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Problem Definition of Data Generation

 Given a dataset D = {z}, build a model gg(x) of
the data distribution that fits the real one p(z)

* Traditional objective: maximum likelihood estimation (MLE)

maX — Z log CIH ad maX ]Exwp(x) [log C]Q( )]
xED

* Check whether a real data is with a high mass density of
the learned model



Inconsistency of Evaluation and Use

* Given a generator g with a certain generalization ability

max By p(z)[log go(2)] max Eq g, (2)[l0g p(2))
Training/evaluation Use

* Check whether a * Check whether a
real data is with a model-generated
high mass density data is considered as
of the learned real as possible
model * More straightforward

. Approximated by but it is hard or

impossible to directly

X @ D llogap(= calculate p(x)



Generative Adversarial Nets (GANSs)

* What we really want is

max By gy (z) [log p(2)]

* But we cannot directly calculate p(z)

* |dea: what if we build a discriminator to judge
whether a data instance is real or fake (artificially
generated)?

* Leverage the strong power of deep learning based
discriminative models

[Goodfellow, I., et al. 2014. Generative adversarial nets. In NIPS 2014.]



__________

Generative Adversarial Nets (GANSs)
Real World —>

! -—><> Discriminator
Generator Q—n !

e Discriminator tries to correctly distinguish the real data and
the fake model-generated data

0000000
0000000
0000000

~ - -

* Generator tries to generate high-quality data to fool
discriminator

* G & D can be implemented via neural networks

* |deally, when D cannot distinguish the real and generated
data, G nicely fits the real underlying data distribution



Generator and Discriminator Nets

 Generator network
r=G(z;0)

* Must be differentiable
* No invertibility requirement

* Popular implementation: multi-layer perceptron @

 Discriminator network

P(real|x) = D(x; ¢) @

* Can be implemented by any neural networks with a
probabilistic prediction

* For example
* Multi-layer perceptron with logistic output
* AlexNet etc.



GAN: A Minimax Game
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Real World ; i
Generator e—n
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min max J(G, D) max J(G, D)

G D D

The joint objective function

J(G, D) = Egropya(@) 108 D(@)] + Ezp ()]




Illustration of GANSs
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JO) = Eqpp (wyllog D(@)] + Eany.xllog(l — D(G(2)))



|deal Final Equilibrium

* Generator generates
perfect data
distribution

e Discriminator cannot

distinguish the real
and generated data //// \\\\




Optimal Strategy for Discriminator

e Optimal D(x) for any Dalta

PeatatX) and polx) i Discriminator o
always ! .

D (Qj) — Pdata (Zl’) ) ‘ f‘::; -

pdata(ﬂj) —+ pG<gj)

Generator

e

L]

(] ' f
¥ _" 1T
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* If this optimum is

allowed to reach, then L
we have an ideal
equilibrium for GAN. ,




Equilibrium for the Minimax Game

G: minmax J(G, D) D: max J(G, D)
G D D

J(G, D) = Egrpya(a) [10g D(T)] + Eznp.(2)[log(l — D(G(2)))]
= Ezpiua() 108 D(2)] + Egpg (2 [log(1 — D(x))]

Pdata() |

pdaa(x) + pi () |

pa(x) ]

pdata() + pa(x)

= —log(4) + KL (pdata pdata; pG) +KL (pGdeata; pG)

\ . 7 \ . v/

>0 >0

= Ewwpdata(w) [log

t Eapg () [log

pdata(fU )

= 0.5
pdaa(x) + pa(x)

* Anequilibriumis pg(x) = pdaa(z) and D(z) =




Case Study of GANs for Continuous Data




Why study generative models?

* Excellent test of our ability to use high-dimensional,
complicated probability distributions

e Simulate possible futures for planning or simulated
RL

* Missing data
* Semi-supervised learning

* Multi-modal outputs
* Realistic generation tasks

Goodfellow NIPS 2016 Tutorial: Generative Adversarial Networks



High Resolution and Quality Images

* Progressive Growing of GANs from 42 to 1024°

Latent Latent Latent
v
* ¢
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Tero Karras et al. Progressive Growing of GANs for Improved Quality, Stability, and Variation. ICLR 2018.



High Resolution and Quality Images

. BIgGAN in ICLR 2019

Andrew Brock et al. Large Scale GAN Training for High Fidelity Natural Image Synthesis. ICLR 20109.



Single Image Super-Resolution

bicubic SRResNet SRGAN original
(21.59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868)

¥ l ) > —— )
.r,-.':”l ) -% : "

deep residual generative adversarial
[4 X upscaling] network optimized for a loss more
sensitive to human perception

Ledig, Christian, et al. "Photo-realistic single image super-resolution using a generative adversarial network." CVPR 2017.



Image to Image Translation

Labels to Street Scene

output

output

Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." CVPR 2017.



Grayscale Image Colorization

Ground Generated Colorization Ground Generated Colorization
Truth after Performing Grayscale Truth after Performing Grayscale

Yun Cao, Weinan Zhang etc. Unsupervised Diverse Colorization via Generative Adversarial Networks. ECML-PKDD 2017.



High-Resolution Image Synthesis and Semantic
Manipulation with Conditional GANs

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. "High-Resolution Image Synthesis and Semantic
Manipulation with Conditional GANs", arXiv preprint arXiv:1711.11585.
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GANSs for Continuous Data

1. Generation 4. Further gradient on generator

r=G(z;0) 0J(G, D) 0z
ox 060
2. Discrimination 3. Gradient on generated data
0J(G,D
P(real|x) = D(x; ¢) (8:1; )

* In order to take gradient on the generator parameter, x has
to be continuous

J(G, D) = Egropy(@)log D(@)] + Ezop, (2 [log(1 — D(G(2)))]

Generator ménmng(G,D) Discriminator mng(G, D)



Review GAN Objective

m(%n max J(G, D) = Egppu(@)log D(x)] + E,p, (2)[log(1 — D(G(2)))]

J(G) = max J(G, D) = Egrpgyy(x) 108 D(x)] + Eznp.(2)[log(l — D(G(2)))]

D
— Emf\/pdata(w) [log D(CB)] + EwNpG(w) :log(l o D(ZB))]
pdata(iﬂ) |
Pdaa(®) + pa ()
pc(x) ]

pdata(w) + pG(CB)
pdata2‘|‘ pG) LKL (pG‘

— EmNp data () llog

+ Ezpg () Pog

= — 10g(4) + KL (pdata

Pdata + PG
2

2 %X JS(pdaal|pc)



General GAN form

Vanilla GAN form
J(G) = max J(G, D) = Eqrpyy() 108 D(@)] + Eznp.(2)[log(l — D(G(2)))]
General GAN form

?%iﬁ Jp & Eop, [0(f(9(2)))] + Eanp, [0(f(2))],

rgneiél Jo £ E.up, [ (f(g9(2)))];

o, U, p: R — R are loss metrics.

GAN . ¢(x) = Y(—x) = —log(a(—x))
WGAN :  o¢(x) =Y (—x) = x
LSGAN :  ¢(x) = ¥(—x) = (x + a)?



Problems on Gradients

Vanilla GAN form
J(G) = max J(G, D) = Eqrpyy() 108 D(@)] + Eznp.(2)[log(l — D(G(2)))]
General GAN form

?%iﬁ Jp & Eop, [0(f(9(2)))] + Eanp, [0(f(2))],

rgneiél Jo £ E.up, [ (f(g9(2)))];

0J6(z) _ 0v(f(x)  f)  Ags(2)

00 ~— Of(x) = dx 06
I !
Problem 1.: Problem 2: r = 99(2)
Gradient Gradient

vanishing uninformativeness



Towards Solving
Gradient Vanishing Problem

Wassertein GAN

Arjovsky et al. Wasserstein GANs. ICML 2017.



Different Divergences/Distances

W(IED{}';PH) — ‘Qli
log 2 if @ #0 ,
JS(Py, Py) =
(Po, Po) {0 if0=0,
1 if0£0
V) 6(By. Py) =
(TV) 6(Fo, Po) {0 if0=0 ,

400
KL(Py||Py) = KL(Py||Py) = {0

KL, JS and TV require intersections.
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Illustration of EM Distance (W1) and JSD
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Figure 1: These plots show p(Pe,Po) as a function of 8 when p is the EM distance (left
plot) or the JS divergence (right plot). The EM plot is continuous and provides a usable
gradient everywhere. The JS plot is not continuous and does not provide a usable gradient.



Wasserstein GAN

* The optimal D:
e Approaching the f that maximizes

the Wasserstein Distance 1
0.8
0.6 real fake
W Bo) =il Eepenlle—ol] |
I Kantorovich-Rubinstein duality 0.2
W(P,,Pg) = sup Egwp,.[f(z)] — Eznr,[f(z)]| ©

I fllz<1 0O 02 04 06608 1

min max W(P.,Pg) = sup Epwp,[f(7)] — Exnp,lf ()]
/ IflL<K



Ensure K-Lipschitz Property

N max W (P, Pg) = sup Epup, |[f(2)] — Eznp,[f ()]
/ £l <K

|fll. < K (K-Lipschitz for some constant K)

* Weight Clipping

* Remove the *log* function from the original
objective

mén max V(D,G) = Eguppnta)llog D(E)] + By, (2 log(l — D(G(2)))]-

* Gradient penalty
L=_E [D@)- _E [D(=) e [(IVaD(@)[l2 — 1)*] .

z~Pg
- / N -
L T
Original critic loss Our gradient penalty
$ < ex + (1 — 6)53 uniformly along straight lines
between pairs of points

Gulrajani et al. Improved Training of Wasserstein GANs. NIPS 2017.




WGAN Advantages

* Can train the D till optimality.

* The original GAN needs delicate balance G and D to
avoid gradient vanishing

1.0

— Density of real Optimal discriminator and
08| — Density of fake | .. )
| —  GAN Discriminator critic when learning to

_ WoeANCritic differentiate two Gaussians.

As we can see, the
discriminator of a minimax
GAN saturates and results in
vanishing gradients. Our

‘ i WGAN critic provides very
0.2} Vanishing aradients | clean gradients on all parts of
in regular GAN the space.

-8 6 —4 2 0 2 A 6 8



WGAN Advantages

, ,
e Can train the D till |

optimality
* The original GAN need
delicate balance G and

D to avoid gradient &
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WGAN Improved Stability?

e Can work with MLP e Unstable
generator * when uses momentum
* Can work without batch ?\Zlen? optimizer such as
normalization .
* when one uses high
* No mode collapse learning rates

observed



Weight Clipping

8 Gaussians 25 Gaussians  Swiss Roll

— | I——— (e
Learned patterns | == | A7
. . . | | B |
with weight clipping 1 | | U/ | | |
=1 ]| |||t==
\ e\ e N
Learned patterns ', = \ o N
with gradient penalty S (¢< )

Value surfaces of WGAN critics trained to optimality on toy
datasets using (top) weight clipping and (bottom) gradient penalty.

Observations: Critics trained with weight clipping fail to capture higher

moments of the data distribution.
The ‘generator’ is held fixed at the real data plus Gaussian noise.

Gulrajani, Ishaan, et al. "Improved training of wasserstein gans." NIPS 2017.



Weight Clipping Trained D is not Optimal

Proposition 4. Consider a (deep) NN with ReLU activation functions and linear output layer. A
function generated by the NN under constraining each weight in absolute value by c,,,, exhausts the
common Lipschitz constraint if and only if

(a) The weight matrix of the first layer consists of constant columns with value Cpax OF —Cmax.

(b) The weights of all other layers are given by a matrix C™™ with every entry equal 10 Cpgy.

The optimal f* is not in the class of functions that can be
generated by the network under the weight clipping constraint.

Appendix B of Petzka, Henning, Asja Fischer, and Denis Lukovnicov. "On the regularization of Wasserstein
GANSs." arXiv preprint arXiv:1709.08894 (2017).



Spectral Normalization

1 fllLip <L = W R ) ||Lip - llazliuip - |(Rr—1 = W hr_1)|lLip

L+1 L+1
< [layllLip - I(Ro = W'ho)|lLip = || I(Ri—1 = W'hi_1)|lLip = | | o(W).
=1 I=1

Spectral normalization normalizes the spectral norm of the
weight matrix W so that it satisfies the Lipschitz constraint

V_VSN(W) = W/O'(W) |:> ag (WSN(W)) = 1

largest singular value of W

Miyato, Takeru, et al. "Spectral normalization for generative adversarial networks." ICLR 2018.



Spectral Normalization

1.51
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Spectral Normalization

In our preliminary analysis, spectral normalization failed to
achieve the optimal discriminative function.



Towards Solving
Gradient Uninformativeness Problem

Lipschitz GAN

Zhiming Zhou et al. Lipschitz Generative Adversarial Nets.
ICML 20109.



Problems on Gradients

Vanilla GAN form
J(G) = max J(G, D) = Eqrpyy() 108 D(@)] + Eznp.(2)[log(l — D(G(2)))]
General GAN form

?%iﬁ Jp & Eop, [0(f(9(2)))] + Eanp, [0(f(2))],

rgneiél Jo £ E.up, [ (f(g9(2)))];

o, U, p: R — R are loss metrics.

GAN . ¢(x) = Y(—x) = —log(a(—x))
WGAN :  o¢(x) =Y (—x) = x
LSGAN :  ¢(x) = ¥(—x) = (x + a)?



Problems on Gradients

Vanilla GAN form
J(G) = max J(G, D) = Eqrpyy() 108 D(@)] + Eznp.(2)[log(l — D(G(2)))]
General GAN form

?%iﬁ Jp & Eop, [0(f(9(2)))] + Eanp, [0(f(2))],

rgneiél Jo £ E.up, [ (f(g9(2)))];

0J6(z) _ 0v(f(x)  f)  Ags(2)

00 ~— Of(x) = dx 06
I !
Problem 1.: Problem 2: r = 99(2)
Gradient Gradient

vanishing uninformativeness



The Gradient Uninformativeness

* The problem that the gradient from the discriminator does
not contain any information about the real distribution.

* If there is no restriction on f(x), then f'(x) is independently
defined (universal approximation) and only reflects the local
densities P, and P,

fi(x) = argmin Py(z)o(f(x)) + Pr(z)e(f(2)), Va

f(x)eR

* Thus gradient that x receives from f*(x) does not reflect any
information about P,

0Jc(z) _ ov(f() | Of(@)  Ogel:)
00 of(x) 0x 00




Gradient Uninformativeness

Case 1 — |2%|=3.85E+00
| . real samples
| fake samples

.—2.0 i 9.5) -1.0 —0..5 0.0 0.5 1.0 1.5 2.0
(a) Disjoint Case

Gradient uninformativeness practically behaviors as noisy gradient.



Gradient Uninformativeness

Case 2 — [2)=4.09E-01
. _réél)samples
fake samples_

2.0 —oL.i5 1.8 0.5 0.0 0.5 1.0 L.ces 2.8

(b) Overlapping Case

Gradient uninformativeness practically behaviors as noisy gradient.



Lipschitz GANs (LGAN)

min Jp £ E.p.[8(f(9(2))] + Eonrp, [o(f (x))] + ME(f)?
!

min Jg 2 E,op, [v¥(f(g(2))) Lipschitz constant of f,
gey implemented by max
. . gradient penalty in a
* LGAN requires ¢ and @ to satisfy: minibatch
¢'(x) > 0, J N
7(x) > 0 and ¢(x) = ¥(—x).

Any increasing function with non-decreasing derivative.

$(x), p(x) #(x), @(x) P(x), o(x) o $(x), @(x)
— #lx) = —loglol—x)) 6 12 T




Lipschitz GANs Properties

min Jp £ E.p. [8(f(9(2))] + Eonrp, [o(f (2))] + AE(f)?

rgnéig Jo = Enp, [W(f(9(2)))

* Theoretically guaranteed properties:
* The optimal discriminative function f exists;
* If ¢ is strictly convex, then f* is unique;

* There exists a unique Nash equilibrium where P, =P,
and k(f°) = 0;
* Do not suffer from gradient uninformativeness;

* For each generated sample, the gradient directly points
towards a real sample.



Lipschitz GANSs

. 5]"6_(513) directly points towards real samples.
X
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Lipschitz GANSs

* The uniqueness of f*(x)

discriminative functions.
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leads to stabilized

—-15-

—20+

L

—10+

 EepfiX)
Ex ~ ng(x)

0 200 400 600 800 1000 1200 1400
lterations

(b) f(x) in LGANSs.



FID

Lipschitz GANSs

* LGANSs, with different choices of ¢ (x) consistently
outperform WGAN.

40 1 :
— x (with GP) ‘: —— x (with GP)
351 X 1 i
— exp(x) 35 | — exp(x)
- —— —log(o(=x)) \ — —log(a(—-x))
— x+Vx%2+1 n 304 |\ — x+Vx%?+1
_ — (x+1)? - — (x+1)2
25 LV \\
max(0, x + 1) max(0,x+ 1)
201 201
15_ ’ —— - = - — 15_
0 50000 100000 150000 200000 0 50000 100000 150000 200000
Iterations Iterations
(a) Training curves on CIFAR. (b) Training curves on Tiny.

FID: Frechet Inception Distance



Content

1.

Introduction to Generative Adversarial Nets

GANSs on Continuous Data

GAN and RL

GANSs on Discrete Data

Summary



REVIEW

GANSs for Continuous Data

1. Generation 4. Further gradient on generator

r=G(z;0) 0J(G, D) Ox
ox 060
2. Discrimination 3. Gradient on generated data
D
P(real|x) = D(x; ¢) &]((gi, )

* In order to take gradient on the generator parameter, x has
to be continuous

J(G, D) = Egropy(@)log D(@)] + Ezop, (2 [log(1 — D(G(2)))]

Generator ménmng(G,D) Discriminator mng(G, D)



Such GANs Fail on Discrete Data
 Single token O—~O

* Information retrieval p(docn|query; 0)

* Sequence

 Music score
« DNA/RNA pieces p(WOI‘dn|WOI'd1.__n_1, 6))

* Graph
* Social network
e User-item shopping behavior
* Paper citations

p(node,, |node,,, neighbor(m); 0)



How to Optimize on Discrete Output

* Problem: we cannot take gradient on discrete data

* Borrow the idea from classification
* Build a parameterized distribution on the discrete tokens
* Optimize such a parameterized distribution with gradient

* But GAN normally outputs an instance instead of a
distribution

* Borrow the idea from reinforcement learning

* Optimize the parameterized stochastic policy to
higher/lower the probability of action that leads to
positive/negative reward



Policy Gradient in RL

* For stochastic policy mg(a|s) = P(als;6)

* Intuition
 lower the probability of the action that leads to low value/reward
* higher the probability of the action that leads to high value/reward

* A 5-action example

1. Initialize 0 3. Update @ by policy gradient 5. Update U by policy gradient
Action Probability Action Probability Action Probability
0.25 0.4 0.4
0.2 0.3 0.3
0.15
0.1 0.2 0.2
IIIIIIIIIIII 11
0 0 0 .
Al A2 A3 Ad A5 Al A2 A3 Ad A5 Al A2 A3 A4 A5
2. Take action A2 4. Take action A3

Observe positive reward Observe negative reward



Policy Gradient in One-Step MDPs

* Consider a simple class of one-step MDPs
e Starting in state s ~ d(s)
* Terminating after one time-step with reward r_,

* Policy expected value

J(0) =Erylr] =) d(s) > mo(als)rsa

sesS aEA

0J(0) _ Zd(s) Z 87?9(a|3)rsa

0
sesS acA J




Likelihood Ratio

* Likelihood ratios exploit the following identity
Omg(als) 1 Omg(als)
o0 mo(als) mo(als) 06

0lo
— el 20Tk

* Thus the policy’s expected value

J(O) =E,,[r] = Zd ZT(@CL| frsa

sES acA
Omg(als)
=D d(s) ) sa
seS acA 90 ____________l _____
1 |
_ Zd ZM als) 3 Ogﬁe(a|3) -
seS a€EA L_________________:

0log mg(als) This can be approximated by sampling
00 5@¢| state s from d(s) and action a from

B



Policy Gradient Theorem

* The policy gradient theorem generalizes the likelihood ratio
approach to multi-step MDPs

* Replaces instantaneous reward r,, with long-term value Q™ (s, a)

* Policy gradient theorem applies to

* start state objective J,, average reward objective J
value objective J,,,

g and average

e Theorem

e For any differentiable policy my(a|s), for any of policy objective
functionJ =14, J, s, 4, , the policy gradient is

8.J(6)
"o =l

0log mg(als)
00

Q™ (s,a)



Connection between GAN and IL

* Analogy to Imitation learning

* In imitation learning, a value function is learned from expert data to
guide the policy optimization

* In GAN, a discriminator is trained with real (positive) data and
generated (negative) data to guide the generator optimization

* One step generation: stateless or one-step MDP

Real data instance as an expert action

v

& @

v

Go(x) Dy(x)

Data instance
Generator as a policy as an action Discriminator as a reward



Connection between GAN and IL

* Analogy to Imitation learning

* In imitation learning, a value function is learned from expert data to
guide the policy optimization

* In GAN, a discriminator is trained with real (positive) data and
generated (negative) data to guide the generator optimization

* Multi-step generation: MDP

Real data instance as an expert trajectory

[ L1..n }
4 ) a

N
Go(Tn|T1 1) — F1.m —— Dy (x)

Data instance
Generator as a policy as an trajectory Discriminator as a value




GAN and RL on Learning Rules

For continuous data/action

* Deterministic policy 0J(mg) . [aQW(s,a) Omy(s) }
gradient (DPG) 00 ~ L da 00 la=ro(s)

* GAN for continuous 97(G6,D) _ Eypie) [8J(G9’D(5’7)) 0Go(2) ]
data oY Oz 00  lz=Gy(2)

For discrete data/action

* Stochastic policy gradient  9J(9) dlogmg(als) r,
(PG) 0 ~En| gy (50
8J(Gy, D) 0log Gy(z)

* GAN for discrete data =Esnq, [

0 o0 7 (‘”)}



Content

1.

Introduction to Generative Adversarial Nets

GANSs on Continuous Data

GAN and RL

GANSs on Discrete Data

Summary



GANs on Discrete Data

* Single token
* Information retrieval

* Sequence
* Text

 Music score
 DNA/RNA pieces

* Graph
* Social network
e User-item shopping behavior
* Paper citations

O—0
p(docy,|query; 0)

Oo—-LO0—-~_CO00

p(word,, |wordy._ ,—1;0)

p(node,, |node,,, neighbor(m); 0)



RGAN: A Minimax Game for
Jnifying Generative and
Discriminative Information
Retrieval Models

Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu,
Benyou Wang, Peng Zhang and Dell Zhang. SIGIR 2017.

https://arxiv.org/abs/1705.10513




A Two Agent Framework for IR

Undirected guidance for relevance distribution fitting

v

fs(query,doc)  p(doc|query; 0)

Feeding new training data for decision boundary pushing

* Deep discriminative models * Deep generative models
* Flexible to fit complex * Flexible to fit complex
relevance ranking & scoring relevance distribution
* Obtaining training data * Trainable
(negative cases) from the * Guided from the

generative model discriminative model



IRGAN Formulation

Relevant Docs

——— -,

Discriminator

fo(q, d)

— (Generator

p@(d|Q7 T)

_________

* Underlying real relevance distribution ptrue(d|q, ’r) depicts the user’s
relevance preference distribution over the candidate documents with respect to
his submitted query

* Training set: A set of samples from ptrue(d\q, ?“)

* Generative retrieval model pg(d|q,r)
* Goal: approximate the real relevance distribution

* Discriminative retrieval model f¢(q, d)
e Goal: distinguish between relevant documents and non-relevant documents



A Minimax Game Unifying Both Models

e Objective
N
JE DT — m@m maxz (Edet (d|gn.r) 1Og |+
n=1
Edmpg(d|qn,r) qn))])

______

fe@®
Ptrue(d|q, ) - Real World 900!
BT
—> Generator —> - E
po(dlq,T) | 000

______

Discriminator —

fo(q,d)

exp(ge (Q7 d))

Zd’ eXp(gg (97 d/))
exp(fe(d, q))

1+ exp(fy(d,q))

where pg(dlg,r) =

D(dlq) = o(fg(d,q)) =



Optimizing Generative Retrieval via Policy Gradient

e Optimizing Generative Retrieval

e Samples documents from the whole document set to

fool its opponent
N

0" = argmin }_ (Ed~ptme<d|qn,r> log o(fo(d, an))] +

n=1

By (alan ) 108(1 = o(f5(d, 30)))] )

N
= argmax » [Eyp, (dlg, Jlog(1 + exp(fo(d, gn))))
n=1 " g

-~

Generator as Policy denoted as J&(gn) Reward Term

 REINFORCE (with advantage function)

log(l + exp(f¢(d, Qn))) - Edfvpe(d|qn,r) [log(l + exp(f¢(d, Qn)))]

Sutton, R. S., McAllester, D. A., Singh, S. P., & Mansour, Y. Policy gradient methods for reinforcement learning with
function approximation. In NIPS 2000.



IRGAN REINFORCE

e Likelihood ratio

VHJG(Qn)
— VQEdeg(dm ) [log(l + eXp(f¢(d7 Q’n)))]

—ZWPG ilan, ) log(1 + exp(fy(di, gn)))

= Zpe ilan, )V log pg(dilqn, r)log(1 + exp(fe(di; gn)))
= Edfvpe(d|qn,r) [Vglog po(dlgn,r)log(1 + exp(fs(d, qn)))]

K
1
~ % Z Vo 1ng9(dk|Qna ”I“) log(l + eXp(qu(dk, Qn)))
k=1



The Interplay between
Generative and Discriminative Retrieval

IRGAN
Poata(dQ.1)  Po(dla,r)  Dyld]q)

doc 1

doc 2

pdata(d|Q7 7“)
D.(dlg) =
oldla) = i) + poldiar)

doc 3

doc 4

doc 5

query q START



Extension to Pairwise Case

e It is common that the dataset is a set of ordered
document pairs for each query rather than a set of
relevant documents.

* Capture relative preference judgements
Ry, = {(di, d;)|d; > d;}

rather than absolute relevance judgements

* Generator would try to generate document pairs
that are similar to those in R,, , i.e., with the correct
ranking.



Experiments: Web Search

Table 1: Webpage ranking performance comparison on

* Dataset MQ2008-semi dataset, where * means significant improve-

 MQ-2008 (Million- ment in a Wilcoxon signed-rank test.

query Track in | P@3 | P@5 | P@10 | MAP

LETOR 4.0) MLE 0.1556 0.1295 0.1029 0.1604

i i RankNet [3] 0.1619 0.1219 0.1010 0.1517

* Semi-su perwsed LambdaRank [5] 0.1651 0.1352 0.1076 0.1658

|ea rn|ng: a |arge LambdaMART [4] 0.1368 0.1026 0.0846 0.1288

t of IRGAN-pointwise |  0.1714 0.1657 0.1257 0.1915

amount o IRGAN-pairwise | 0.2000 0.1676 0.1248 | 0.1816

unlabeled qu_ery' Impv-pointwise 3.82% 22.56%* 16.82%* | 15.50%"

document pairs Impv-pairwise 21.14%* 23.96%" 15.98% 9.53%

NDCG@3 | NDCG@5 | NDCG@10 | MRR

° Task | | | |

MLE 0.1893 0.1854 0.2054 0.3194

* Rank the RankNet [3] 0.1801 0.1709 0.1943 0.3062

: LambdaRank [5] 0.1926 0.1920 0.2093 0.3242

candidate LambdaMART [4] |  0.1573 0.1456 0.1627 0.2696

documents for IRGAN-pointwise |  0.2065 0.2225 0.2483 0.3508

each query IRGAN-pairwise 0.2148 0.2154 0.2380 0.3322

Impv-pointwise 7.22% 15.89% 18.63% 8.20%

Impv-pairwise 11.53% 12.19% 13.71% 2.47%




Experiments: Item Recommendation

IRGAN-pointwise Generator Performance on Movielens

IRGAN-pointwise Generator Performance on Netflix

| P@3 | P@5 | P@10 | MAP | P@3 | P@5 | P@10 | MAP
MLE 0.3369 0.3013 0.2559 0.2005  MLE 0.2941 0.2945 0.2777 0.0957
BPR [35] 0.3289 0.3044 0.2656 0.2009  BPR [35] 0.3040 0.2933 02774 | 0.0935
LambdaFM [45] 0.3845 0.3474 0.2967 0.2222  LambdaFM [45] 0.3901 0.3790 03489 | 0.1672
IRGAN-pointwise |  0.4072 0.3750 0.3140 0.2418  IRGAN-pointwise |  0.4456 0.4335 0.3923 0.1720
Impv-pointwise | 5.90%* | 7.94%" | 583%" | 882%*  Impv-pointwise | 14.23%% | 1438%" | 12.44%* | 2.87%"

| NDCG@3 | NDCG@5 | NDCG@10 | MRR

| NDCG@3 | NDCG@5 | NDCG@10 | MRR

MLE 0.3461 0.3236 0.3017 0.5264  MLE 0.3032 0.3011 0.2878 0.5085
BPR [35] 0.3410 0.3245 0.3076 0.5290  BPR[35] 0.3077 0.2993 0.2866 0.5040
LambdaFM [45] 0.3986 0.3749 0.3518 0.5797  LambdaFM [45] 0.3942 0.3854 0.3624 0.5857
IRGAN-pointwise 0.4222 0.4009 0.3723 0.6082 IRGAN-pointwise 0.4498 0.4404 0.4097 0.6371
Impv-pointwise |  5.92%" 6.94%* 5.83%* 4.92%* Impv-pointwise | 14.10%* | 14.27%° | 13.05%" | 8.78%"
* Datasets * Key observations

* Movielens: 943 users, 1.7k items,

100k ratings

* Netflix: 480k users, 17k items, 100M

ratings

e Task: Top-N item recommendation
with implicit feedback data

e Although generative retrieval
model in IRGAN does not
explicitly learn to optimize the
final ranking measures like what
LambdaFM does, it still
performs consistently better
than LambdaFM.



GANs on Discrete Data

* Single token
* |nformation retrieval

* Sequence
* Text

 Music score
 DNA/RNA pieces

* Graph
* Social network
e User-item shopping behavior
* Paper citations

O—0O
p(docy|query; 6)

O—(0O—-—_CO-~00

p(wordy, |words..,—1;0)

p(node,, |node,,, neighbor(m); 0)



RNN based Language Model

* Trained via maximum likelihood estimation (MLE)

meax Exrvp(a:) [lOg do (.CI?)]

Output I really love machinelearning <END>

O O O O O
OO0
9900

LSTM I"xh__x’ M )_"H,_ H,ﬁj

éé@ééé

Input <START> really love machinelearning

LSTM



Exposure Bias

* Exposure bias
* In MLE, the prefix is always from the real data

p(learning|I really love machine)

* But during generation, the prefix is the output of the
model, which could never occur in real data

00,
3

p(?|I machine love really)

Expert
 Similar in self-driving car training
* Problem of behavior cloning

S Bengio et al. Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. NIPS 2015.



Exposure Bias & Scheduled Sampling

e Scheduled sampling

* With a decaying probability, use the prefix from real
data, otherwise use the generated prefix to train

Scheme of decaying probability

Sample

~
y(t-1)

Sample

Loss Loss

T I T
Exponential decay

0.9
rd 08 Inverse sigmoid decay

Linear decay

0.7 |- |
h(1) | ... hit-1) ht) > 82 i i
f + T 0.4 |- _
X o 03| |
0.2 | |
rAS N oL | :
led y(t-2) true y(t-2) ‘\ (t-1) 0 | | I ‘
sampie - rue o rue =
Py ! ! 0 200 400 600 800 1000

S Bengio et al. Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. NIPS 2015.



REVIEW

Inconsistency of Evaluation and Use

* Given a generator g with a certain generalization ability

max By p(z)[log go(2)] max Eq g, (2)[l0g p(2))
Training/evaluation Use

* Check whether a * Check whether a
real data is with a model-generated
high mass density data is considered as
of the learned real as possible
model * More straightforward

. Approximated by but it is hard or

impossible to directly

X @ D llogap(= calculate p(x)



SeqGAN:
Sequence Generation via

GANs with Policy Gradient

Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu. SeqGAN: Sequence
Generative Adversarial Nets with Policy Gradient. AAAI 2017.

https://arxiv.org/abs/1609.05473



G Next MC D

action search
True data

Real World

G Generate

0000
0000
»>0-0-0-0-0
0000
0000

. S

Policy Gradient

* Generator is a reinforcement learning policy Gg(y¢|Y1.4—1)
of generating a sequence

* decide the next word to generate given the previous ones

* Discriminator provides the reward (i.e. the probability
of being real data) D,(Y{’r) for the whole sequence



Sequence Generator

* Objective: to maximize the expected reward

J(0) =Byi, nGo[ D GoelYie-1) - QD) (Yiit—1,9s)]
Yyt €Y

 State-action value function Qgi(s, a) is the expected
accumulative reward that

 Start from state s (G Next MG D

_ action search
* Take action a Reward
* And follow policy G until the end _state Reward

Reward

* Reward is only on completed
sequence (no immediate reward) T

Qgi (a = Yr,S = Yl:T—l) — ng(Yl:T) Policy Gradient

Reward




State-Action Value Setting

* Reward is only on completed sequence
* No immediate reward
* Then the last-step state-action value

Q%@(a =yr,s = Y1.7—1) = Dg(Y1.7)
G Next MC D

* For intermediate state-action value e SR

* Use Monte Carlo search to estimate _S%*_ —

Yir,..., Y2} = MCY (Y. N) Reward

* Following a roll-out policy Gy T Revlvard
ngs (s = Yiu_1,a = y;) = Policy Gradient

N S 1 Dy(Yp), Y € MCY (Y43 N) for t<T
Dy (Y1:t) for t=1T



Training Sequence Generator

* Policy gradient (REINFORCE)

VoJ(0) =Eyi,,_1~Gy| Z VoGo(ys|Y1:1-1) - Qgi(ylzt—layt)]
Yyt €Y
T
= i VoGo(ys|Y1:4-1) - Qg‘) (let—layt)
T ¢

t=1 g€y

T
1
== > > GowilYi:e-1) Vo log Go(us|Yiie-1) - QT (Yis—1, ut)
t=1 yr €y

1

T
-7 Z EyinGo(yevie—1) [ Vo 108 Go(ye|Y1:6-1) - Qgi (Yie—1,t)]
t=1

0 — 0+ apVeJ(0)

Richard Sutton et al. Policy Gradient Methods for Reinforcement Learning with Function Approximation. NIPS 1999.



Sequence Generator Model

incredibly ?

IS
Softmax sampling
over vocabulary @ @ @

1 ! 1

~ N N )

> -

A IIIOII&%M A

S e e > >
\l J J \l 4
&) ) &)

Shanghai is incredibly

* RNN with LSTM cells for Gg(y¢|Y1.t—-1)

[Hochreiter, S., and Schmidhuber, J. 1997. Long short-term memory. Neural computation 9(8):1735-1780.]



Training Sequence Discriminator

* Objective: standard binary classification

min —Eyp,... [log Dg(Y')] — Ey~g,|log(1l — Dg(Y))]

¢

* A CNN implementation

Feature Map Max over Time
Pooling

You
are
not

listening
to
a
word
I
am

typing

Word Embedding

Concat.

Multi-layer Perceptron

Logistic

@ Output

[Kim, Y. 2014. Convolutional neural networks for sentence classification. EMNLP 2014.]



Experiments on

Synthetic Data

* Evaluation measure with Oracle  maxE,. ., ()[logp(x)]
T 0
NLLoracle — _EY:[:TNG@ Z log Goracle (yt|Y1:t—1)}
Ct=1
Algorithm | Random MLE SS PG-BLEU | SeqGAN
NLL 10.310 9.038 8.985 8.946 8.736
p-value <107° [ <107° | <107° | <107°
100 Learning curve
— SeqGAN

98 N VILE
% 9.6 - - = Schedule Sampling
S | \U MIE nre-training o PG-BLEU
S 9.4
>
o 92
-
> 90 TS TN ai) PP PR

8.8

86 Use GAN loss

0 50 100 150 200 250

Epochs



Experiments on Real-World Data

* Chinese poem generation

Algorithm | Human score | p-value | BLEU-2 | p-value
MLE 0.4165 0.6670 6
SeqGAN 0.5356 0.0034 1 67389 | <10
Real data 0.6011 0.746

* Obama political speech text generation

Algorithm | BLEU-3 | p-value | BLEU-4 | p-value

MLE | 0519 o | 0416
SeqGAN | 0.556 ‘< 10 0.427 ‘000014

* Midi music generation
Algorithm | BLEU-4 | p-value | MSE | p-value

MLE | 09210 2238
SeqGAN | 0.9406 ‘ <107 2062 ‘ 0.00034




Experiments on Real-World Data

* Chinese poem generation

mMfEEXE, RBEAF. LIREEE, ERESH.

KPEERER, B HEWAT. LEETARIR, ER—TE

PAXAT e, PUSSES. UE= e, SRS,

Human Machine



Obama Speech Text Generation

* When he was told of this

extraordinary honor that he
was the most trusted man in
America

But we also remember and
celebrate the journalism that
Walter practiced -- a standard
of honesty and integrity and
responsibility to which so many
of you have committed your
careers. It's a standard that's a
little bit harder to find today

| am honored to be here to pay
tribute to the life and times of
the man who chronicled our
time.

Human

* i stood here today i have one

and most important thing that
not on violence throughout the
horizon is OTHERS american
fire and OTHERS but we need
you are a strong source

for this business leadership will
remember now i cant afford to
start with just the way our
european support for the right
thing to protect those american
story from the world and

i want to acknowledge you
were going to be an
outstandingdjob times for
student medical education and
warm the republicans who like
my times if he said is that
brought the

Machine



SeqGAN for Inverse-Design Chemistry

e Objective-Reinforced Generative Adversarial Networks (ORGAN)

G ) Reinforcement
9 synthetic Learning
data
real Penalize
data repetitions Objectives

R(Yi.r) = X- Dg(Yi.1) + (1 = X) - O4(Y1.7)
* ORGANIC: ORGAN for inverse-design Chemistry

Initial Discriminat New
Distribution p—— sermmator Distribution
of Molecules R e by of Molecules

- =l e

SMILES encoding = = > =
SMILES OO SMILES
Desired region 8@ > | Jotcnmo=on Shift torwards

of interest OO N goal .

c Generator @, * o .
/\ Do Reinforcement R A ¥
— Training ' . b N
property of Procedure property of
interest interest

Sanchez-Lengeling, Benjamin, et al. "Optimizing distributions over molecular space. An objective-reinforced generative adversarial network for inverse-design chemistry (ORGANIC)." (2017).



GANs on Discrete Data

* Single token
* |nformation retrieval

* Sequence
* Text

 Music score
 DNA/RNA pieces

* Graph
* Social network
e User-item shopping behavior
* Paper citations

o0
p(docy|query; 6)

Oo—-LO0—-~_CO00

p(word,, |wordy._ ,—1;0)

p(node,, |node,,, neighbor(m); 0)



Background of GRL

* Graph representation learning (GRL) learns a vector
for each node in a graph

* a.k.a. graph embedding / network embedding / network
representation learning

Graph representation ®
5 2 learning
— o
®
1

* Graph representation learning applications

* Link prediction * Visualization
* Node classification * Clustering
* Recommendation * Social network analysis



Motivation of GraphGAN

* Generative graph representation learning
model assumes an underlying real
connectivity distribution p,,.,. (v|v,) for
each vertex v,

* E.g., DeepWalk (KDD 2014) and node2vec
(KDD 2016)

* Discriminative graph representation v;
learning model aims to learn a classifier
for predicting the existence of edges
directly Vg

* E.g., SDNE (KDD 2016) and PPNE (DASFAA

2017)
p(edge|vl-, vj) = 0.8

p(edgelv;,v,) = 0.3



GraphGAN: the Minimax Game

Perue (* [V¢) > O OO tnin D G

_ generates | > > ~
G(- ve; 66) 1066 | Ptrue

t

policy gradient
> > >0 >
v, V, U,
G underperforms G is approaching piye G is hardly distinguishable
in initial stage during adversarial training from Pirue

| %
minmax V (G, D) = Z <Evatrue(.|vc) [log D(v,ve; QD)] + By |ves6c) [10g (1 — D(v, ve; QD))])'

b bp c=1



Implementation & Optimization of D

1%
minmax V (G, D) = Z (]Evatme(_m) [log D(v,vg; HD)] + EynG(-veibe) [log (1 — D(v,v; HD))]).

0c 0p —1

* A simple implementation of D

1
D(v,ve) = o(dy du) = 3 g

* Note that any other discriminative model of link prediction
can be implemented here, e.g., SDNE

e Gradient of V(G, D) w.r.t. the parameters of D

Vo, log D(v,v.), if v~ Pirye
Vo, (1 —log D(v,v.)), if v~ G

(a normal replacement of loss in GAN)

Vo, ,V(G,D) = {



Graph Softmax in GraphGAN

* Breadth First Search (BFS) on G from every vertex v,
* BFS-tree T, rooted at v,

* For a given vertex v and one of its neighbors v,elV,
(v), the relevance probability of v, given v as

exp(g,. &v)
exp(g,.8v)
'UjGNC(U) p g’l)jg’v

Pe(vilv) = >

o
G raph SOftmaX Go to an unvisited neighbor  Get back to the parent

G(oloe) £ ([T _, pelvrslvr, 1)) - pelvr,lor,.)

given the unique path from v, tovintree T.: B, _, =
(Vrys Vryy oo Up, ), Where v, = voand v, =v



Graph Softmax in GraphGAN

Ve Ve (vro) ve(v To )

v,

BFS-tree 0.1, 05

03\ N

g v, O
Original graph G Choose vy, Choose v,
pC(UT'1|UC) =0.7 pf—'(v?"z|vf’1) =03
Ve(Vr,) Ve(Vr,)

Choose vy, sampling completed Update all vertexes along the green
vy, is the sampled vertex path and all vertexes in green

(v |vr,) = 0.6 G(vy,|ve; 0¢) = 0.7 X 0.3 X 0.6 = 0.126



Link Prediction Experiments

e Overall link prediction performance

Model arXiv-AstrolPPh arXiv-GrQc
Accuracy | Macro-F1 | Accuracy | Macro-F1
DeepWalk 0.841 0.839 0.803 0.812
LINE 0.820 0.814 0.764 0.761
Node2vec 0.845 0.854 0.844 0.842
Struc2vec 0.821 0.810 0.780 0.776
GraphGAN 0.855 0.859 0.849 0.853

* LINE and struc2vec is relatively poor in link prediction, as they cannot quite
capture the pattern of edge existence in graphs.

 DeepWalk and node2vec perform better than LINE and struc2vec probably
because of the random-walk-based Skip-Gram model, which is graph-structure-
aware and better at extracting proximity information among vertices.

* GraphGAN performs the best



Experiments on Other Tasks

* Node Classification
Model BlogCatalog Wikipedia
Accuracy | Macro-F1 | Accuracy | Macro-F1
DeepWalk 0.225 0.214 0.194 0.183
LINE 0.205 0.192 0.175 0.164
Node2vec 0.215 0.206 0.191 0.179
Struc2vec 0.228 0.216 0.211 0.190
GraphGAN 0.232 0.221 0.213 0.194

* Recommendation (Movielens-1M)

o
Y
o

=<1

o
Y
o

Precision@K

o
o
PN LN

=8=DeepWalk
LINE
—+—Node2vec

=7 GraphGAN

Struc2vec ||

10

2ID
K

50

(a) Precision@K

0.3

—e—DeepWalk
LINE

——Node2vec
Struc2vec

=w=GraphGAN

Recall@K

10

20

50 100
K

(b) Recall@K
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SUMMARY
GANs on Continuous and Discrete Data

OL(D(x)) Ox
Ox 90

e GANs on continuous data

* Taking gradient on the generated data, then back-prop
to generator parameters

* Gradient penalty problems, with Wasserstein distance
solution and Lipschitz constraints

* GANs on discrete data Ezna, {

* No gradient on the generated data
* Leverage stochastic policy gradient method from RL
e Data efficiency problems



References of GANs on Continuous Data

* Lipschitz Continuity

Arjovsky et al. Wasserstein GANs. ICML 2017.
Gulrajani et al. Improved Training of Wasserstein GANs. NIPS 2017.
Petzka et al. On the regularization of Wasserstein GANs. ICLR 2018.

Miyato et al. Spectral normalization for generative adversarial
networks. ICLR 2018.

Zhou et al. Lipschitz Generative Adversarial Nets. ICML 2019.
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Tero Karras et al. Progressive Growing of GANs for Improved Quality,
Stability, and Variation. ICLR 2018.

Andrew Brock et al. Large Scale GAN Training for High Fidelity Natural
Image Synthesis. ICLR 2019.

Ledig, Christian, et al. "Photo-realistic single image super-resolution using a
generative adversarial network." CVPR 2017.

Isola, Phillip, et al. "Image-to-image translation with conditional adversarial
networks." CVPR 2017.

Yun Cao, Weinan Zhang etc. Unsupervised Diverse Colorization via
Generative Adversarial Networks. ECML-PKDD 2017.



References of GANs on Discrete Data
* Single token O—~O

* Wang, Jun, et al. “IRGAN: A minimax game for unifying generative and discriminative

information retrieval models." SIGIR 2017.

* Sequence oO—-CO0O—-~_OCO00

Yu, Lantao, et al. "Seqggan: Sequence generative adversarial nets with policy
gradient." AAAl 2017.

Guo, Jiaxian, et al. "Long text generation via adversarial training with leaked
information." Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

Zhu, Yaoming, et al. "Texygen: a benchmarking platform for text generation
models." SIGIR 2018.

Lu, Sidi, et al. “Improved Training for Sequence Generative Models." ICML 2019

e Graph

Wang, Hongwei, et al. "GraphGAN: graph representation learning with generative
adversarial nets." AAAI 2018.

Jia, Yuting, et al. "CommunityGAN: Community Detection with Generative
Adversarial Nets." WWW 20109.
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