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Problem Definition of Data Generation

• Given a dataset                 , build a model           of 
the data distribution that fits the real one

D = fxgD = fxg qμ(x)qμ(x)

• Traditional objective: maximum likelihood estimation (MLE)

max
μ

1

jDj
X
x2D

[log qμ(x)] ' max
μ

Ex»p(x)[log qμ(x)]max
μ

1

jDj
X
x2D

[log qμ(x)] ' max
μ

Ex»p(x)[log qμ(x)]

p(x)p(x)

• Check whether a real data is with a high mass density of 
the learned model



Inconsistency of Evaluation and Use

• Check whether a 
real data is with a 
high mass density 
of the learned 
model

• Approximated by

max
μ

Ex»p(x)[log qμ(x)]max
μ

Ex»p(x)[log qμ(x)] max
μ

Ex»qμ(x)[log p(x)]max
μ

Ex»qμ(x)[log p(x)]

Training/evaluation Use

• Check whether a 
model-generated 
data is considered as 
real as possible

• More straightforward 
but it is hard or 
impossible to directly 
calculate p(x)p(x)max

μ

1

jDj
X
x2D

[log qμ(x)]max
μ

1

jDj
X
x2D

[log qμ(x)]

• Given a generator q with a certain generalization ability



Generative Adversarial Nets (GANs)

• What we really want is

max
μ

Ex»qμ(x)[log p(x)]max
μ

Ex»qμ(x)[log p(x)]

• But we cannot directly calculate p(x)p(x)

• Idea: what if we build a discriminator to judge 
whether a data instance is real or fake (artificially 
generated)?

• Leverage the strong power of deep learning based 
discriminative models

[Goodfellow, I., et al. 2014. Generative adversarial nets. In NIPS 2014.]



Generative Adversarial Nets (GANs)

• Discriminator tries to correctly distinguish the real data and 
the fake model-generated data

• Generator tries to generate high-quality data to fool 
discriminator

• G & D can be implemented via neural networks
• Ideally, when D cannot distinguish the real and generated 

data, G nicely fits the real underlying data distribution

G
D

Real World

Generator

Discriminator

Data



Generator and Discriminator Nets

• Must be differentiable
• No invertibility requirement
• Popular implementation: multi-layer perceptron

x = G(z;μ)x = G(z;μ)

• Generator network

• Can be implemented by any neural networks with a 
probabilistic prediction

• For example
• Multi-layer perceptron with logistic output
• AlexNet etc.

P (realjx) = D(x;Á)P (realjx) = D(x;Á)

• Discriminator network

G

D

P (real)P (real)



GAN: A Minimax Game

G
D

Real World

Generator

Discriminator

Data

min
G

max
D

J(G;D)min
G

max
D

J(G;D) max
D

J(G; D)max
D

J(G; D)

The joint objective function



Illustration of GANs

Discriminator

Data

Generator

J (D) = E »pdata( )[log D(x)] + E »p ( )[log(1¡D(G(z)))]J (D) = E »pdata( )[log D(x)] + E »p ( )[log(1¡D(G(z)))]

min
G

max
D

J (D)min
G

max
D

J (D) max
D

J (D)max
D

J (D)Generator Discriminator



Ideal Final Equilibrium

• Generator generates 
perfect data 
distribution

• Discriminator cannot 
distinguish the real 
and generated data



Optimal Strategy for Discriminator

• Optimal D(x) for any 
pdata(x) and pG(x) is 
always Discriminator

Data

Generator

• If this optimum is 
allowed to reach, then 
we have an ideal 
equilibrium for GAN.



Equilibrium for the Minimax Game

J(G; D) = E »p ( )[log D(x)] + E »p ( )[log(1¡D(G(z)))]

= E »p ( )[log D(x)] + E »pG( )[log(1¡D(x))]

= E »p ( )

·
log

p (x)

p (x) + pG(x)

¸
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J(G; D) = E »p ( )[log D(x)] + E »p ( )[log(1¡D(G(z)))]

= E »p ( )[log D(x)] + E »pG( )[log(1¡D(x))]

= E »p ( )

·
log
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min
G

max
D

J(G;D)min
G

max
D

J(G;D) max
D

J(G; D)max
D

J(G; D)G: D:

• An equilibrium is                                     and  pG(x) = p (x)pG(x) = p (x) D(x) =
p (x)

p (x) + pG(x)
= 0:5D(x) =

p (x)

p (x) + pG(x)
= 0:5



Case Study of GANs for Continuous Data



Why study generative models?
• Excellent test of our ability to use high-dimensional, 

complicated probability distributions
• Simulate possible futures for planning or simulated 

RL
• Missing data

• Semi-supervised learning
• Multi-modal outputs
• Realistic generation tasks

Goodfellow NIPS 2016 Tutorial: Generative Adversarial Networks



High Resolution and Quality Images
• Progressive Growing of GANs from 42 to 10242

Tero Karras et al. Progressive Growing of GANs for Improved Quality, Stability, and Variation. ICLR 2018. 



• BigGAN in ICLR 2019

High Resolution and Quality Images

Andrew Brock et al. Large Scale GAN Training for High Fidelity Natural Image Synthesis. ICLR 2019. 



Single Image Super-Resolution

Ledig, Christian, et al. "Photo-realistic single image super-resolution using a generative adversarial network." CVPR 2017.

deep residual generative adversarial 
network optimized for a loss more 
sensitive to human perception

[4× upscaling] 



Image to Image Translation

Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." CVPR 2017.



Grayscale Image Colorization

Yun Cao, Weinan Zhang etc. Unsupervised Diverse Colorization via Generative Adversarial Networks. ECML-PKDD 2017.

Ground
Truth

Ground
Truth

Generated Colorization
after Performing Grayscale

Generated Colorization
after Performing Grayscale



High-Resolution Image Synthesis and Semantic 
Manipulation with Conditional GANs

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. "High-Resolution Image Synthesis and Semantic 
Manipulation with Conditional GANs", arXiv preprint arXiv:1711.11585.
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• In order to take gradient on the generator parameter, x has 
to be continuous

xx

zz

pp

1. Generation

2. Discrimination 3. Gradient on generated data

4. Further gradient on generator

GANs for Continuous Data

Generator Discriminatormin
G

max
D

J(G;D)min
G

max
D

J(G;D) max
D

J(G; D)max
D

J(G; D)



Review GAN Objective

J(G) = max
D

J(G; D) = E »p ( )[log D(x)] + E »p ( )[log(1¡D(G(z)))]

= E »p ( )[log D(x)] + E »pG( )[log(1¡D(x))]
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General GAN form
J(G) = max

D
J(G;D) = E »p ( )[log D(x)] + E »p ( )[log(1¡D(G(z)))]J(G) = max

D
J(G;D) = E »p ( )[log D(x)] + E »p ( )[log(1¡D(G(z)))]

min
f2F

JD , Ez»Pz [Á(f(g(z)))] + Ex»Pr ['(f(x))];

min
g2G

JG , Ez»Pz [Ã(f(g(z)))];

min
f2F

JD , Ez»Pz [Á(f(g(z)))] + Ex»Pr ['(f(x))];

min
g2G

JG , Ez»Pz [Ã(f(g(z)))];

Vanilla GAN form

General GAN form



Problems on Gradients
J(G) = max

D
J(G;D) = E »p ( )[log D(x)] + E »p ( )[log(1¡D(G(z)))]J(G) = max

D
J(G;D) = E »p ( )[log D(x)] + E »p ( )[log(1¡D(G(z)))]

min
f2F

JD , Ez»Pz [Á(f(g(z)))] + Ex»Pr ['(f(x))];

min
g2G

JG , Ez»Pz [Ã(f(g(z)))];

min
f2F

JD , Ez»Pz [Á(f(g(z)))] + Ex»Pr ['(f(x))];

min
g2G

JG , Ez»Pz [Ã(f(g(z)))];

@JG(z)

@μ
=

@Ã(f(x))

@f(x)
¢ @f(x)

@x
¢ @gμ(z)

@μ

@JG(z)

@μ
=

@Ã(f(x))

@f(x)
¢ @f(x)

@x
¢ @gμ(z)

@μ

Problem 1:
Gradient 
vanishing

Problem 2:
Gradient 

uninformativeness

Vanilla GAN form

General GAN form

x = gμ(z)x = gμ(z)



Towards Solving 
Gradient Vanishing Problem

Wassertein GAN
Arjovsky et al. Wasserstein GANs. ICML 2017.



Different Divergences/Distances

KL, JS and TV require intersections. Initially, pmodel is far away from pdata
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real fake
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Illustration of EM Distance (W1) and JSD



Wasserstein GAN
• The optimal D:

• Approaching the f that maximizes 
the Wasserstein Distance

Kantorovich-Rubinstein duality

0 0.2 0.4 0.6 0.8 1
0
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0.4
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0.8
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real fake

θ

min
μ

max
f

W (Pr; Pμ) = sup
kfkL·K

Ex»Pr [f(x)]¡ Ex»Pμ [f(x)]min
μ

max
f

W (Pr; Pμ) = sup
kfkL·K

Ex»Pr [f(x)]¡ Ex»Pμ [f(x)]



Ensure K-Lipschitz Property

• Weight Clipping
• Remove the *log* function from the original 

objective

• Gradient penalty

Gulrajani et al. Improved Training of Wasserstein GANs. NIPS 2017.

min
μ

max
f

W (Pr; Pμ) = sup
kfkL·K

Ex»Pr [f(x)]¡ Ex»Pμ [f(x)]min
μ

max
f

W (Pr; Pμ) = sup
kfkL·K

Ex»Pr [f(x)]¡ Ex»Pμ [f(x)]

uniformly along straight lines 
between pairs of points



WGAN Advantages

• Can train the D till optimality.
• The original GAN needs delicate balance G and D to 

avoid gradient vanishing

Optimal discriminator and 
critic when learning to 
differentiate two Gaussians. 
As we can see, the 
discriminator of a minimax
GAN saturates and results in 
vanishing gradients. Our 
WGAN critic provides very 
clean gradients on all parts of 
the space.



WGAN Advantages

• Can train the D till 
optimality

• The original GAN need 
delicate balance G and 
D to avoid gradient 
vanishing

• Meaningful D loss
• D is approximating the 

W distance



WGAN Improved Stability?

• Can work with MLP 
generator

• Can work without batch 
normalization

• No mode collapse 
observed

• Unstable 
• when uses momentum 

based optimizer such as 
Adam

• when one uses high 
learning rates



Observations: Critics trained with weight clipping fail to capture higher 
moments of the data distribution.
The ‘generator’ is held fixed at the real data plus Gaussian noise.

Weight Clipping

Learned patterns
with gradient penalty

Learned patterns
with weight clipping

Gulrajani, Ishaan, et al. "Improved training of wasserstein gans." NIPS 2017.

Value surfaces of WGAN critics trained to optimality on toy 
datasets using (top) weight clipping and (bottom) gradient penalty. 



The optimal f∗ is not in the class of functions that can be 
generated by the network under the weight clipping constraint.

Weight Clipping Trained D is not Optimal

Appendix B of Petzka, Henning, Asja Fischer, and Denis Lukovnicov. "On the regularization of Wasserstein 
GANs." arXiv preprint arXiv:1709.08894 (2017).



Spectral Normalization

Miyato, Takeru, et al. "Spectral normalization for generative adversarial networks." ICLR 2018.

Spectral normalization normalizes the spectral norm of the 
weight matrix W so that it satisfies the Lipschitz constraint

largest singular value of W



Gradient Penalty                                                    Spectral Normalization 

In our preliminary analysis, spectral normalization failed to 
achieve the optimal discriminative function.

Spectral Normalization



Towards Solving 
Gradient Uninformativeness Problem

Lipschitz GAN
Zhiming Zhou et al. Lipschitz Generative Adversarial Nets. 
ICML 2019.



Problems on Gradients
J(G) = max

D
J(G;D) = E »p ( )[log D(x)] + E »p ( )[log(1¡D(G(z)))]J(G) = max

D
J(G;D) = E »p ( )[log D(x)] + E »p ( )[log(1¡D(G(z)))]

min
f2F

JD , Ez»Pz [Á(f(g(z)))] + Ex»Pr ['(f(x))];

min
g2G

JG , Ez»Pz [Ã(f(g(z)))];

min
f2F

JD , Ez»Pz [Á(f(g(z)))] + Ex»Pr ['(f(x))];

min
g2G

JG , Ez»Pz [Ã(f(g(z)))];

Vanilla GAN form

General GAN form



Problems on Gradients
J(G) = max

D
J(G;D) = E »p ( )[log D(x)] + E »p ( )[log(1¡D(G(z)))]J(G) = max

D
J(G;D) = E »p ( )[log D(x)] + E »p ( )[log(1¡D(G(z)))]

min
f2F

JD , Ez»Pz [Á(f(g(z)))] + Ex»Pr ['(f(x))];

min
g2G

JG , Ez»Pz [Ã(f(g(z)))];

min
f2F

JD , Ez»Pz [Á(f(g(z)))] + Ex»Pr ['(f(x))];

min
g2G

JG , Ez»Pz [Ã(f(g(z)))];

@JG(z)

@μ
=

@Ã(f(x))

@f(x)
¢ @f(x)

@x
¢ @gμ(z)

@μ

@JG(z)

@μ
=

@Ã(f(x))

@f(x)
¢ @f(x)

@x
¢ @gμ(z)

@μ

Problem 1:
Gradient 
vanishing

Problem 2:
Gradient 

uninformativeness

Vanilla GAN form

General GAN form

x = gμ(z)x = gμ(z)



The Gradient Uninformativeness
• The problem that the gradient from the discriminator does 

not contain any information about the real distribution.

@JG(z)

@μ
=

@Ã(f(x))

@f(x)
¢ @f(x)

@x
¢ @gμ(z)

@μ

@JG(z)

@μ
=

@Ã(f(x))

@f(x)
¢ @f(x)

@x
¢ @gμ(z)

@μ

• If there is no restriction on f(x), then f*(x) is independently
defined (universal approximation) and only reflects the local 
densities Pg and Pr

• Thus gradient that x receives from f*(x) does not reflect any 
information about Pr



Gradient uninformativeness practically behaviors as noisy gradient.

Gradient Uninformativeness



Gradient uninformativeness practically behaviors as noisy gradient.

Gradient Uninformativeness



Lipschitz GANs (LGAN)

• LGAN requires and to satisfy:

min
f2F

JD , Ez»Pz [Á(f(g(z)))] + Ex»Pr ['(f(x))] + ¸k(f)2

min
g2G

JG , Ez»Pz [Ã(f(g(z)))]

min
f2F

JD , Ez»Pz [Á(f(g(z)))] + Ex»Pr ['(f(x))] + ¸k(f)2

min
g2G

JG , Ez»Pz [Ã(f(g(z)))] Lipschitz constant of f, 
implemented by max 
gradient penalty in a 
minibatch



Lipschitz GANs Properties

• Theoretically guaranteed properties:
• The optimal discriminative function f*exists;
• If 𝜙 is strictly convex, then f* is unique;
• There exists a unique Nash equilibrium where Pr = Pg

and k(f*) = 0;
• Do not suffer from gradient uninformativeness;
• For each generated sample, the gradient directly points 

towards a real sample.

min
f2F

JD , Ez»Pz [Á(f(g(z)))] + Ex»Pr ['(f(x))] + ¸k(f)2

min
g2G

JG , Ez»Pz [Ã(f(g(z)))]

min
f2F

JD , Ez»Pz [Á(f(g(z)))] + Ex»Pr ['(f(x))] + ¸k(f)2

min
g2G

JG , Ez»Pz [Ã(f(g(z)))]



Lipschitz GANs
• directly points towards real samples.@f¤(x)

@x

@f¤(x)

@x

@f¤(x)

@x

@f¤(x)

@x
xx x + ²

@f¤(x)

@x
x + ²

@f¤(x)

@x
y 2 Sry 2 Sr



Lipschitz GANs
• The uniqueness of             leads to stabilized 

discriminative functions.
f¤(x)f¤(x)



Lipschitz GANs
• LGANs, with different choices of consistently 

outperform WGAN.

FID: Frechet Inception Distance
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• In order to take gradient on the generator parameter, x has 
to be continuous

xx

zz

pp

1. Generation

2. Discrimination 3. Gradient on generated data

4. Further gradient on generator

GANs for Continuous Data

Generator Discriminatormin
G

max
D

J(G;D)min
G

max
D

J(G;D) max
D

J(G; D)max
D

J(G; D)

REVIEW



Such GANs Fail on Discrete Data

• Sequence
• Text
• Music score
• DNA/RNA pieces
• …

• Graph
• Social network
• User-item shopping behavior
• Paper citations
• …

p(wordnjword1:::n¡1; μ)p(wordnjword1:::n¡1; μ)

p(nodenjnodem; neighbor(m); μ)p(nodenjnodem; neighbor(m); μ)

• Single token
• Information retrieval p(docnjquery; μ)p(docnjquery; μ)



How to Optimize on Discrete Output

• Problem: we cannot take gradient on discrete data

• Borrow the idea from classification
• Build a parameterized distribution on the discrete tokens
• Optimize such a parameterized distribution with gradient
• But GAN normally outputs an instance instead of a 

distribution

• Borrow the idea from reinforcement learning
• Optimize the parameterized stochastic policy to 

higher/lower the probability of action that leads to 
positive/negative reward



Policy Gradient in RL
• For stochastic policy
• Intuition

• lower the probability of the action that leads to low value/reward
• higher the probability of the action that leads to high value/reward

• A 5-action example

¼μ(ajs) = P (ajs; μ)¼μ(ajs) = P (ajs; μ)

0
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0.1
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0.25
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Action Probability
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0.4

A1 A2 A3 A4 A5

Action Probability

0

0.1

0.2

0.3

0.4

A1 A2 A3 A4 A5

Action Probability

2. Take action A2
Observe positive reward

4. Take action A3
Observe negative reward

1. Initialize θ 3. Update θ by policy gradient 5. Update θ by policy gradient



Policy Gradient in One-Step MDPs
• Consider a simple class of one-step MDPs

• Starting in state
• Terminating after one time-step with reward rsa

• Policy expected value

s » d(s)s » d(s)

J(μ) = E¼μ [r] =
X
s2S

d(s)
X
a2A

¼μ(ajs)rsaJ(μ) = E¼μ [r] =
X
s2S

d(s)
X
a2A

¼μ(ajs)rsa

@J(μ)

@μ
=

X
s2S

d(s)
X
a2A

@¼μ(ajs)
@μ

rsa
@J(μ)

@μ
=

X
s2S

d(s)
X
a2A

@¼μ(ajs)
@μ

rsa



Likelihood Ratio
• Likelihood ratios exploit the following identity

@¼μ(ajs)
@μ

= ¼μ(ajs) 1

¼μ(ajs)
@¼μ(ajs)

@μ

= ¼μ(ajs)@ log ¼μ(ajs)
@μ

@¼μ(ajs)
@μ

= ¼μ(ajs) 1

¼μ(ajs)
@¼μ(ajs)

@μ

= ¼μ(ajs)@ log ¼μ(ajs)
@μ

• Thus the policy’s expected value
J(μ) = E¼μ [r] =

X
s2S

d(s)
X
a2A

¼μ(ajs)rsaJ(μ) = E¼μ [r] =
X
s2S

d(s)
X
a2A

¼μ(ajs)rsa

@J(μ)

@μ
=

X
s2S

d(s)
X
a2A

@¼μ(ajs)
@μ

rsa

=
X
s2S

d(s)
X
a2A

¼μ(ajs)@ log ¼μ(ajs)
@μ

rsa

= E¼μ

h@ log ¼μ(ajs)
@μ

rsa

i

@J(μ)

@μ
=

X
s2S

d(s)
X
a2A

@¼μ(ajs)
@μ

rsa

=
X
s2S

d(s)
X
a2A

¼μ(ajs)@ log ¼μ(ajs)
@μ

rsa

= E¼μ

h@ log ¼μ(ajs)
@μ

rsa

i This can be approximated by sampling 
state s from d(s) and action a from πθ



Policy Gradient Theorem
• The policy gradient theorem generalizes the likelihood ratio 

approach to multi-step MDPs
• Replaces instantaneous reward rsa with long-term value

• Policy gradient theorem applies to 
• start state objective J1, average reward objective JavR, and average 

value objective JavV

• Theorem
• For any differentiable policy                , for any of policy objective 

function J = J1, JavR, JavV , the policy gradient is

Q¼μ(s; a)Q¼μ(s; a)

¼μ(ajs)¼μ(ajs)

@J(μ)

@μ
= E¼μ

h@ log ¼μ(ajs)
@μ

Q¼μ(s; a)
i@J(μ)

@μ
= E¼μ

h@ log ¼μ(ajs)
@μ

Q¼μ(s; a)
i



Connection between GAN and IL
• Analogy to Imitation learning

• In imitation learning, a value function is learned from expert data to 
guide the policy optimization

• In GAN, a discriminator is trained with real (positive) data and 
generated (negative) data to guide the generator optimization

• One step generation: stateless or one-step MDP

Gμ(x)Gμ(x)

Generator as a policy

DÁ(x)DÁ(x)

Discriminator as a reward
Data instance
as an action

~x~x

xx

Real data instance as an expert action



Connection between GAN and IL
• Analogy to Imitation learning

• In imitation learning, a value function is learned from expert data to 
guide the policy optimization

• In GAN, a discriminator is trained with real (positive) data and 
generated (negative) data to guide the generator optimization

• Multi-step generation: MDP

Gμ(xnjx1:::n¡1)Gμ(xnjx1:::n¡1)

Generator as a policy

DÁ(x)DÁ(x)

Discriminator as a value
Data instance

as an trajectory

~x1:::n~x1:::n

Real data instance as an expert trajectory

x1:::nx1:::n



GAN and RL on Learning Rules

For continuous data/action
• Deterministic policy 

gradient (DPG)

For discrete data/action
• Stochastic policy gradient 

(PG)
@J(μ)

@μ
= E¼μ

h@ log ¼μ(ajs)
@μ

Q¼μ(s; a)
i@J(μ)

@μ
= E¼μ

h@ log ¼μ(ajs)
@μ

Q¼μ(s; a)
i

@J(¼μ)

@μ
= Es»½¼

h@Q¼(s; a)

@a

@¼μ(s)

@μ

¯̄̄
a=¼μ(s)

i@J(¼μ)

@μ
= Es»½¼

h@Q¼(s; a)

@a

@¼μ(s)

@μ

¯̄̄
a=¼μ(s)

i

• GAN for continuous 
data

• GAN for discrete data

@J(Gμ;D)

@μ
= Ez»p(z)

h@J(Gμ;D(x))

@x

@Gμ(z)

@μ

¯̄̄
x=Gμ(z)

i@J(Gμ;D)

@μ
= Ez»p(z)

h@J(Gμ;D(x))

@x

@Gμ(z)

@μ

¯̄̄
x=Gμ(z)

i

@J(Gμ;D)

@μ
= Ex»Gμ

h@ log Gμ(x)

@μ
D(x)

i@J(Gμ;D)

@μ
= Ex»Gμ

h@ log Gμ(x)

@μ
D(x)

i
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GANs on Discrete Data

• Sequence
• Text
• Music score
• DNA/RNA pieces
• …

• Graph
• Social network
• User-item shopping behavior
• Paper citations
• …

p(wordnjword1:::n¡1; μ)p(wordnjword1:::n¡1; μ)

p(nodenjnodem; neighbor(m); μ)p(nodenjnodem; neighbor(m); μ)

• Single token
• Information retrieval p(docnjquery; μ)p(docnjquery; μ)



IRGAN: A Minimax Game for 
Unifying Generative and 
Discriminative Information 
Retrieval Models
Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, 
Benyou Wang, Peng Zhang and Dell Zhang. SIGIR 2017.
https://arxiv.org/abs/1705.10513



A Two Agent Framework for IR

fÁ(query; doc)fÁ(query; doc) p(docjquery; μ)p(docjquery; μ)

• Deep generative models
• Flexible to fit complex 

relevance distribution
• Trainable
• Guided from the 

discriminative model 

• Deep discriminative models
• Flexible to fit complex 

relevance ranking & scoring
• Obtaining training data 

(negative cases) from the 
generative model

Undirected guidance for relevance distribution fitting

Feeding new training data for decision boundary pushing



IRGAN Formulation

• Underlying real relevance distribution depicts the user’s 
relevance preference distribution over the candidate documents with respect to 
his submitted query

• Training set: A set of samples from

• Generative retrieval model 
• Goal: approximate the real relevance distribution

• Discriminative retrieval model
• Goal: distinguish between relevant documents and non-relevant documents

G
D

Real World

Generator

Discriminator

Relevant Docs

ptrue(djq; r)ptrue(djq; r)

pμ(djq; r)pμ(djq; r)
fÁ(q; d)fÁ(q; d)

ptrue(djq; r)ptrue(djq; r)

ptrue(djq; r)ptrue(djq; r)
pμ(djq; r)pμ(djq; r)

fÁ(q; d)fÁ(q; d)



A Minimax Game Unifying Both Models

• Objective

where

G
D

Real World

Generator
Discriminator

Relevant Docs

pμ(djq; r) =
exp(gμ(q; d))P
d0 exp(gμ(g; d0))

pμ(djq; r) =
exp(gμ(q; d))P
d0 exp(gμ(g; d0))



Optimizing Generative Retrieval via Policy Gradient

• Optimizing Generative Retrieval
• Samples documents from the whole document set to 

fool its opponent

• REINFORCE (with advantage function)

Sutton, R. S., McAllester, D. A., Singh, S. P., & Mansour, Y. Policy gradient methods for reinforcement learning with 
function approximation. In NIPS 2000.

μ¤ = arg min
μ

NX
n=1

³
Ed»ptrue(djqn;r) [log ¾(fÁ(d; qn))] +

Ed»pμ(djqn;r) [log(1¡ ¾(fÁ(d; qn)))]
´

= arg max
μ

NX
n=1

Ed»pμ(djqn;r) [log(1 + exp(fÁ(d; qn)))]| {z }
denoted as JG(qn)

μ¤ = arg min
μ

NX
n=1

³
Ed»ptrue(djqn;r) [log ¾(fÁ(d; qn))] +

Ed»pμ(djqn;r) [log(1¡ ¾(fÁ(d; qn)))]
´

= arg max
μ

NX
n=1

Ed»pμ(djqn;r) [log(1 + exp(fÁ(d; qn)))]| {z }
denoted as JG(qn) Reward TermGenerator as Policy

log(1 + exp(fÁ(d; qn)))¡ Ed»pμ(djqn;r) [log(1 + exp(fÁ(d; qn)))]log(1 + exp(fÁ(d; qn)))¡ Ed»pμ(djqn;r) [log(1 + exp(fÁ(d; qn)))]



IRGAN REINFORCE

rμJG(qn)

= rμEd»pμ(djqn;r) [log(1 + exp(fÁ(d; qn)))]

=
MX
i=1

rμpμ(dijqn; r) log(1 + exp(fÁ(di; qn)))

=
MX
i=1

pμ(dijqn; r)rμ log pμ(dijqn; r) log(1 + exp(fÁ(di; qn)))

= Ed»pμ(djqn;r) [rμ log pμ(djqn; r) log(1 + exp(fÁ(d; qn)))]

' 1

K

KX
k=1

rμ log pμ(dkjqn; r) log(1 + exp(fÁ(dk; qn)))

rμJG(qn)

= rμEd»pμ(djqn;r) [log(1 + exp(fÁ(d; qn)))]

=
MX
i=1

rμpμ(dijqn; r) log(1 + exp(fÁ(di; qn)))

=
MX
i=1

pμ(dijqn; r)rμ log pμ(dijqn; r) log(1 + exp(fÁ(di; qn)))

= Ed»pμ(djqn;r) [rμ log pμ(djqn; r) log(1 + exp(fÁ(d; qn)))]

' 1

K

KX
k=1

rμ log pμ(dkjqn; r) log(1 + exp(fÁ(dk; qn)))

• Likelihood ratio



The Interplay between 
Generative and Discriminative Retrieval



Extension to Pairwise Case
• It is common that the dataset is a set of ordered

document pairs for each query rather than a set of
relevant documents.

• Capture relative preference judgements

rather than absolute relevance judgements

• Generator would try to generate document pairs 
that are similar to those in , i.e., with the correct 
ranking.



Experiments: Web Search
• Dataset

• MQ-2008 (Million-
query Track in 
LETOR 4.0)

• Semi-supervised 
learning: a large 
amount of 
unlabeled query-
document pairs

• Task
• Rank the 

candidate 
documents for 
each query



Experiments: Item Recommendation

• Datasets
• Movielens: 943 users, 1.7k items, 

100k ratings
• Netflix: 480k users, 17k items, 100M 

ratings

• Task: Top-N item recommendation 
with implicit feedback data

• Key observations
• Although generative retrieval 

model in IRGAN does not 
explicitly learn to optimize the 
final ranking measures like what 
LambdaFM does, it still 
performs consistently better 
than LambdaFM.

IRGAN-pointwise Generator Performance on Movielens IRGAN-pointwise Generator Performance on Netflix



GANs on Discrete Data

• Sequence
• Text
• Music score
• DNA/RNA pieces
• …

• Graph
• Social network
• User-item shopping behavior
• Paper citations
• …

p(wordnjword1:::n¡1; μ)p(wordnjword1:::n¡1; μ)

p(nodenjnodem; neighbor(m); μ)p(nodenjnodem; neighbor(m); μ)

• Single token
• Information retrieval p(docnjquery; μ)p(docnjquery; μ)



RNN based Language Model
• Trained via maximum likelihood estimation (MLE)

<START> I love machine learningreally

I love machine learningreally <END>

LSTM

LSTM

Input

Output

max
μ

Ex»p(x)[log qμ(x)]max
μ

Ex»p(x)[log qμ(x)]



Exposure Bias

• Exposure bias
• In MLE, the prefix is always from the real data

S Bengio et al. Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. NIPS 2015.

• But during generation, the prefix is the output of the 
model, which could never occur in real data

• Similar in self-driving car training
• Problem of behavior cloning



Exposure Bias & Scheduled Sampling

S Bengio et al. Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. NIPS 2015.

• Scheduled sampling
• With a decaying probability, use the prefix from real 

data, otherwise use the generated prefix to train

Scheme of decaying probability



Inconsistency of Evaluation and Use

• Check whether a 
real data is with a 
high mass density 
of the learned 
model

• Approximated by

max
μ

Ex»p(x)[log qμ(x)]max
μ

Ex»p(x)[log qμ(x)] max
μ

Ex»qμ(x)[log p(x)]max
μ

Ex»qμ(x)[log p(x)]

Training/evaluation Use

• Check whether a 
model-generated 
data is considered as 
real as possible

• More straightforward 
but it is hard or 
impossible to directly 
calculate p(x)p(x)max

μ

1

jDj
X
x2D

[log qμ(x)]max
μ

1

jDj
X
x2D

[log qμ(x)]

• Given a generator q with a certain generalization ability

REVIEW



SeqGAN:
Sequence Generation via 
GANs with Policy Gradient
Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu. SeqGAN: Sequence 
Generative Adversarial Nets with Policy Gradient. AAAI 2017.
https://arxiv.org/abs/1609.05473



SeqGAN

• Generator is a reinforcement learning policy                 
of generating a sequence

• decide the next word to generate given the previous ones
• Discriminator provides the reward (i.e. the probability 

of being real data)                  for the whole sequence

Gμ(ytjY1:t¡1)Gμ(ytjY1:t¡1)

DÁ(Y n
1:T )DÁ(Y n
1:T )



Sequence Generator
• Objective: to maximize the expected reward

• State-action value function is the expected 
accumulative reward that

• Start from state s
• Take action a
• And follow policy G until the end

QGμ
DÁ

(s; a)QGμ
DÁ

(s; a)

• Reward is only on completed 
sequence (no immediate reward)
QGμ

DÁ
(a = yT ; s = Y1:T¡1) = DÁ(Y1:T )QGμ

DÁ
(a = yT ; s = Y1:T¡1) = DÁ(Y1:T )

J(μ) = EY1:t¡1»Gμ

£ X
yt2Y

Gμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)
¤

J(μ) = EY1:t¡1»Gμ

£ X
yt2Y

Gμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)
¤



State-Action Value Setting
• Reward is only on completed sequence

• No immediate reward
• Then the last-step state-action value 
QGμ

DÁ
(a = yT ; s = Y1:T¡1) = DÁ(Y1:T )QGμ

DÁ
(a = yT ; s = Y1:T¡1) = DÁ(Y1:T )

• For intermediate state-action value
• Use Monte Carlo search to estimate©

Y 1
1:T ; : : : ; Y N

1:T

ª
= MCGμ(Y1:t;N)

©
Y 1

1:T ; : : : ; Y N
1:T

ª
= MCGμ(Y1:t;N)

• Following a roll-out policy
QGμ

DÁ
(s = Y1:t¡1; a = yt) =½

1
N

PN
n=1 DÁ(Y n

1:T ); Y n
1:T 2 MCGμ(Y1:t; N) for t < T

DÁ(Y1:t) for t = T

QGμ
DÁ

(s = Y1:t¡1; a = yt) =½
1
N

PN
n=1 DÁ(Y n

1:T ); Y n
1:T 2 MCGμ(Y1:t; N) for t < T

DÁ(Y1:t) for t = T



Training Sequence Generator
• Policy gradient (REINFORCE)

rμJ(μ) = EY1:t¡1»Gμ

£ X
yt2Y

rμGμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)
¤

' 1

T

TX
t=1

X
yt2Y

rμGμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)

=
1

T

TX
t=1

X
yt2Y

Gμ(ytjY1:t¡1)rμ log Gμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)

=
1

T

TX
t=1

Eyt»Gμ(ytjY1:t¡1)[rμ log Gμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)]

rμJ(μ) = EY1:t¡1»Gμ

£ X
yt2Y

rμGμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)
¤

' 1

T

TX
t=1

X
yt2Y

rμGμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)

=
1

T

TX
t=1

X
yt2Y

Gμ(ytjY1:t¡1)rμ log Gμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)

=
1

T

TX
t=1

Eyt»Gμ(ytjY1:t¡1)[rμ log Gμ(ytjY1:t¡1) ¢QGμ
DÁ

(Y1:t¡1; yt)]

Richard Sutton et al. Policy Gradient Methods for Reinforcement Learning with Function Approximation. NIPS 1999.

μ Ã μ + ®hrμJ(μ)μ Ã μ + ®hrμJ(μ)



Sequence Generator Model

• RNN with LSTM cells for

[Hochreiter, S., and Schmidhuber, J. 1997. Long short-term memory. Neural computation 9(8):1735–1780.]

Shanghai is incredibly

is incredibly
Softmax sampling
over vocabulary

?

Gμ(ytjY1:t¡1)Gμ(ytjY1:t¡1)



Training Sequence Discriminator
• Objective: standard binary classification

min
Á
¡EY»pdata

[log DÁ(Y )]¡ EY»Gμ [log(1¡DÁ(Y ))]min
Á
¡EY»pdata

[log DÁ(Y )]¡ EY»Gμ [log(1¡DÁ(Y ))]

[Kim, Y. 2014. Convolutional neural networks for sentence classification. EMNLP 2014.]

• A CNN implementation



Experiments on Synthetic Data
• Evaluation measure with Oracle

NLLoracle = ¡EY1:T»Gμ

h TX
t=1

log Goracle(ytjY1:t¡1)
i

NLLoracle = ¡EY1:T»Gμ

h TX
t=1

log Goracle(ytjY1:t¡1)
imax

μ
Ex»qμ(x)[log p(x)]max

μ
Ex»qμ(x)[log p(x)]

MLE pre-training

Use GAN loss



Experiments on Real-World Data
• Chinese poem generation

• Obama political speech text generation

• Midi music generation



Experiments on Real-World Data
• Chinese poem generation

南陌春风早，东邻去日斜。

紫陌追随日，青门相见时。

胡风不开花，四气多作雪。

山夜有雪寒，桂里逢客时。

此时人且饮，酒愁一节梦。

四面客归路，桂花开青竹。

Human Machine



Obama Speech Text Generation
• i stood here today i have one 

and most important thing that 
not on violence throughout the 
horizon is OTHERS american
fire and OTHERS but we need 
you are a strong source

• for this business leadership will 
remember now i cant afford to 
start with just the way our 
european support for the right 
thing to protect those american
story from the world and

• i want to acknowledge you 
were going to be an 
outstanding job times for 
student medical education and 
warm the republicans who like 
my times if he said is that 
brought the

• When he was told of this 
extraordinary honor that he 
was the most trusted man in 
America

• But we also remember and 
celebrate the journalism that 
Walter practiced -- a standard 
of honesty and integrity and 
responsibility to which so many 
of you have committed your 
careers.  It's a standard that's a 
little bit harder to find today

• I am honored to be here to pay 
tribute to the life and times of 
the man who chronicled our 
time.

Human Machine



SeqGAN for Inverse-Design Chemistry
• Objective-Reinforced Generative Adversarial Networks (ORGAN)

• ORGANIC: ORGAN for inverse-design Chemistry

SMILES encoding

Sanchez-Lengeling, Benjamin, et al. "Optimizing distributions over molecular space. An objective-reinforced generative adversarial network for inverse-design chemistry (ORGANIC)." (2017).



GANs on Discrete Data

• Sequence
• Text
• Music score
• DNA/RNA pieces
• …

• Graph
• Social network
• User-item shopping behavior
• Paper citations
• …

p(wordnjword1:::n¡1; μ)p(wordnjword1:::n¡1; μ)

p(nodenjnodem; neighbor(m); μ)p(nodenjnodem; neighbor(m); μ)

• Single token
• Information retrieval p(docnjquery; μ)p(docnjquery; μ)



Background of GRL
• Graph representation learning (GRL) learns a vector 

for each node in a graph
• a.k.a. graph embedding / network embedding / network 

representation learning

5 2

1

Graph representation 
learning

• Graph representation learning applications
• Link prediction
• Node classification
• Recommendation

• Visualization
• Clustering
• Social network analysis



Motivation of GraphGAN
• Generative graph representation learning 

model assumes an underlying real 
connectivity distribution 𝑝𝑡𝑟𝑢𝑒 (𝑣|𝑣𝑐) for 
each vertex 𝑣𝑐

• E.g., DeepWalk (KDD 2014) and node2vec 
(KDD 2016)

𝑣௖ 0.00.3
0.30.4

𝑝௧௥௨௘(𝑣|𝑣௖)
• Discriminative graph representation 

learning model aims to learn a classifier 
for predicting the existence of edges 
directly

• E.g., SDNE (KDD 2016) and PPNE (DASFAA 
2017)

𝑣௜ 𝑣௝
𝑣௞

𝑝 𝑒𝑑𝑔𝑒 𝑣௜, 𝑣௝ = 0.8𝑝 𝑒𝑑𝑔𝑒 𝑣௜, 𝑣௞ = 0.3



GraphGAN: the Minimax Game

min
μG

max
μD

V (G;D) =
VX

c=1

³
Ev»ptrue(¢jvc)

£
log D(v; vc; μD)

¤
+ Ev»G(¢jvc;μG)

£
log

¡
1¡D(v; vc; μD)

¢¤´
:min

μG
max
μD

V (G;D) =
VX

c=1

³
Ev»ptrue(¢jvc)

£
log D(v; vc; μD)

¤
+ Ev»G(¢jvc;μG)

£
log

¡
1¡D(v; vc; μD)

¢¤´
:



Implementation & Optimization of D

• A simple implementation of D

D(v; vc) = ¾(d>v dvc) =
1

1 + exp(¡d>v dvc)
D(v; vc) = ¾(d>v dvc) =

1

1 + exp(¡d>v dvc)

• Note that any other discriminative model of link prediction 
can be implemented here, e.g., SDNE

min
μG

max
μD

V (G;D) =

VX
c=1

³
Ev»ptrue(¢jvc)

£
log D(v; vc; μD)

¤
+ Ev»G(¢jvc;μG)

£
log

¡
1¡D(v; vc; μD)

¢¤´
:min

μG
max
μD

V (G;D) =

VX
c=1

³
Ev»ptrue(¢jvc)

£
log D(v; vc; μD)

¤
+ Ev»G(¢jvc;μG)

£
log

¡
1¡D(v; vc; μD)

¢¤´
:

• Gradient of V(G, D) w.r.t. the parameters of D

rμDV (G;D) =

(
rμD log D(v; vc); if v » ptrue

rμD
¡
1¡ log D(v; vc)

¢
; if v » G

rμDV (G;D) =

(
rμD log D(v; vc); if v » ptrue

rμD
¡
1¡ log D(v; vc)

¢
; if v » G

(a normal replacement of loss in GAN)



Graph Softmax in GraphGAN
• Breadth First Search (BFS) on from every vertex 𝑐

• BFS-tree 𝑇𝑐 rooted at 𝑣𝑐
• For a given vertex and one of its neighbors 𝑖∈𝒩𝑐

( ), the relevance probability of 𝑖 given as

pc(vijv) =
exp(g>vi

gv)P
vj2Nc(v) exp(g>vj

gv)
pc(vijv) =

exp(g>vi
gv)P

vj2Nc(v) exp(g>vj
gv)

• Graph softmax

G(vjvc) ,
¡Ym

j=1
pc(vrj jvrj¡1)

¢ ¢ pc(vrm¡1 jvrm)G(vjvc) ,
¡Ym

j=1
pc(vrj jvrj¡1)

¢ ¢ pc(vrm¡1 jvrm)

given the unique path from 𝑣௖ to 𝑣 in tree 𝑇௖: 𝑃௩೎→௩ =(𝑣௥బ, 𝑣௥భ, … , 𝑣௥೘), where 𝑣௥బ = 𝑣௖ and 𝑣௥೘ = 𝑣
Go to an unvisited neighbor Get back to the parent



Graph Softmax in GraphGAN



Link Prediction Experiments
• Overall link prediction performance

• LINE and struc2vec is relatively poor in link prediction, as they cannot quite 
capture the pattern of edge existence in graphs.

• DeepWalk and node2vec perform better than LINE and struc2vec probably 
because of the random-walk-based Skip-Gram model, which is graph-structure-
aware and better at extracting proximity information among vertices.

• GraphGAN performs the best



Experiments on Other Tasks
• Node Classification

• Recommendation (Movielens-1M)
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GANs on Continuous and Discrete Data

• GANs on continuous data

• Taking gradient on the generated data, then back-prop 
to generator parameters

• Gradient penalty problems, with Wasserstein distance 
solution and Lipschitz constraints

• GANs on discrete data

• No gradient on the generated data
• Leverage stochastic policy gradient method from RL
• Data efficiency problems

@L(D(x))

@x
¢ @x

@μ

@L(D(x))

@x
¢ @x

@μ

Ex»Gμ

h@ log Gμ(x)

@μ
L(D(x))

i
Ex»Gμ

h@ log Gμ(x)

@μ
L(D(x))

i

SUMMARY



References of GANs on Continuous Data
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References of GANs on Discrete Data

• Sequence
• Yu, Lantao, et al. "Seqgan: Sequence generative adversarial nets with policy 
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