obtained 7 : /
51m(zq, A ) = 724" Wz in task g ko — sim(z, z")
n

Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning, AAAI21



Task Representation in RL with contrastive
learning

Information-gain-based Exploration for Effective Context
 Exploration policy should collect trajectories as informative as possible
« We achieve this by introducing an additional exploration-encouraging external reward

exp(sim(cl:i, Cpos ))
2.¢j€Cneq exp(sim(cy, Cj))_
Yejec exp(sim(cy, ¢ ) |

2.¢j€Cneq exp(sim(cy, ¢;))

exp(sim(cl;i, Cpos )) _
chec exp(sim(cy;;, Cj))

Lupper — Liower = [ECPOS log Cpos log

= [Ecpos [sim(cl:i, cpos) - sim(cl:i_l, cpos)] - [Ecpos log

Here, we abuse the notion sim(c?, ¢?) to denote sim(z1,z2) = sim(f(c1), f(c?)) for convenience

« The information gain of collecting a new transition at time step i is equivalent with temporal
difference of the mutual information between task belief and collected trajectories.
[(z|t1.i-1;7) = H(z|Ty.i-1) — H(z|T1,) = H(z|T1,4-1) + H(2) — H(2) — H(z|71)
= 1(z|ty; ) — 1(z|T1.5-1) Z is the task belief

Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning, AAAI 21



Task Representation in RL with contrastive
learning

Information-gain-based Exploration for Effective Context
 Exploration policy should collect trajectories as informative as possible
« We achieve this by introducing an additional exploration-encouraging external reward

exp(sim(cl:i, Cpos )) exp(sim(cl:i, Cpos ))
ZC]EC eXp(Sim(Cl:i' C])) ZCjECneg eXp(Sim(Cl:i: C]))

estimating how much the similarity score for positive pairs  Regularization term: limit the policy not visiting places
has improved after collecting new transition where the negative score enhances as well

Lupper — Liower = IE:Cpos [log - IIE:Cpos log

« The information gain of collecting a new transition at time step i is equivalent with temporal
difference of the mutual information between task belief and collected trajectories.
[(z|t1.i-1;7) = H(z|Ty,i-1) — H(z|t1,) = H(z|T1.4-1) + H(2) — H(2) — H(z|71.)
=1(z|ty; ) — 1(z|T1.5-1) Z is the task belief

Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning, AAAI21
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Learning

The Overall Workflow

Exploration replay buffer and execution replay buffer are
separated maintained

loss

Trajectorie

; S obtained ’
‘intask u bk 51m(z, z )
b Exploration ML ___" n___ 7
eXP7| Agent
Exploration P R et ittt oot ittt i di it el ~<
Replay Buffer Zexp i h

play ,'/ S \l\
Context |=----- i I |
bene Contrastive Loss l: Context el —>mp(als,z)| . Loctor :|
Encoder ] ¥ Network |
|
[ I
Z Wz I
b exp l : : I :
EXECUHOH exe Execution | : : |
R RL Loss I |
eplay Buffer Agent } }
v S o ! |
I: Q-Network ——>|Qu(s,a,z) . Leritic :|
Note: To avoid the intrinsic reward being to noisy, we pretrain the :I I:
context encoder for several episodes and set the exploration \‘\ a ,’/
replay buffer to only contain recently collected data S o o o e o e e e e e 227

e e e o e M M R R R R R M R R M e e e e e

Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning, AAAI21



Task Representation in RL with Contrastive

Learning

Algorithm 1 CCM Meta-training

Require: Batch of training tasks {;Jn}n 1,
I: Initialize execution replay buffer B!

2:

sl

AR AN

7:
8:
9:
10:
11:
12:
13:

14:
15:
16:
17:

_____ wm from p(p),
exp]oratlon replay buffer Biw for each training task

ere?

Initialize parameters 0., and 0.,. for the off-policy method employed by exploration and
execution respectively, e.g., SAC
Initialize parameters 6., for context encoder network
while not done do
for each task p,, do

ati 1. . areits 5 i o .env _ffit'?
Roll-out exploration policy me.p, producing transitions {(s;,a;,s%, 5™, r5"") }j1..N,

er Ay 1 - .
where f P _ ;.?u? 1 C.t"r‘;fua’

Add tuples to exploration replay buffer BE,L and execution repldy buffer B!,
Roll-out execution policy 7y, producing transitions {(sk, ag, 85, 75" ) b1 K
Add tuples to execution replay buffer B

cre

end for
for each training step do

for each task p,, do

Sample transitions for encoder b7}, . = {(si, ai, s}, 7{™") }ic1...r ~ By, and RL batch

bewp = (54, @i, 55, T ) YaeteNt Beyps Uine = {(siy @iy 85,75 ) bt ko ~ Biye
Upddte Oene and !99 <« With RL loss and contrastive loss using b7, ., b7,

Update 0., with RL loss using b/

erp
end for

end for

18: end while

Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning, AAAI21



Task Representation in RL with Contrastive
Learning

Algorithm 2 CCM Meta-testing

Require: Test task ;o ~ p(p),
1: Initialize b* = {}
: for each episode do
fork=1,--- ,Kdo
Roll-out explordtmn policy 7e.p, producing transition D, = {(sj, a;, s, 75"™")}

2

3

4

5: Accumulate transitions b* = b N DY,
6:  end for
7

8

9

. end for
cfore=1,--- , K do
Roll-out execution policy meze conditioned on b, producing transition DY = =
{(s5,a;, 87, 75™)}
10: ALLumuldtc transitions b* = b N DX |
11: end for

Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning, AAAI21



Task Representation in RL with Contrastive
Learning

humanoid-dir: The target direction of running changes across tasks.

ant-mass: The mass of ant changes across tasks to change transition dynamics

OOD-tasks: CCM+RV (recover value function) outperforms CCM+DP (dynamic prediction) -> contrastive
loss combined with loss from recovering value function obtains better generalization for different tasks

(X X

cheetah-mass & cheetah-mass-OOD

ant-mass cheetah-vel-OOD humanoid-dir

ant-mas sheetah-vel-OOD Sy
nl-mass ClLsdive humanoid-dir chectah-mass cheetah-mass-OOD

e

15( —/__/_,__,_/——"
= =
=
[
(12 2 e
& &
A E0g
@
> o
P < ) 500
400
200k 100k 600k 800k 0 200k 400k 600Kk n N rom b e = sty ,
] 200k 100k 0 0.2M 0.4M 0.6M 0.8M 0 200k 400k 600k 300k
Meta-training time steps Meta-training time steps A MR R s Y 200k 00k 500 800
F = Vieta-training time steps Meta-training time steps Meta-training time steps

S— V. — RV

Overall Conclusion:our methods CCM + DP and CCM + RV achieve consistently better performance compared to existing methods.

Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning, AAAI21



Task Representation in RL with Contrastive
Learning

« Comparison of Overall Adaptation Performance on Complex Environments

= %;’4

walker-sparse cheetah-sparse hard-point-robot
» R — _ PEARL-CL - a contrastive
N I ——— 0 context encoder for a
Meta-training time s Aeta-trainir steps feta-tr

_— fair comparison

Figure 4: CCM’s overall performance compared with state-of-the-art Meta-RL methods on complex
sparse-reward environments. From left to right: walker-sparse,cheetah-sparse, hard-point-robot. The
error bar shows | standard deviation.

Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning, AAAI21



Conclusions and Future Directions

* From Perception to Planning and Control: self-representation learning is
the key to bridge the gap.

 Self-representation learning in RL: state, policy, action and task level
representation Iearnin$ can improve the sample efficiency and policy
generalization ability of RL across different tasks.

* Policy and environment/task dynamics are entangled: how to disentangle
environment representation with policy representation?

* The representation of different RL elements are learned separately: how to
combine them altogether?

. Repgesentation learning in Model-based RL and Opponent modeling in
MASs
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