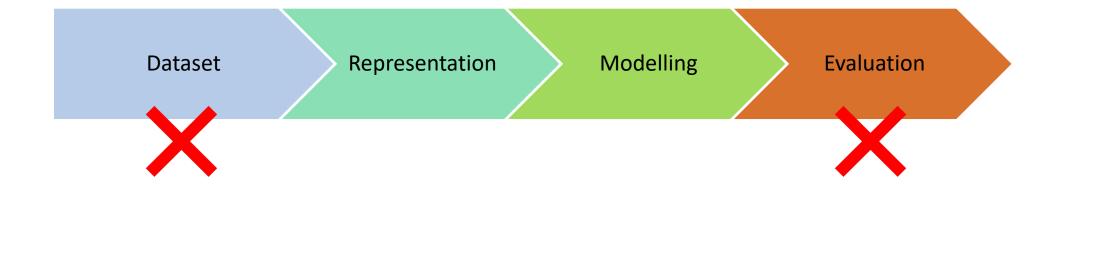


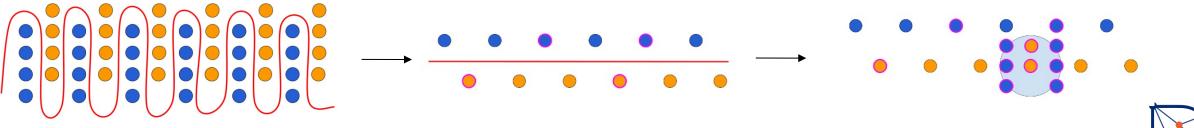
Robustness Improvement in Natural Language Processing

Tao Gui

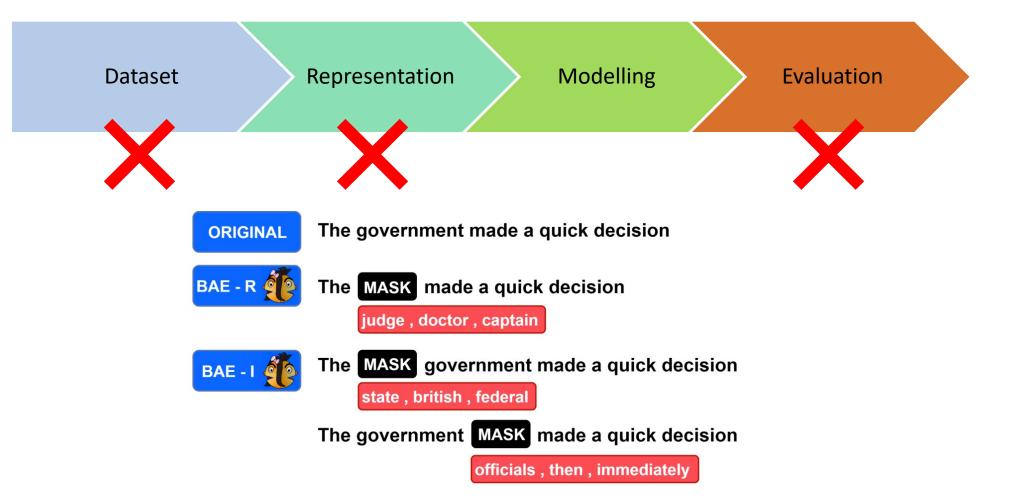
Fudan University

0 General Framework of Natural Language Processing

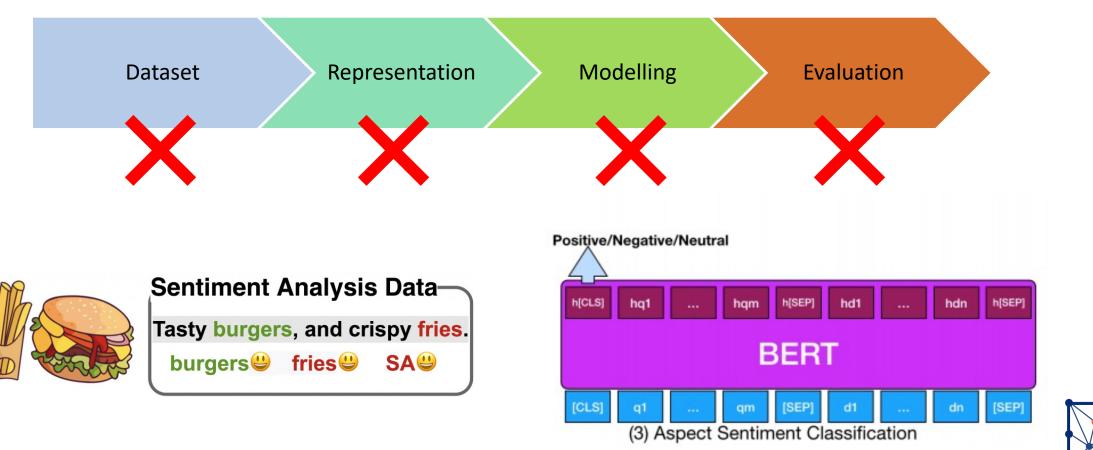




O General Framework of Natural Language Processing

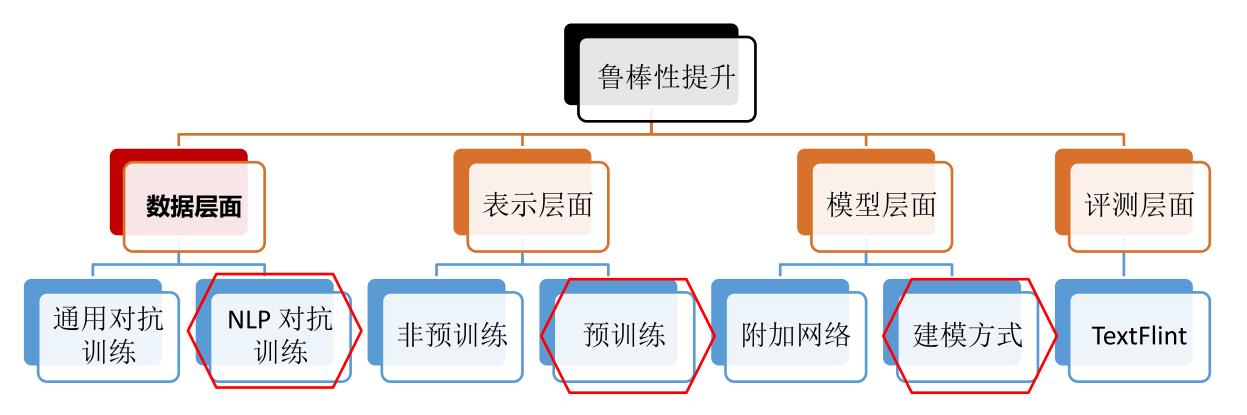


O General Framework of Natural Language Processing

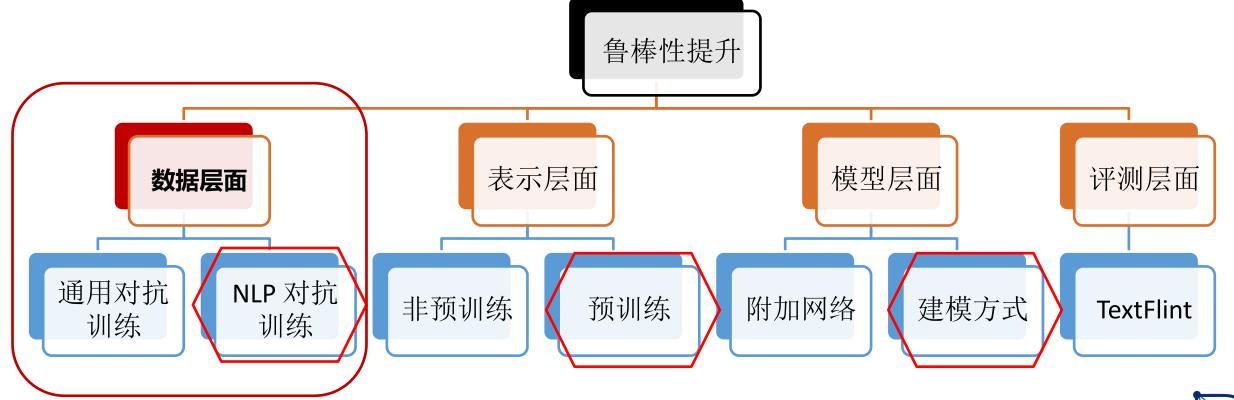


FNLP

0 Outline in Robustness Improvement



0 Outline in Robustness Improvement



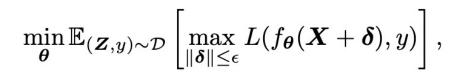
$$\mathbf{x}' = \mathbf{x} + \eta, f(\mathbf{x}) = \mathbf{y}, \mathbf{x} \in \mathbf{X}$$
$$f(\mathbf{x}') \neq \mathbf{y}$$
or $f(\mathbf{x}') = \mathbf{y}', \mathbf{y}' \neq \mathbf{y}$

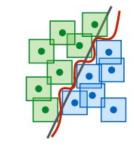
 \boldsymbol{x} "panda" 57.7% confidence

 $sign(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "nematode" 8.2% confidence

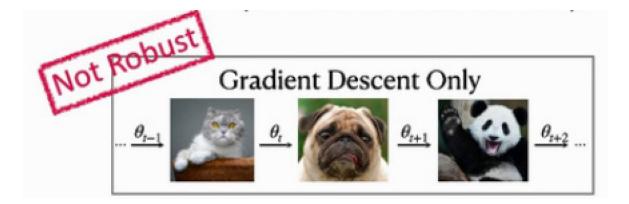
x + $\epsilon \operatorname{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "gibbon" 99.3 % confidence

Adversarial Attack





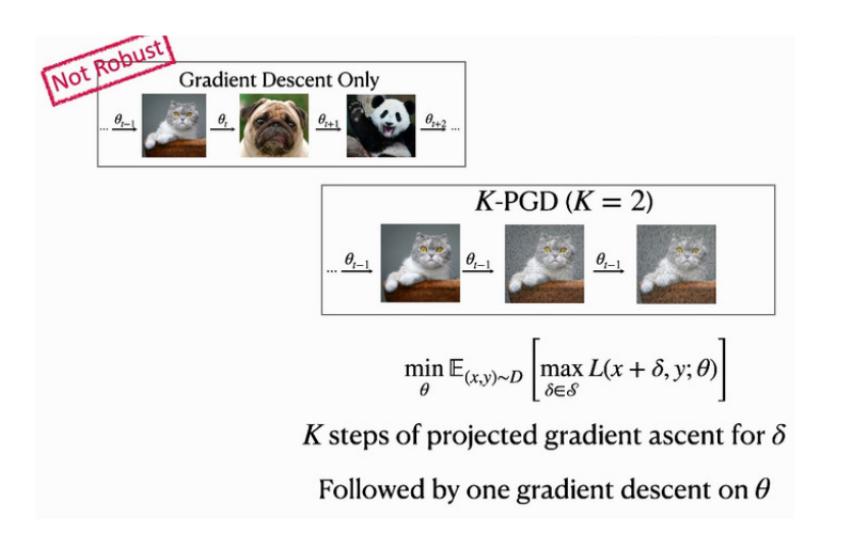
Szegedy, Christian, et al. "Intriguing properties of neural networks." arXiv preprint arXiv:1312.6199 (2013).



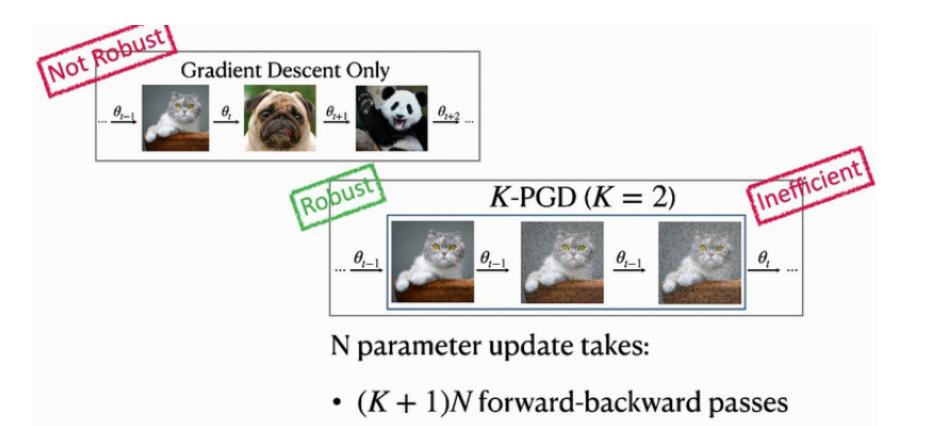
FGSM:
$$\delta = \epsilon \cdot Sign(g)$$

FGM: $\delta = \epsilon \cdot (g/||g||_2)$

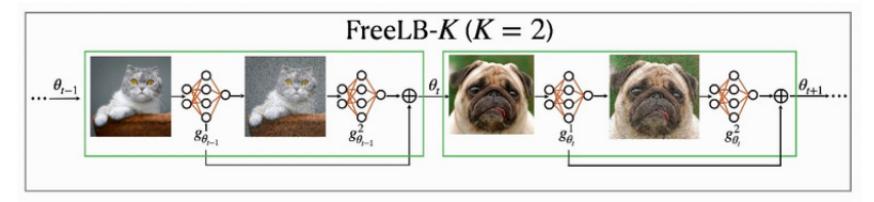
Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." *arXiv preprint arXiv:1412.6572* (2014). Miyato, Takeru, Andrew M. Dai, and Ian Goodfellow. "Adversarial training methods for semi-supervised text classification." *ICLR* 2016. https://iclr.cc/virtual_2020/poster_BygzbyHFvB.html



Madry, Aleksander, et al. "Towards deep learning models resistant to adversarial attacks." *arXiv preprint arXiv:1706.06083* (2017).



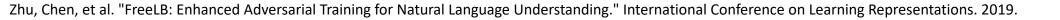
• KN input updates



Equivalent to enlarging the batch size with adversarial examples

$$\min_{\theta} \mathbb{E}_{(Z,y)\sim \mathcal{D}} \left[\frac{1}{K} \sum_{t=0}^{K-1} \max_{\delta_t \in \mathcal{F}_t} L(f_{\theta}(X + \delta_t), y; \theta) \right]$$

Improved invariance with a set of different transforms Better generalization (Sokolic et al. 2017, Gong et al. 2020)



Shafahi, Ali, et al. "Adversarial training for free!." Proceedings of the 33rd International Conference on Neural Information Processing Systems. 2019.

AT in Image

Robustness improves

Accuracy

Ta	ble 1: Validation	accuracy and ro	bustness of	CIFAR-10 m	odels trained with vario	ous methods.
	Training		Eva	huated Agains	st	Train
	11 anning				10 restort	Time

Nat. Images	PGD-20	PGD-100	CW-100	10 restart PGD-20	

	8				PGD-20	(m1n)
Natural	95.01%	0.00%	0.00%	0.00%	0.00%	780
Free $m = 2$	91.45%	33.92%	33.20%	34.57%	33.41%	816
Free $m = 4$	87.83%	41.15%	40.35%	41.96%	40.73%	800
Free $m = 8$	85.96%	46.82%	46.19%	46.60%	46.33%	785
Free $m = 10$	83.94%	46.31%	45.79%	45.86%	45.94%	785
7-PGD trained	87.25%	45.84%	45.29%	46.52%	45.53%	5418

decreases

Experiment results of different defenders on AGNEWS

Method

Adversarial Data Augmentation

MixADA (Si et al., 2020)

FreeLB (Zhu et al., 2020)

DNE (Zhou et al., 2020)

SAFER (Ye et al., 2020)

ASCC (Dong et al., 2021)

PGD-K (Madry et al., 2018)

TA-VAT (Li and Qiu, 2020)

InfoBERT (Wang et al., 2020)

RanMASK (Zeng et al., 2021)

Baseline (BERT)

AT in Text

Clean%

94.5

94.4

94.3

94.7

94.7

94.8

95.1

93.9

92.3

94.3

91 7

19.1

38.6

37.5

24.8

31.6

31.0

31.8

28.7

28.2

31.8

37.9

TextFooler

Aua% Suc% #Query

317.4

404.6

410.7

353.5

382.1

382.5

369.9

367.9

326.5

350.1

583.4

79.6

58.9

60.3

73.9

66.7

67.3

66.5

69.8

69.6

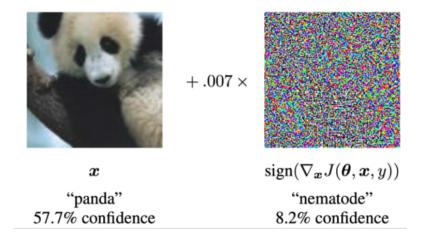
66.1

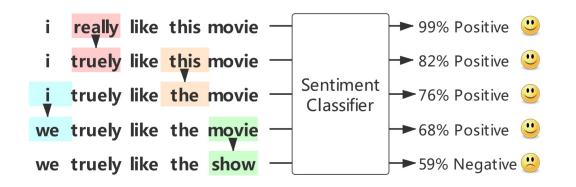
58 7

Robustness	improves
Accuracy	improves

FNLP ₁₂)

Problem in current Virtual Adversarial Train





$$\min_{\theta} \mathbb{E}_{(\boldsymbol{x},y)\sim\mathcal{D}} \left[\max_{\|\boldsymbol{\delta}\|\leq\epsilon} \mathcal{L}(f_{\theta}(\boldsymbol{X}+\boldsymbol{\delta}),y) \right], \quad (3)$$

$$\boldsymbol{\delta}_{t+1} = \prod_{\|\boldsymbol{\delta}\|_F \le \epsilon} \left(\boldsymbol{\delta}_t + \alpha \frac{g(\boldsymbol{\delta}_t)}{\|g(\boldsymbol{\delta}_t)\|_F} \right), \quad (4)$$

$$\|\boldsymbol{\delta}_{t+1}\| \le \|\boldsymbol{\delta}_t\| + \left\|\alpha \frac{g(\boldsymbol{\delta}_t)}{\|g(\boldsymbol{\delta}_t)\|_F}\right\| \le \|\boldsymbol{\delta}_t\| + \alpha.$$
 (5)

$$\|\boldsymbol{\delta}_t\| \leq \|\boldsymbol{\delta}_{t-1}\| + \alpha \leq \|\boldsymbol{\delta}_{t-2}\| + 2\alpha$$

$$\leq \cdots \leq \|\boldsymbol{\delta}_1\| + (t-1) * \alpha \leq t\alpha,$$

(6)

Method	Norm e	Clean%	TextH	ooler	BERT-Attack		
Method PGD-K FreeLB			Aua%	Suc%	Aua%	Suc%	
	0.01	94.9	21.8	77.0	31.5	66.8	
DCD V	0.1	95.3	43.6	54.3	45.1	52.7	
PGD-K	1	95.2	45.2	55.3	45.3	52.4	
	w/o	95.2	45.2	55.3	45.3	52.4	
	0.01	95.4	30.5	68.0	43.6	54.3	
Encol D	0.1	95.5	36.1	62.2	40.0	58.1	
FreeLB	1	94.9	45.8	51.7	42.5	55.2	
	w/o	94.9	45.8	51.7	42.5	55.2	

Li, Zongyi, et al. "Searching for an Effective Defender: Benchmarking Defense against Adversarial Word Substitution." EMNLP 2021.

Experiments

Method	Clean%]	FextFoo	ler	TextBugger			BI	BERT-Attack		
Wiethiod		Aua%	Suc%	#Query	Aua%	Suc%	#Query	Aua%	Suc%	#Query	
Baseline (BERT)	94.5	19.1	79.6	317.4	23.5	75.0	320.6	27.2	71.0	338.8	
Adversarial Data Augmentation	94.4	38.6	58.9	404.6	43.3	53.9	418.3	42.9	54.5	407.0	
MixADA (Si et al., 2020)	94.3	37.5	60.3	410.7	36.4	61.4	423.5	39.1	58.6	408.4	
PGD-K (Madry et al., 2018)	94.7	24.8	73.9	353.5	26.7	71.9	367.1	39.4	58.5	399.3	
FreeLB (Zhu et al., 2020)	94.7	31.6	66.7	382.1	32.9	65.4	390.6	43.9	53.8	417.1	
TA-VAT (Li and Qiu, 2020)	94.8	31.0	67.3	382.5	34.2	63.9	415.2	45.0	52.5	436.9	
InfoBERT (Wang et al., 2020)	95.1	31.8	66.5	369.9	36.3	61.8	391.6	42.4	55.3	392.8	
DNE (Zhou et al., 2020)	93.9	28.7	69.8	367.9	28.2	70.3	377.6	42.4	55.5	470.1	
ASCC (Dong et al., 2021)	92.3	28.2	69.6	326.5	37.0	60.1	307.4	32.7	64.7	337.1	
SAFER (Ye et al., 2020)	94.3	31.8	66.1	350.1	41.2	56.1	398.8	39.3	58.2	373.5	
RanMASK (Zeng et al., 2021)	91.7	37.9	58.7	583.4	45.0	50.9	626.8	49.5	46.1	661.8	
FreeLB++	95.1	51.5	46.0	419.1	55.9	41.4	416.9	41.8	56.2	386.1	

Table 2: The experiment results of different defenders on AGNEWS, where all models are trained on BERT. The best performance is marked in **bold**. FreeLB++ not only achieves best defense performance under both TextBugger and TextFooler, but also improves **Clean**%. Although RanMASK has also achieved significant defense performance, it drops a lot in **Clean**%.

Li, Zongyi, et al. "Searching for an Effective Defender: Benchmarking Defense against Adversarial Word Substitution." EMNLP 2021.

Problem in current Virtual Adversarial Train

- 1. Randomization Problem
- At step t: random initialize at step zero

$$\boldsymbol{\delta}_{t+1} = \prod_{||\boldsymbol{\delta}_t||_F \le \epsilon} \frac{(\boldsymbol{\delta}_t + \alpha g(\boldsymbol{\delta}_t))}{||g(\boldsymbol{\delta}_t)||_F}$$
(2)

constrain using L2norm

- 2. Constraint Problem
- Frobenius Norm on X
- $g(\boldsymbol{\delta}_t) = \bigtriangledown_{\boldsymbol{\delta}} L(f_{\theta}(\boldsymbol{X} + \boldsymbol{\delta}_t), y)$ • X = [v0, v1, ..., vn ...] is output of a sequence

(3)

generate perturbations

Method

• 1. Global Perturbation Vocabulary

• 2. Token-Level Constraint

Li, Linyang, and Xipeng Qiu. "Token-Aware Virtual Adversarial Training in Natural Language Understanding." AAAI 2021.

Robustness Improvement from Data Perspective---NLP AT

1. Perturbation Generation

Algorithm 1 Token-Aware Virtual Adversarial Training **Require:** Training Samples $S = \{(X = [w_0, \dots, w_i, \dots], y)\}$, perturbation bound ϵ , initialize bound σ adversarial steps K, adversarial step size α , model parameter θ 1: $\mathbf{V} \in \mathbb{R}^{N \times D} \leftarrow \frac{1}{\sqrt{D}} U(-\sigma, \sigma) //$ Initialize perturbation vocabulary \mathbf{V} 2: for epoch = $1, \dots, do$ for batch $B \subset S$ do 3: $\boldsymbol{\delta}_0 \leftarrow \frac{1}{\sqrt{D}} U(-\sigma, \sigma)$, $\boldsymbol{\eta}_0^i \leftarrow \boldsymbol{V}[w_i]$, $\boldsymbol{g}_0 \leftarrow 0$ //Initialize perturbation and gradient of θ 4: for $t = 1, \cdots, K$ do 5: $\boldsymbol{g}_t \leftarrow \boldsymbol{g}_{t-1} + \frac{1}{K} \mathbb{E}_{(X,y) \in B}[\bigtriangledown_{\theta} L(f_{\theta}(X + \boldsymbol{\delta}_{t-1} + \boldsymbol{\eta}_{t-1}), y)] // Accumulate gradients of <math>\theta$ 6: Update token-level perturbation η : 7: $\boldsymbol{g}_{\eta}^{i} \leftarrow \bigtriangledown_{\eta^{i}} L(f_{\theta}((X + \boldsymbol{\delta}_{t-1} + \boldsymbol{\eta}_{t-1}), y))$ 8: $\boldsymbol{\eta}_{t}^{i} \leftarrow n^{i} * (\boldsymbol{\eta}_{t-1}^{i} + \alpha \cdot \boldsymbol{g}_{\eta}^{i} / ||\boldsymbol{g}_{\eta}^{i}||_{F})$ 9: $oldsymbol{\eta}_t \leftarrow \prod_{||oldsymbol{\eta}||_F < \epsilon} (oldsymbol{\eta}_t)$ 10: Update instance-level perturbation δ : 11: $\boldsymbol{g}_{\delta} \leftarrow \bigtriangledown_{\delta} L(f_{\theta}((X + \boldsymbol{\delta}_{t-1} + \boldsymbol{\eta}_{t-1}), y))$ 12: $\boldsymbol{\delta}_{t} \leftarrow \prod_{||\boldsymbol{\delta}||_{F} < \epsilon} (\boldsymbol{\delta}_{t-1} + \alpha \cdot \boldsymbol{g}_{\delta} / ||\boldsymbol{g}_{\delta}||_{F})$ 13: 14: end for $V[w_i] \leftarrow \eta_K^i$ //Update perturbation vocabulary V 15: $\theta \leftarrow \theta - q_K$ //Update model parameter θ 16: end for 17: 18: end for

2. Global Perturbation Vocabulary

Algorithm 1 Token-Aware Virtual Adversarial Training **Require:** Training Samples $S = \{(X = [w_0, \dots, w_i, \dots], y)\}$, perturbation bound ϵ , initialize bound σ adversarial steps K, adversarial step size α , model parameter \hat{v} 1: $\mathbf{V} \in \mathbb{R}^{N \times D} \leftarrow \frac{1}{\sqrt{D}} U(-\sigma, \sigma)$ // Initialize perturbation vocabulary 2: for epoch = $1, \dots, u_0$ for batch $B \subset S$ do 3: $\boldsymbol{\delta}_0 \leftarrow \frac{1}{\sqrt{D}}U(-\sigma,\sigma)$, $\boldsymbol{\eta}_0^i \leftarrow \boldsymbol{V}[w_i]$, $\boldsymbol{g}_0 \leftarrow 0$ //Initialize perturbation σ d gradient of θ 4: 5: tor $t = 1, \dots, \frac{1}{10}$ $\boldsymbol{g}_t \leftarrow \boldsymbol{g}_{t-1} + \frac{1}{K} \mathbb{E}_{(X,y) \in B} [\nabla_{\theta} L(f_{\theta}(X + \boldsymbol{\delta}_{t-1} + \boldsymbol{\eta}_{t-1}), y)] // \text{Accumulate gradients of } \theta$ 6: Update token-level perturbation η : 7: 8: $\boldsymbol{g}_{\eta}^{i} \leftarrow \bigtriangledown_{\eta^{i}} L(f_{\theta}((X + \boldsymbol{\delta}_{t-1} + \boldsymbol{\eta}_{t-1}), y))$ $\boldsymbol{\eta}_{t}^{\prime\prime} \leftarrow n^{i} * (\boldsymbol{\eta}_{t-1}^{i} + \alpha \cdot \boldsymbol{g}_{\eta}^{i} / ||\boldsymbol{g}_{\eta}^{i}||_{F})$ 9: $\boldsymbol{\eta}_t \leftarrow \prod_{||\boldsymbol{\eta}||_F < \epsilon} (\boldsymbol{\eta}_t)$ 10: Update instance-level perturbation δ : 11: $\boldsymbol{g}_{\delta} \leftarrow \bigtriangledown_{\delta} L(f_{\theta}((X + \boldsymbol{\delta}_{t-1} + \boldsymbol{\eta}_{t-1}), y))$ 12: $\boldsymbol{\delta}_t \leftarrow \prod_{||\boldsymbol{\delta}||_F < \epsilon} (\boldsymbol{\delta}_{t-1} + \alpha \cdot \boldsymbol{g}_{\delta} / ||\boldsymbol{g}_{\delta}||_F)$ 13: end for $V[w_i] \leftarrow \eta^i_K$ //Update perturbation vocabulary V 15: $\theta \leftarrow \theta - q_K // \cup$ pointe model parameter θ 16: 17: end for

18: end for

3. Token-Level Constraint

Algorithm 1 Token-Aware Virtual Adversarial Training **Require:** Training Samples $S = \{(X = [w_0, \dots, w_i, \dots], y)\}$, perturbation bound ϵ , initialize bound σ adversarial steps K, adversarial step size α , model parameter θ 1: $V \in \mathbb{R}^{N \times D} \leftarrow \frac{1}{\sqrt{D}} U(-\sigma, \sigma)$ // Initialize perturbation vocabulary V 2: for epoch = $1, \cdots, do$ for batch $B \subset S$ do 3: $\boldsymbol{\delta}_0 \leftarrow \frac{1}{\sqrt{D}} U(-\sigma, \sigma)$, $\boldsymbol{\eta}_0^i \leftarrow \boldsymbol{V}[w_i]$, $\boldsymbol{g}_0 \leftarrow 0$ //Initialize perturbation and gradient of θ 4: for $t = 1, \cdots, K$ do 5: $\boldsymbol{g}_t \leftarrow \boldsymbol{g}_{t-1} + \frac{1}{K} \mathbb{E}_{(X,y) \in B} [\bigtriangledown_{\theta} L(f_{\theta}(X + \boldsymbol{\delta}_{t-1} + \boldsymbol{\eta}_{t-1}), y)] // \text{Accumula}$ 6: $n^i = rac{||oldsymbol{\eta}^i_t||_F}{\displaystyle \max_i (||oldsymbol{\eta}^j_t||_F)}$ Update token-iever perturbation 1. 7: $\frac{\boldsymbol{g}_{\eta}^{i} \leftarrow \bigtriangledown_{\eta^{i}} L(f_{\theta}((X + \boldsymbol{\delta}_{t-1} + \boldsymbol{\eta}_{t-1}), y)}{\boldsymbol{\eta}_{t} \searrow \boldsymbol{\eta}^{i} + (\boldsymbol{\eta}_{t-1}^{i} + \boldsymbol{\gamma}_{t-1}^{i}) \boldsymbol{\varsigma}^{i}_{\eta^{i} \mid F})}$ 9: $oldsymbol{\eta}_t \leftarrow \prod_{||oldsymbol{\eta}||_F < \epsilon} (oldsymbol{\eta}_t)$ 10: Update instance-level perturbation δ : 11: $\boldsymbol{g}_{\delta} \leftarrow \bigtriangledown_{\delta} L(f_{\theta}((X + \boldsymbol{\delta}_{t-1} + \boldsymbol{\eta}_{t-1}), y))$ 12: $\boldsymbol{\delta}_t \leftarrow \prod_{||\boldsymbol{\delta}||_F < \epsilon} (\boldsymbol{\delta}_{t-1} + \alpha \cdot \boldsymbol{g}_{\delta} / ||\boldsymbol{g}_{\delta}||_F)$ 13: end for 14: $V[w_i] \leftarrow \eta_K^i$ //Update perturbation vocabulary V 15: $\theta \leftarrow \theta - q_K$ //Update model parameter θ 16: end for 17: 18: end for

Results

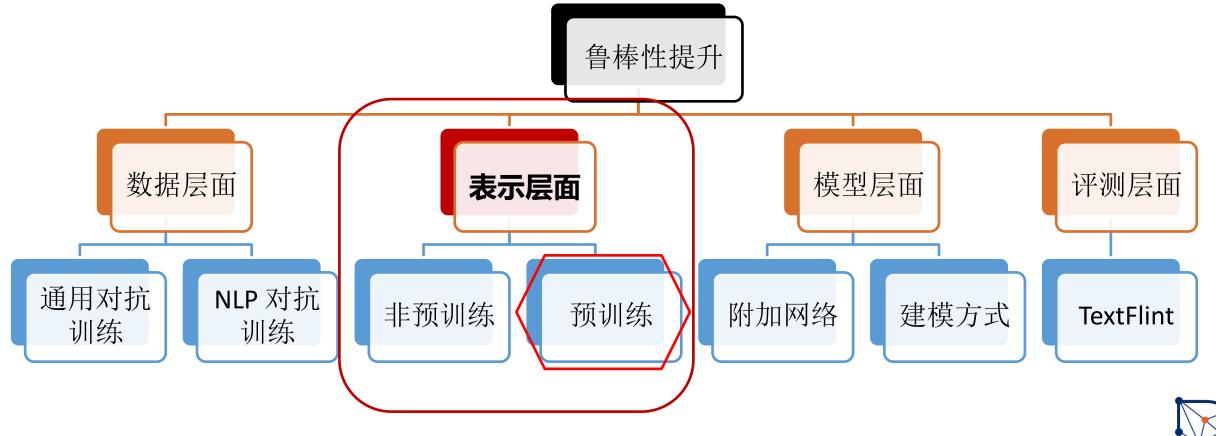
Model		QNLI Acc	MRPC Acc/f1	CoLA Mcc	SST Acc	STS-B P/S Corr	MNLI-m/mm Acc	QQP Acc/f1
BERT-BASE								
BERT (Devlin et al. 2018)	-	88.4	-/86.7	-	92.7	.72	84.4/-	-
BERT-ReImp	63.5	91.1	84.1/89.0	54.7	92.9	89.2/88.8	84.5/84.4	90.9/88.3
FreeAT-ReImp	68.0	91.3	85.0/89.2	57.5	93.2	89.5/89.0	84.9 / 85.0	91.2/88.5
FreeLB-ReImp	70.0	91.5	86.0/90.0	58.9	93.4	89.7/89.2	85.3 / 85.5	91.4/88.6
TA-VAT(ours)	74.0	92.4	88.0/91.6	62.0	93.7	90.0/89.6	85.7 / 85.8	91.6/88.9
ALBERT-xxlarge-v2								
ALBERT-xxlarge-v2(Lan et al. 2019)	89.2	95.3	-/90.9	71.4	96.9(96.5)	93.0/-	90.8/-	92.2/-
FreeLB(Zhu et al. 2020)	89.9	95.6*	-/92.4	73.1	97.0	93.2/-	90.9/-	92.5/-
TA-VAT(ours)	90.3	95.7	-/ 93.4	74.1	96.8	93.4/-	91.1/-	92.6 /-

Table 1: Evaluation results on the development set of GLUE benchmark. QNLI* in FreeLB is formed as pairwise ranking task.

Model -		QNLI	MRPC	CoLA	SST	STS-B	MNLI-m/mm	QQP
woder	Acc	Acc	Acc/f1	Mcc	Acc	P/S Corr	Acc	Acc/f1
BERT-BASE(Devlin et al. 2018)	66.4	90.5	88.9/84.8	52.1	93.5	87.1/85.8	84.6/83.4	71.2/89.2
FreeLB(Zhu et al. 2020)	70.1	91.8^{*}	88.1/83.5	54.5	93.6	87.7/86.7	85.7/84.6	72.7/89.6
TA-VAT(ours)	71.0	91.7	88.9/84.5	55.9	94.5	86.8/85.7	85.2/ 84.7	72.8/89.5

Table 2: Evaluation results on the test set of GLUE benchmark. Results use the evaluation server on GLUE website. QNLI* in FreeLB is formed as pairwise ranking task.

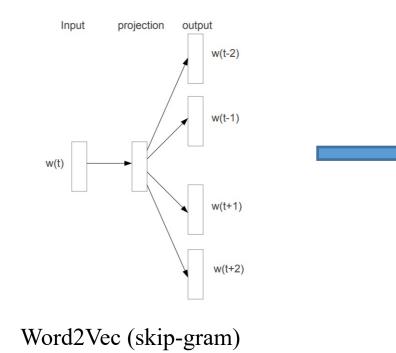
0 General Framework of Natural Language Processing

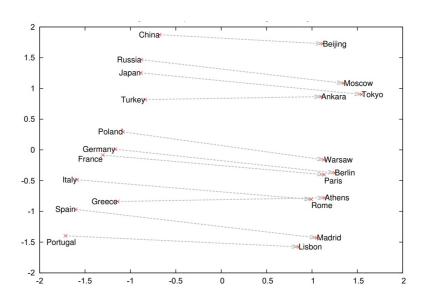


FNLP₂₂

2 Robustness Improvement from Representation Perspective

- ▶ Word Embedding (unk 未见词)
 - Glove / Word2Vec / Random Init





Good Representation : Country and Capital Vectors

Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." Advances in neural information processing systems. 2013.

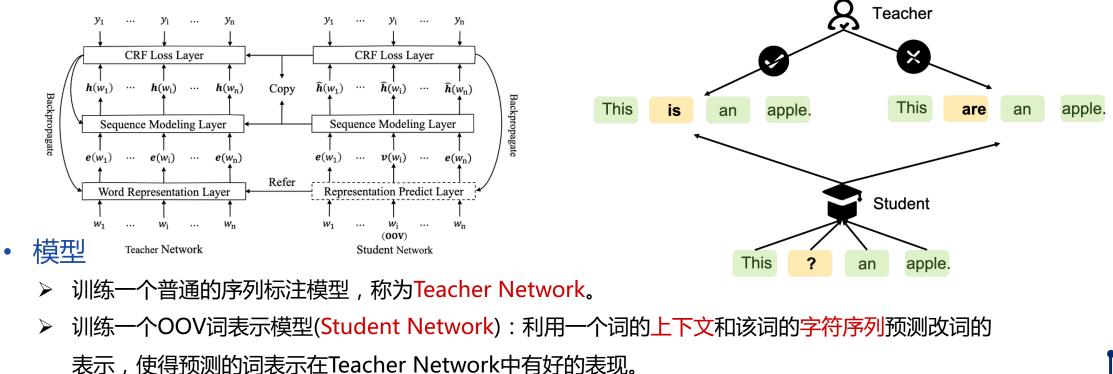
Robustness Improvement from Representation Perspective---OOV

未登录词

学习 OOV 词在序列标注任务中的表示

• 研究动机

- ➤ 在测试集中经常会出现一些在训练集中没有出现过的OOV词。
- ≻ 在序列标注任务中,模型在OOV词上的表现相较于非OOV词一般差很多。



Peng, Minlong, et al., Learning Task-Specific Representation for Novel Words in Sequence Labeling, IJCAI 2019

A Robustness Improvement from Representation Perspective---OOV

Dataset		Dev	Test			
	#OOV	OOV Rate	#OOV	OOV Rate		
NER						
CoNLL02-Spanish	2,216	50.91%	1,544	43.38%		
CoNLL02-Dutch	1,819	69.53%	2,564	65.05%		
Twitter-English	1,266	79.15%	4,131	79.13%		
CoNLL03-German	3,928	81.27%	2,685	73.10%		

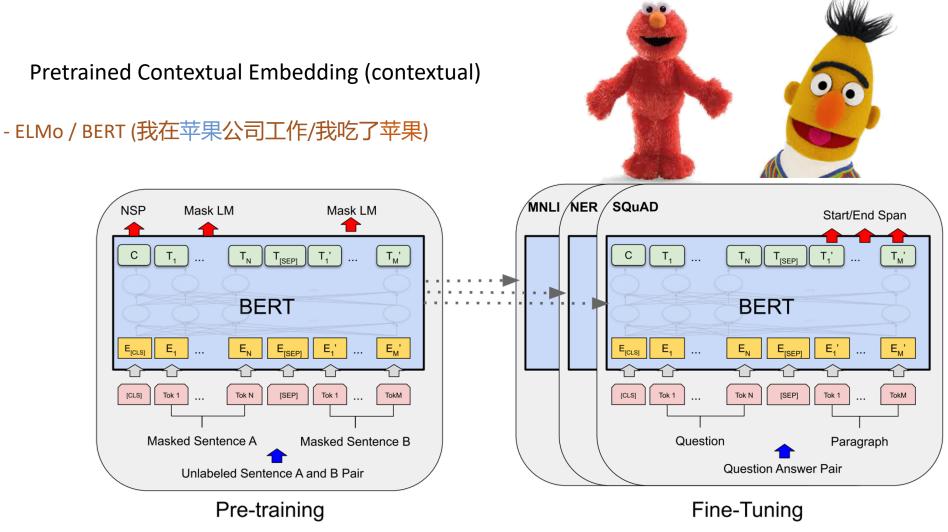
数据集 OOV 统计

Arch	Model	CoNLL02-Spanish		CoNLL02-Dutch		Twitter-English		CoNLL03-German	
AICII	Widden	Dev	Test	Dev	Test	Dev	Test	Dev	Test
<i>k</i>	RandomUNK	69.36	72.06	64.23	64.08	56.88	56.38	55.92	56.89
	SingleUNK	68.79	71.59	67.83	66.39	56.82	56.39	59.69	60.16
	[Lazaridou <i>et al.</i> , 2017]	68.61	69.08	65.99	65.43	47.72	47.20	47.87	49.17
LSTM	[Khodak et al., 2018]	68.74	69.53	66.34	65.70	48.22	47.28	47.97	49.33
	[Schick and Schütze, 2018]	70.84	72.88	68.88	67.51	59.18	57.21	55.83	58.42
	[Akbik et al., 2018]	61.78	64.06	60.49	62.09	49.68	50.22	55.06	53.01
	Proposed	73.91	74.63	70.33	70.12	60.14	58.32	60.55	61.79

面对 OOV 鲁棒性

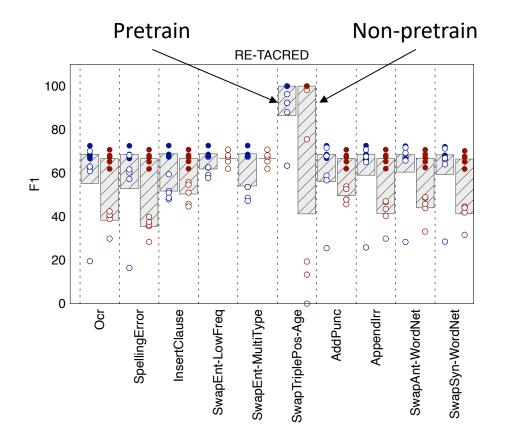
Peng, Minlong, et al., Learning Task-Specific Representation for Novel Words in Sequence Labeling, IJCAI 2019

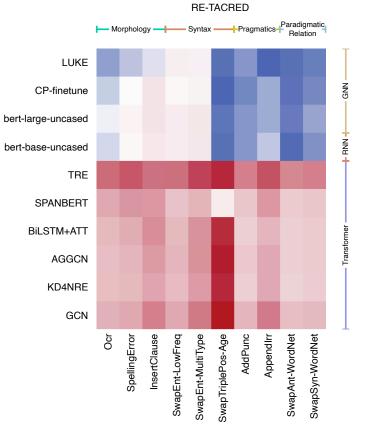
Robustness Improvement from Representation Perspective---Contextual Embedding



 \geq

Robustness Improvement from Representation Perspective---Contextual Embedding





FNLP₂₇

Language Models Need Knowledge

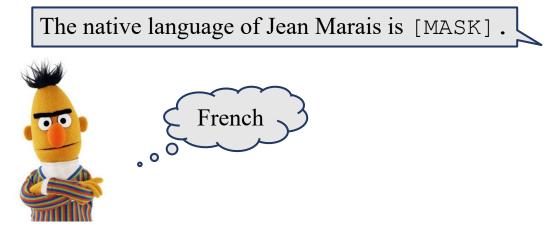
PLMs perform poorly on entity recognition

- Contextualized PLMs achieved small improvements on entity & semantic related tasks compared with non-contextualized methods. (<u>Tenney et al.</u>)
- BPE tokenization breaks entities

The native language of Jean Mara ##is is French.

• Surface form-based reasoning

Daniel Ceccaldi Italian I	French	French	french	french
	French French French French		french french spanish english	italian french spanish english



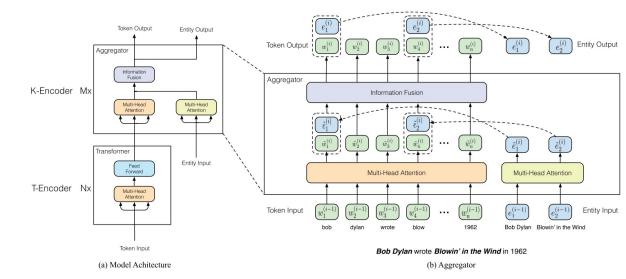
BERT does not know *Daniel Ceccaldi* (as an entity) at all. It just think *Daniel Ceccaldi* looks like an Italian name.

E-BERT: Efficient-Yet-Effective Entity Embeddings for BERT. https://arxiv.org/abs/1911.03681

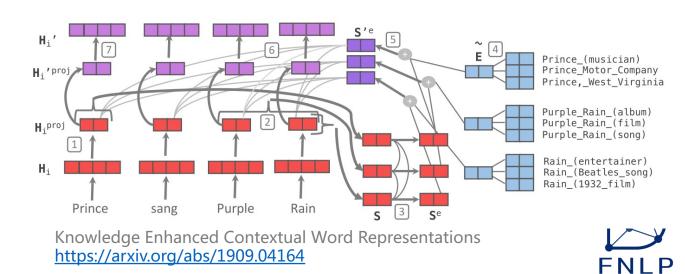
Injecting Knowledge into PLMs

Injecting entity embeddings

- ERNIE, KnowBERT, K-BERT, etc.
- The entity embeddings are NOT
 - Jointly learned along with PLM
 - Contextualized
- Knowledge as supervision
 - WKLM, etc.



ERNIE: Enhanced Language Representation with Informative Entities <u>https://arxiv.org/abs/1905.07129</u>



Robustness Improvement from Representation Perspective---Contextual Embedding

Model	Acc.	Macro	Micro
NFGEC (Attentive)	54.53	74.76	71.58
NFGEC (LSTM)	55.60	75.15	71.73
BERT	52.04	75.16	71.63
ERNIE	57.19	76.51	73.39

Model	FewRel			TACRED		
	P	R	F1	P	R	F1
CNN	69.51	69.64	69.35	70.30	54.20	61.20
PA-LSTM	-	-	-	65.70	64.50	65.10
C-GCN	-	-	-	69.90	63.30	66.40
BERT	85.05	85.11	84.89	67.23	64.81	66.00
ERNIE	88.49	88.44	88.32	69.97	66.08	67.97

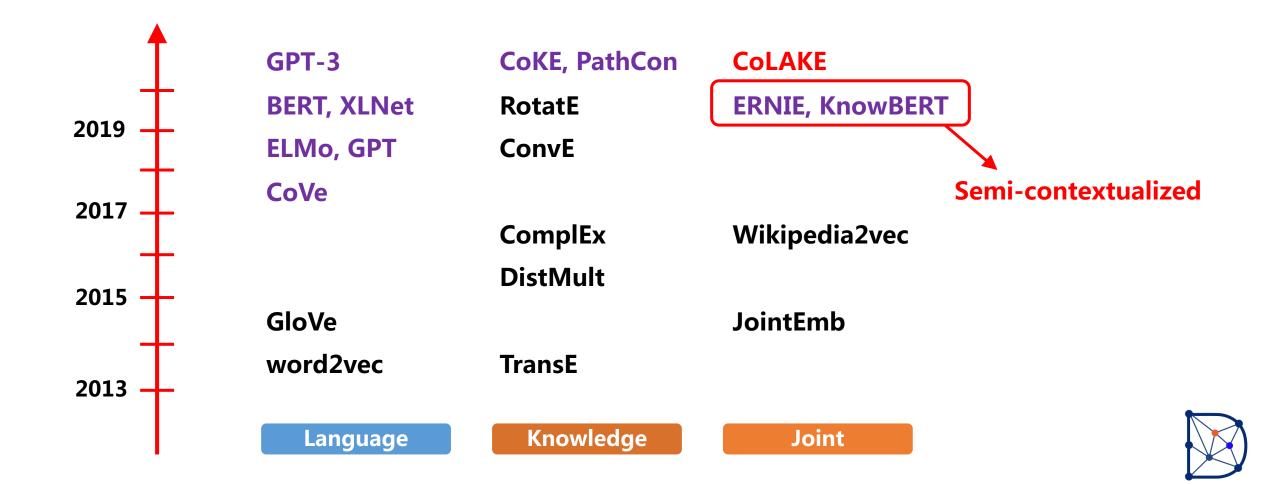
Table 2: Results of various models on FIGER (%).

Table 5: Results of various models on FewRel and TA-CRED (%).

ERNIE 在实体相关的任务上性能更好

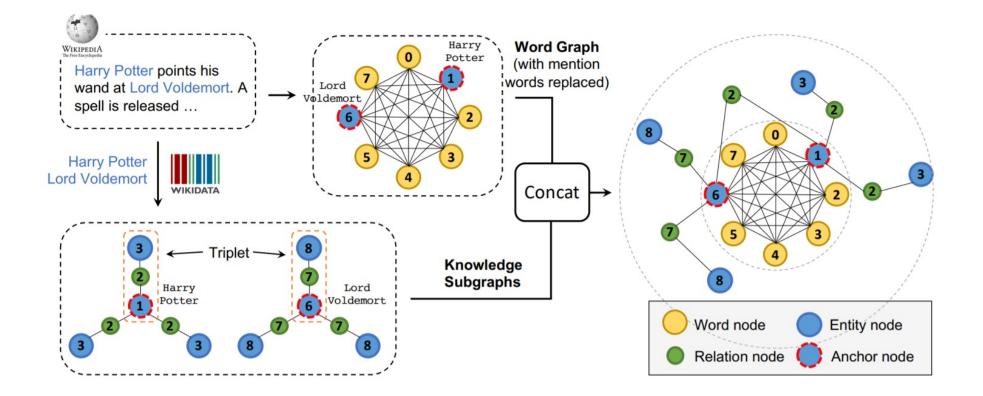
Representation in Language and Knowledge

• Combine the success of both sides -- CoLAKE



Representation – CoLAKE Word-knowledge Graph

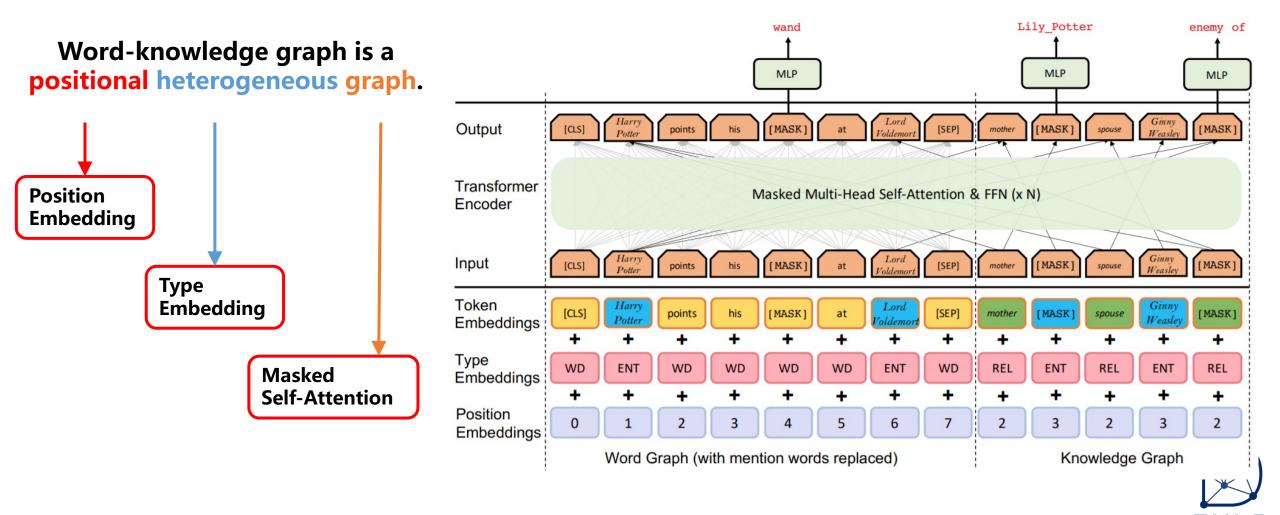
• Word graph + Knowledge subgraph



Sun et al., CoLAKE: Contextualized Language and Knowledge Embedding, COLING 2020.

Representation – CoLAKE Word-knowledge Graph

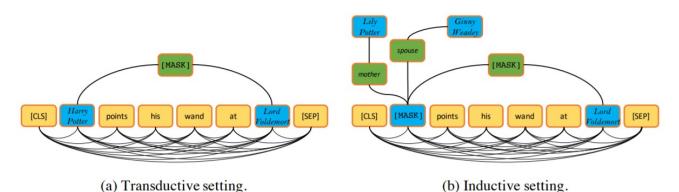
Modify Transformer for word-knowledge graph



Sun et al., CoLAKE: Contextualized Language and Knowledge Embedding, COLING 2020.

Representation – CoLAKE Word-knowledge Graph

• Word-knowledge graph completion



Transductive setting TransE (Bordes et al., 2013) 67.30 60.28 70.96 79.75 15.97 DistMult (Yang et al., 2015) 69.69 79.61 27.09 60.56 48.66 ComplEx (Trouillon et al., 2016) 26.73 61.09 49.80 70.64 79.78 RotatE (Sun et al., 2019) 30.36 70.90 64.74 74.89 81.05 CoLAKE 82.48 98.58 2.0372.14 92.19 Inductive setting DKRL (Xie et al., 2016) 8.18 7.28 14.13 168.21 5.03 CoLAKE 31.01 28.10 15.69 30.28 58.05

MRR

HITS@1

HITS@3

HITS@10

MR J

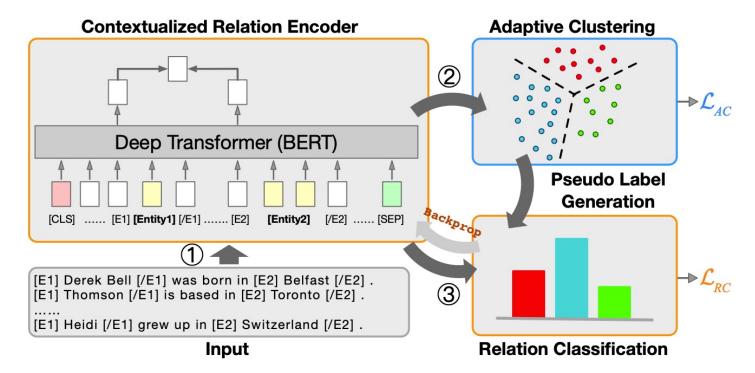
Results on word-knowledge graph completion

Model

FNLP

Sun et al., CoLAKE: Contextualized Language and Knowledge Embedding, COLING 2020.

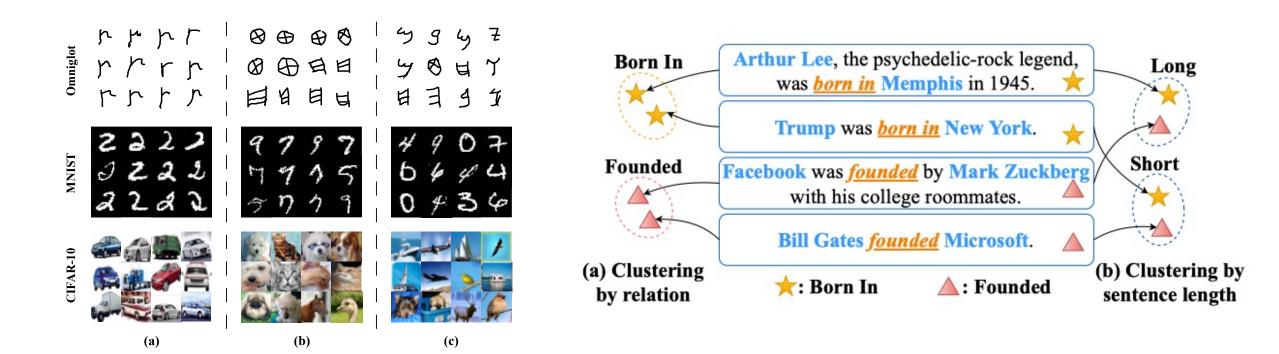
2 Representation---Target Oriented



Open Relation Extraction via Self-supervised Learning.

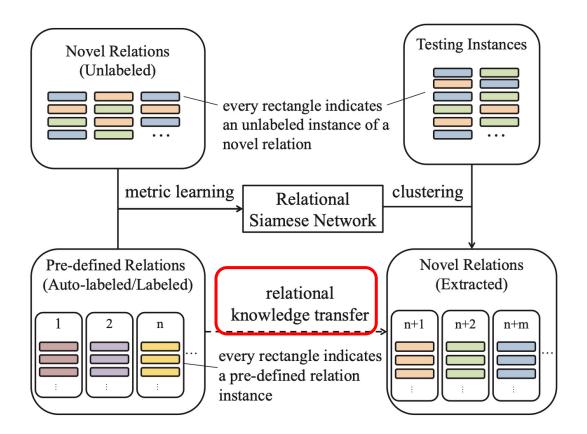
Hu, Xuming, et al. "SelfORE: Self-supervised Relational Feature Learning for Open Relation Extraction." EMNLP 2020.

Representation---Target Oriented



Problem in Unsupervised Clustering

Gui et al., Constructing Multiple Tasks for Augmentation: Improving Neural Image Classification With K-means Features, AAAI 2020.

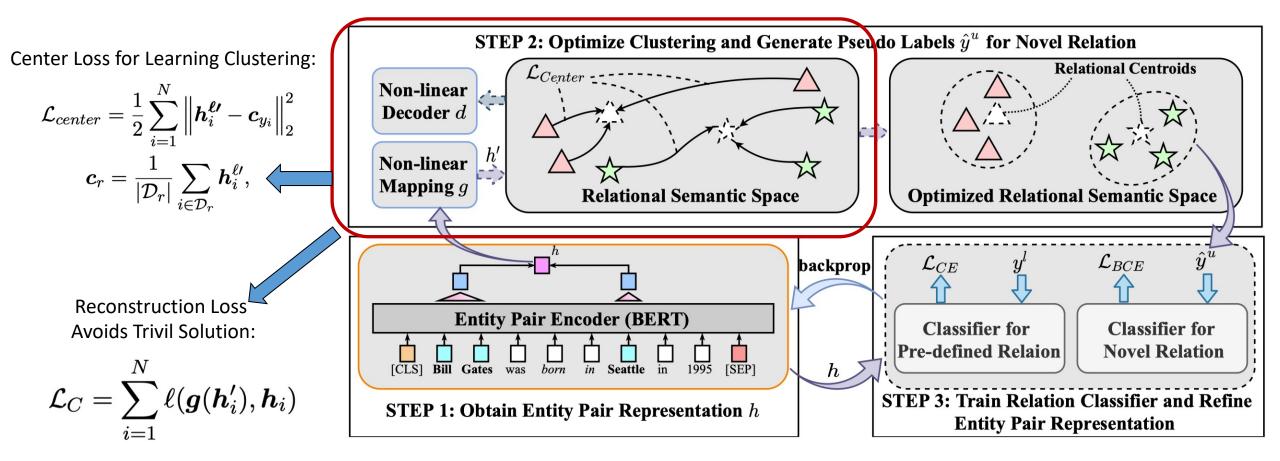


Transfer knowledge from Labeled Data

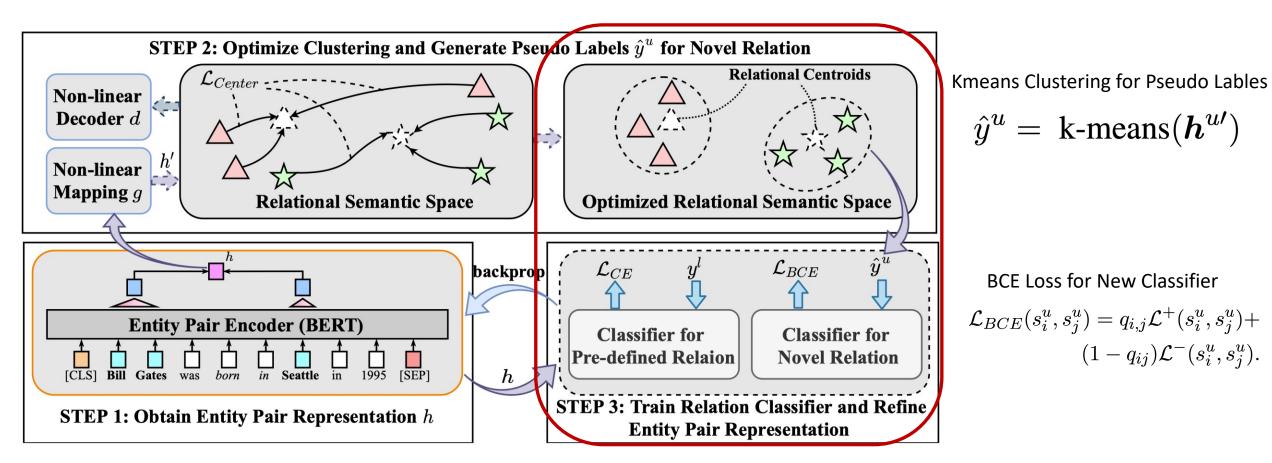
Twain was max a **v**_l writer of America classifier distance -> 0.7 Kenji p was a V_r poet of Japan position word embeddings embeddings

Relational Siamese Networks

Wu et al., Open Relation Extraction: Relational Knowledge Transfer from Supervised Data to Unsupervised Data, EMNLP 2019.



Overview of our proposed RoCORE method.

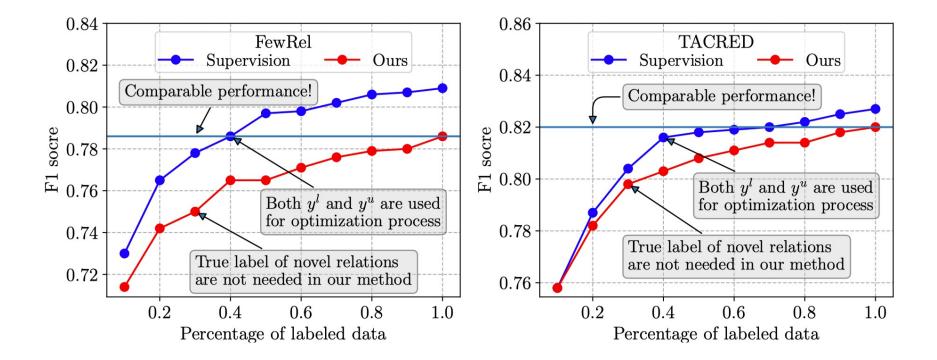


Overview of our proposed RoCORE method.

0-63 Labeled 64-79 Unlabeled

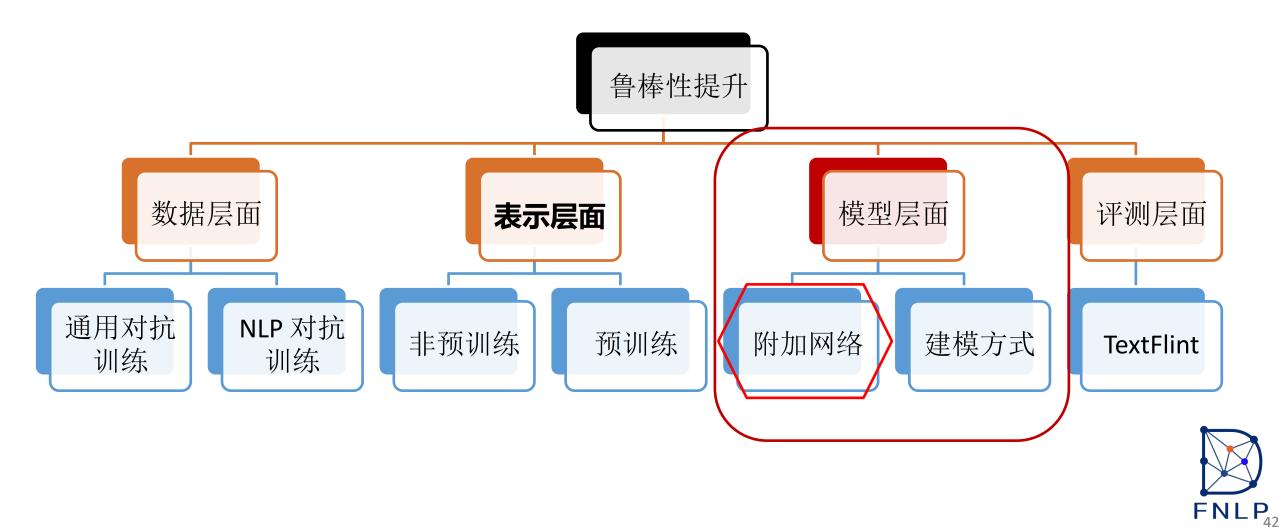
0-30 Labeled 31-40 Unlabeled

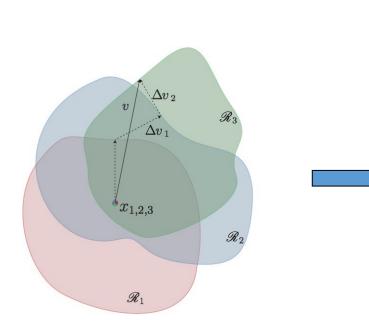
Method	FewRel			TACRED		FewRel → TACRED			TACRED → FewRel			
	P	R	F_1	P	R	F_1	P	R	F_1	P	R	F_1
VAE	0.179	0.697	0.285	0.234	0.606	0.338	0.234	0.606	0.338	0.179	0.697	0.285
RW-HAC	0.318	0.460	0.376	0.534	0.568	0.551	0.534	0.568	0.551	0.318	0.460	0.376
RSN	0.496	0.734	0.592	0.628	0.634	0.631	0.398	0.617	0.484	0.233	0.567	0.331
RSN+BERT	0.585	0.899	0.709	0.795	0.878	0.834	0.379	0.843	0.523	0.262	0.898	0.406
RoCORE	$\boldsymbol{0.749}_{12}$	0.846_{09}	0.794 ₀₉	$\boldsymbol{0.871}_{42}$	0.849_{35}	0.860 ₃₄	0.616 ₃₃	0.599_{57}	0.607 ₄₁	0.687 ₃₅	0.766_{46}	$\boldsymbol{0.724}_{25}$
	$\longleftarrow \qquad \qquad$				Cross Domain				\implies			



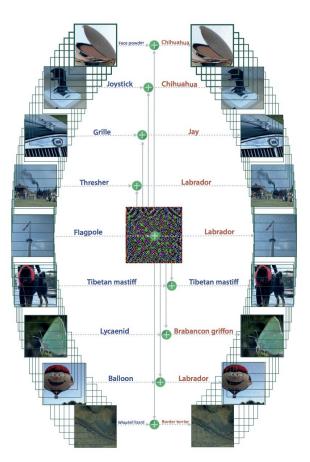
Model performance with different amounts of labeled data.

0 General Framework of Natural Language Processing

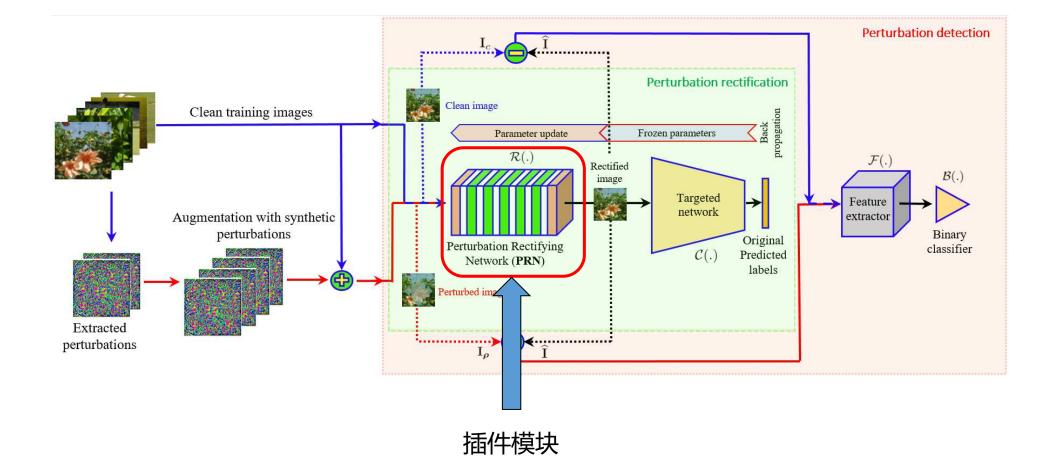




3



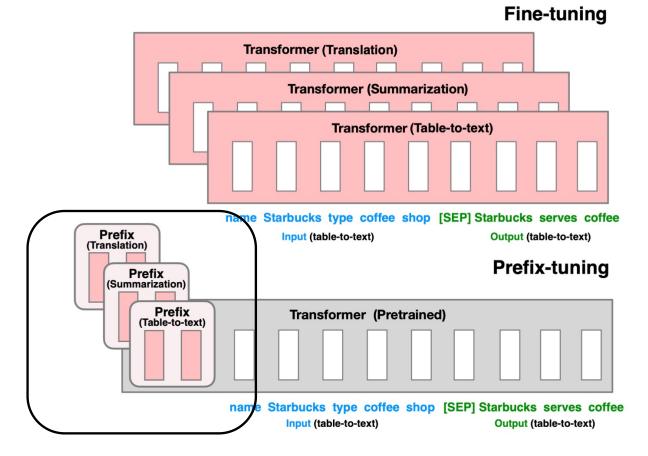
Moosavi-Dezfooli, Seyed-Mohsen, et al. "Universal adversarial perturbations." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2017.



Akhtar, Naveed, Jian Liu, and Ajmal Mian. "Defense against universal adversarial perturbations." CVPR 2018.

3

3

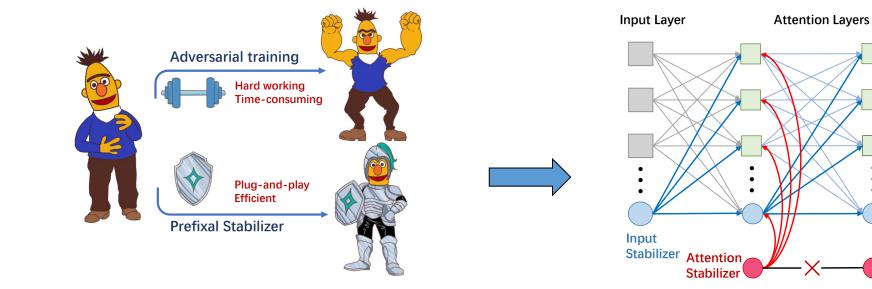


Prefix Tuning

FNLP₄₅

Li, Xiang Lisa, and Percy Liang. "Prefix-tuning: Optimizing continuous prompts for generation." arXiv preprint arXiv:2101.00190 (2021).

Output Layer



Adversarial training VS Prefixal Stabilizer

Architecture of Prefixal Stabilizer

Rui Zheng et al., Prefixal Stabilizer: A Plug and Play Defense Moduleto Defend Textual Adversarial Attack

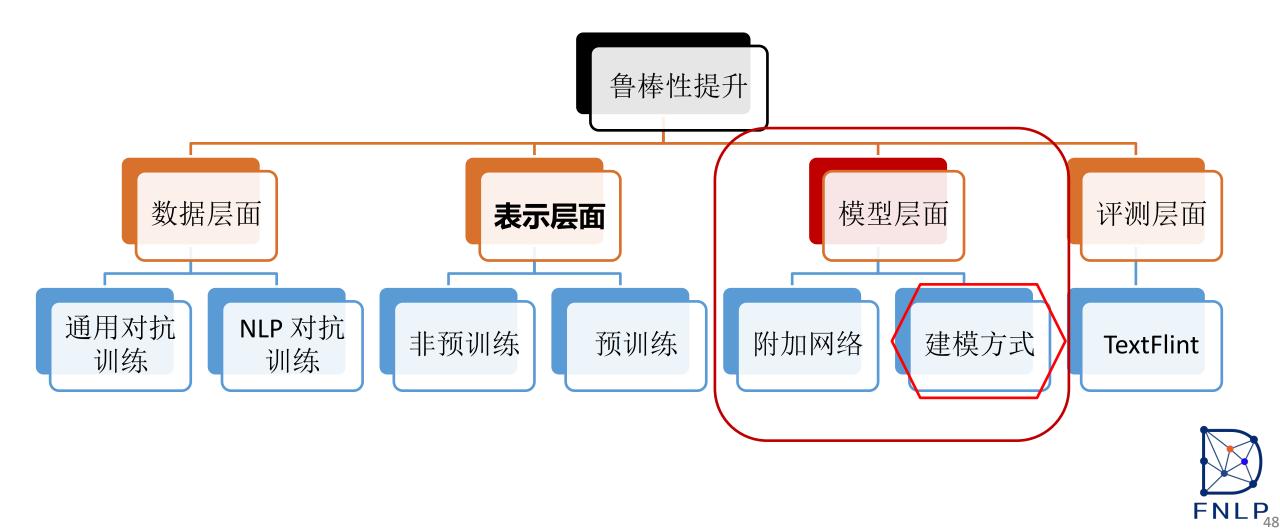
Methods	Clean%	TextFooler		PWWS			TextBugger			
Wethous	Clean /0	Aua%	Suc%	#Query	Aua%	ua% Suc% #Quer		Aua%	Suc%	#Query
Baseline (BERT)	94.2	9.5	89.9	1007.8	20.0	78.8	2654.2	6.0	93.6	1038.7
PGD (Madry et al. 2017)	94.6	25.5	73.0	1416.0	35.0	68.3	2741.5	23.0	75.9	1625.5
FreeLB (Zhu et al. 2019)	94.7	18.0	81.0	1160.7	25.5	73.1	2699.4	19.0	79.9	1445.0
TAVAT (Li and Qiu 2020)	94.3	14.0	85.2	1117.7	14.5	84.6	2625.4	12.0	87.3	1122.6
InfoBERT (Wang et al. 2020)	94.5	23.5	75.1	1374.7	27.5	70.9	2655.9	21.0	77.8	1420.6
MixADA (Si et al. 2021)	03.0	10.5	88.8	1023.4	23.5	75.0	2656.6	6.5	03.1	1077-3
Stabilizer-PGD	93.9	33.5	64.3	1626.6	39.0	58.5	2777.1	32.5	65.4	1845.3
Stabilizer-FreeLB	94.1	24.0	74.5	1300.3	32.5	65.5	2772.6	23.0	75.6	1472.7

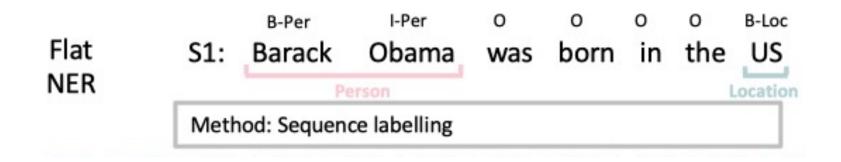
Table 2: Experiment results of different defenders on IMDB, where all models are trained on BERT. The best performance is marked in bold.

Methods				
Methous	Clean%	Aua%	Suc%	<i>‡Query</i>
BERT (SST-2)	90.8	2.0	97.8	564.1
PGD (SST-2)	89.9	20.0	77.8	827.8
FreeLB (SST-2)	89.2	22.0	75.3	874.2
Stabilizer-PGD (SST-2) +BERT (IMDB)	93.7	36.0	61.6	1664.5
Stabilizer-FreeLB (SST-2) +BERT (IMDB)	93.8	34.0	63.7	1536.0

Table 3: Experimental results when the models **trained on SST-2** is transferred to **IMDB for testing**. BERT (fine-tuned on IMDB) equipped with our module (trained on SST-2) has improved robustness to a large extent and has little damage to cleaning accuracy.

0 General Framework of Natural Language Processing

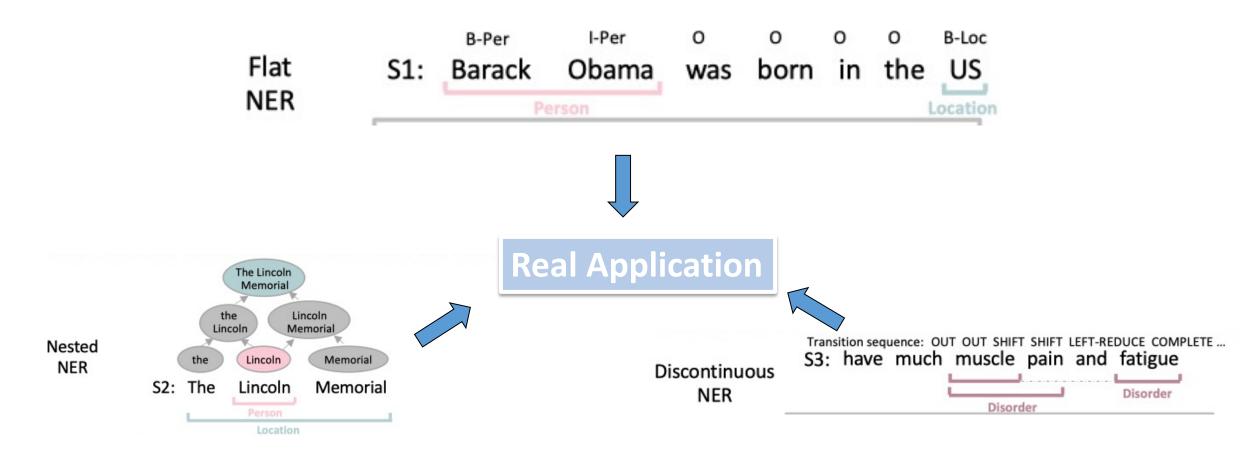




Three kinds of named entities

FNLP

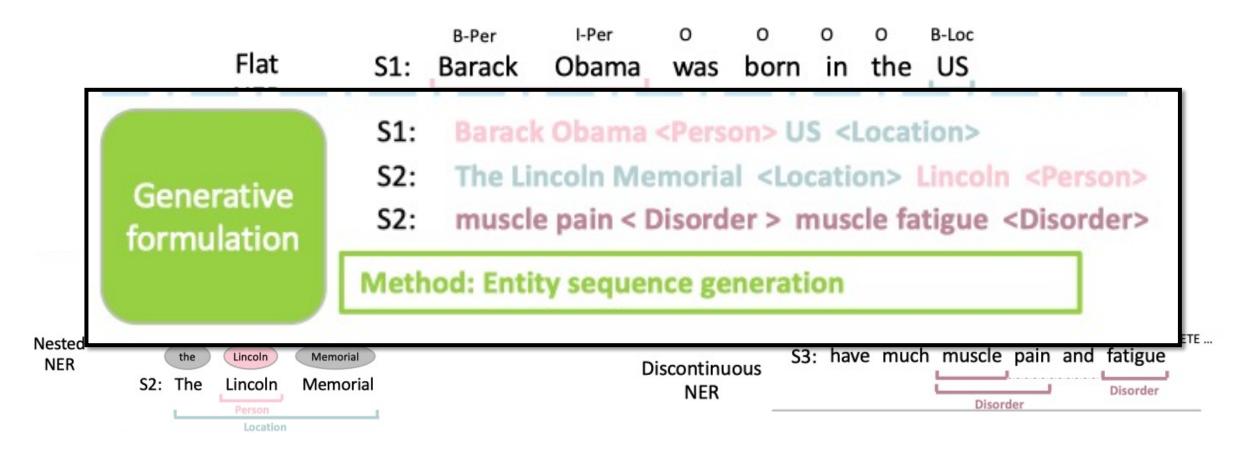
Robustness Improvement form Model Perspective---Modeling Method



The different formulations make it hard to solve all NER tasks in a unified method

Yan et al., A Unified Generative Framework for Various NER tasks, ACL 2021

3



The different formulations make it hard to solve all NER tasks in a unified method

Yan et al., A Unified Generative Framework for Various NER tasks, ACL 2021

3

3

Robustness Improvement form Model Perspective---Modeling Method

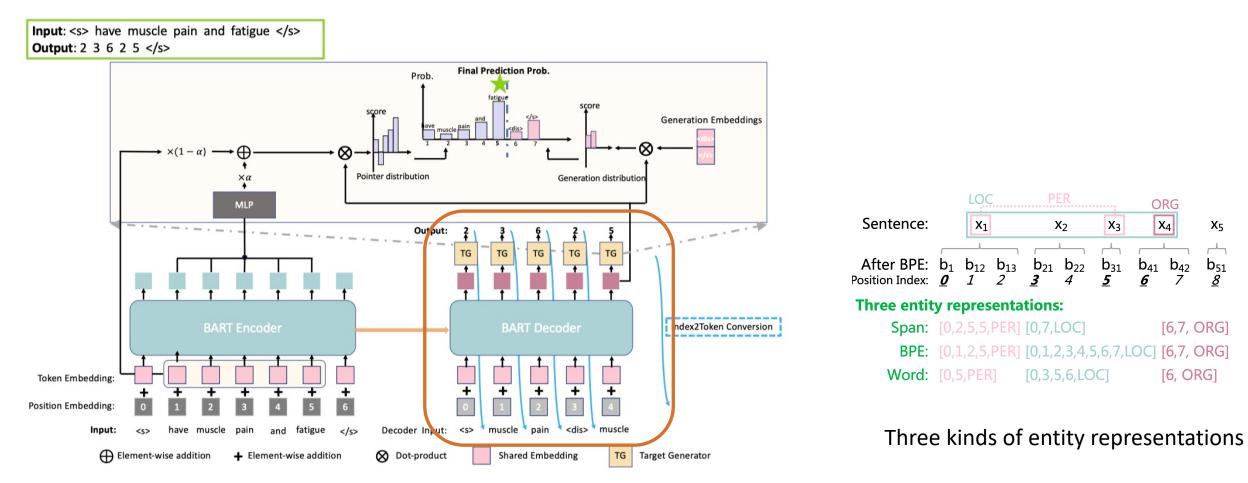
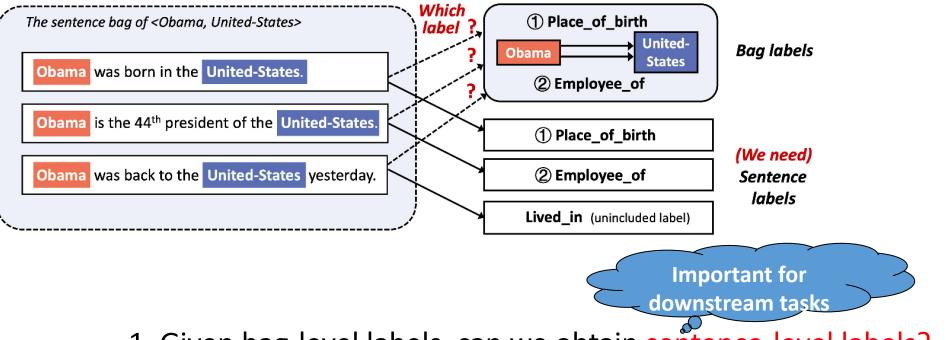


Figure 2: Model structure used in our method. "<s>" and "</s>" are the predefined start-of-sentence and end-ofsentence tokens in BART. We assume the there is only one entity tag "<dis>", therefore, only this token and the "</s>" token need to be generated, other tokens can be generated by the pointer.

Yan et al., A Unified Generative Framework for Various NER tasks, ACL 2021

Robustness Improvement form Model Perspective---Modeling Method



- 1. Given bag-level labels, can we obtain sentence-level labels?
- 2. Sentence bag contains correct labels, incorrect labels, and unincluded labels.
- 3. Previous positive learning framework cannot distinguish noisy data.

SENT: Sentence-level Distant Relation Extraction via Negative Training

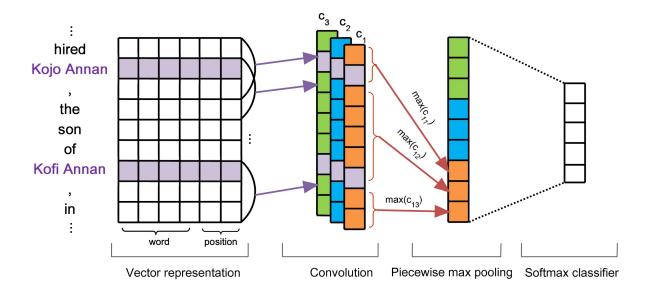


Figure 3: The architecture of PCNNs (better viewed in color) used for distant supervised relation extraction, illustrating the procedure for handling one instance of a bag and predicting the relation between *Kojo Annan* and *Kofi Annan*.

Algorithm 1 Multi-instance learning

- 1: Initialize θ . Partition the bags into minibatches of size b_s .
- 2: Randomly choose a mini-batch, and feed the bags into the network one by one.
- 3: Find the *j*-th instance m_i^j $(1 \le i \le b_s)$ in each bag according to Eq. (9).
- 4: Update θ based on the gradients of m_i^j $(1 \le i \le b_s)$ via Adadelta.
- 5: Repeat steps 2-4 until either convergence or the maximum number of epochs is reached.

Robustness Improvement form Model Perspective---Modeling Method

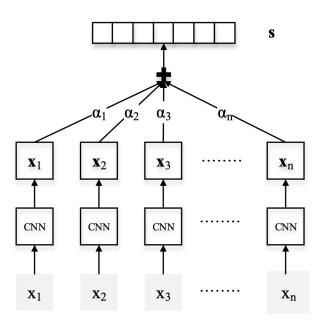


Figure 1: The architecture of sentence-level attention-based CNN, where x_i and x_i indicate the original sentence for an entity pair and its corresponding sentence representation, α_i is the weight given by sentence-level attention, and s indicates the representation of the sentence set.

Attention

Lin et al., Neural relation extraction with selective attention over instances, ACL 2016. Qin et al., Robust Distant Supervision Relation Extraction via Deep Reinforcement Learning, ACL 2018.

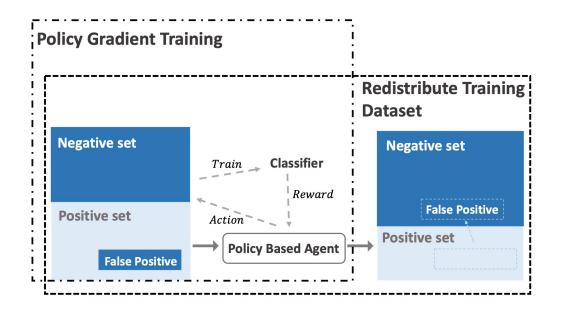


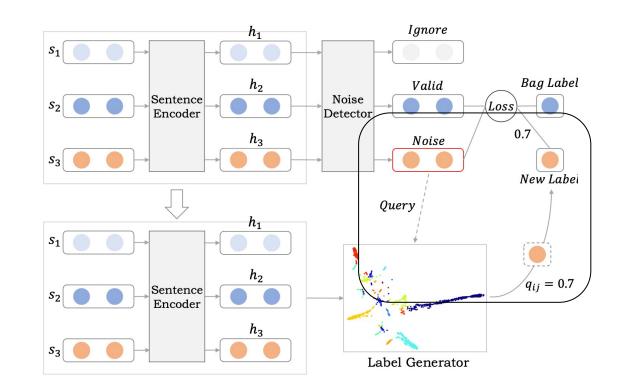
Figure 1: Our deep reinforcement learning framework aims at dynamically recognizing false positive samples, and moving them from the positive set to the negative set during distant supervision.

Reinforcement Learning

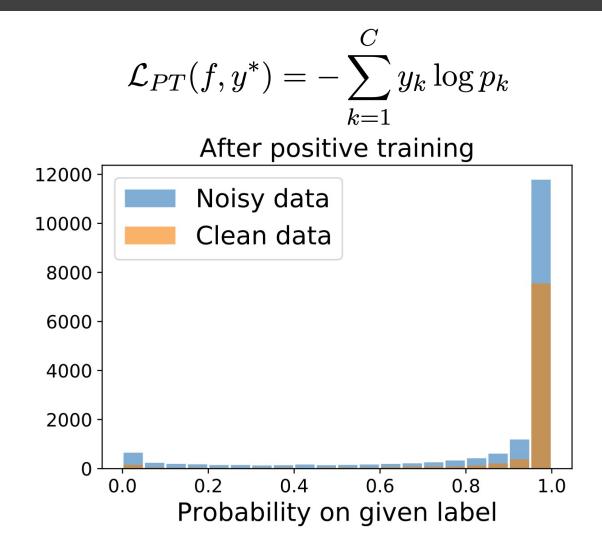
Robustness Improvement form Model Perspective---Modeling Method

	Sentence	Bag Label	Noise?	Correct Label
	#1: Barack Obama was born in the United States.		Yes	born in
Bag	#2: Barack Obama was the first African American to be elected to the president of the United States.	president of	No	president of
	#3: Barack Obama served as the 44th president of the United States from 2009 to 2017.		No	president of

Table 1: An example of sentence-bag annotated by distant supervision. "Yes" and "No" indicate whether or not each sentence is a noisy sentence. "Correct Label" means the true relationship between the entity pair expressed in each sentence.



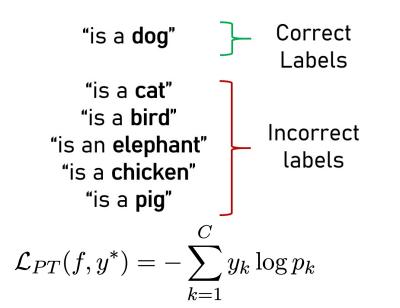
Shang, et al., Are Noisy Sentences Useless for Distant Supervised Relation Extraction? AAAI 2020.



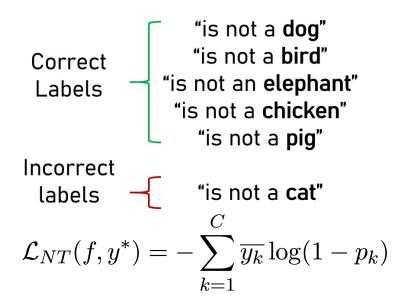
Positive Training 范式很难区分出干净数据与噪音数据

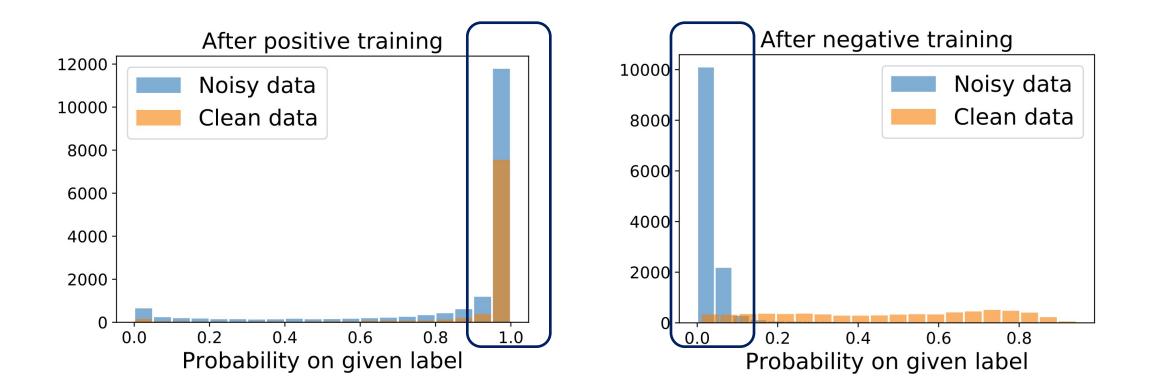
2 Noisy Label in Distant Supervision

Positive Training



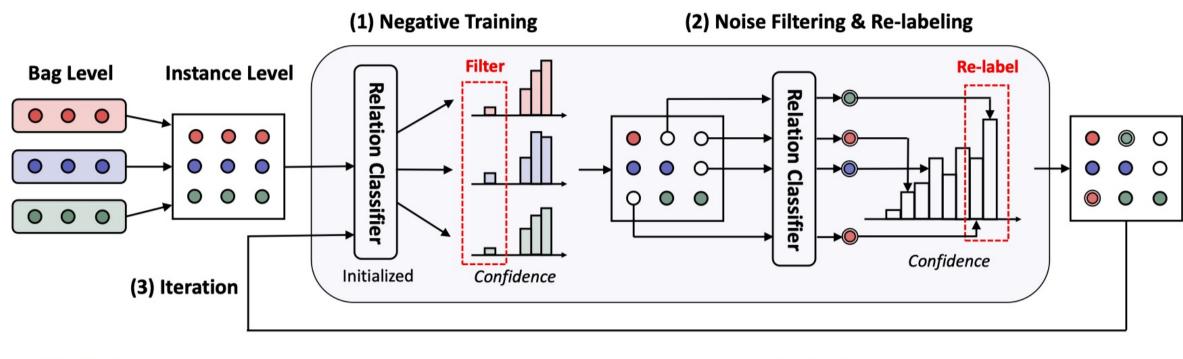
Negative Training





Comparison between positive and negative training

Noisy Label in Distant Supervision

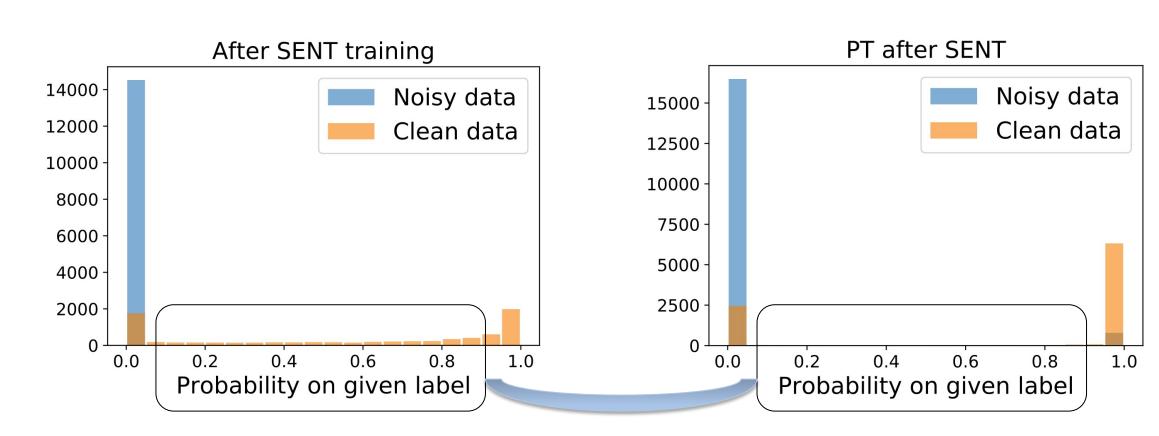


🔵 🔘 🖉 Instances with relation labels A, B, C 🛛 🔿 Filtered instances 🖉 🔘 🔘 Instances re-labeled to label A, B, C

An overview of the proposed framework, SENT, for sentence-level distant RE.

- (1) Negative training for separating the noisy data from the training data
- (2) Noise-filtering and re-labeling
- (3) Iterative training to further boost the performance.

Ma et al., SENT: Sentence-level Distant Relation Extraction via Negative Training, ACL 2021



(1) After SENT training, the clean and noisy data are further separated(2) PT after SENT helps improve the convergence of the clean data

Ma et al., SENT: Sentence-level Distant Relation Extraction via Negative Training, ACL 2021

Data	sets	NYT-10	noisy-TACRED
Lal	bel	24	41
	inst.	371461	68124
Train	posi.	110518	13012
	noise	unknown	20586
Dev	inst.	2379	22631
	posi.	337	5436
Test	inst.	2164	15509
	posi.	323	3325

Table 1: Statistics of datasets.

Method		Dev			Test	
	Prec.	Rec.	F1	Prec.	Rec.	F1
CNN(Zeng et al., 2014)	38.32	65.22	48.28	35.75	64.54	46.01
PCNN(Zeng et al., 2015)	36.09	63.66	46.07	36.06	64.86	46.35
BiLSTM(Zhang et al., 2015)	36.71	66.46	47.29	35.52	67.41	46.53
BiLSTM+ATT(Zhang et al., 2017)	37.59	64.91	47.61	34.93	65.18	45.48
BERT(Devlin et al., 2019)	34.78	65.17	45.35	36.19	70.44	47.81
BiLSTM+BERT(Devlin et al., 2019)	36.09	73.17	48.34	33.23	72.70	45.61
PCNN+SelATT(Lin et al., 2016)	46.01	30.43	36.64	45.41	30.03	36.15
PCNN+RA_BAG_ATT(Ye and Ling, 2019)	49.84	46.90	48.33	56.76	50.60	53.50
CNN+RL ₁ (Qin et al., 2018)	37.71	52.66	43.95	39.41	61.61	48.07
$CNN+RL_2$ (Feng et al., 2018)	40.00	59.17	47.73	40.23	63.78	49.34
ARNOR(Jia et al., 2019)	62.45	58.51	60.36	65.23	56.79	60.90
SENT (BiLSTM)	66.44	56.97	61.34	71.80	59.13	64.86
SENT (BILSTM+BERT)	69.43	63.72	66.45	75.78	63.82	69.29

Table 2: Main results on sentence-level evaluation. Compared baselines include normal RE model (the first part of the table), and models for distant RE (the second part of the table)

13012 correct samples 20586 incorrect samples

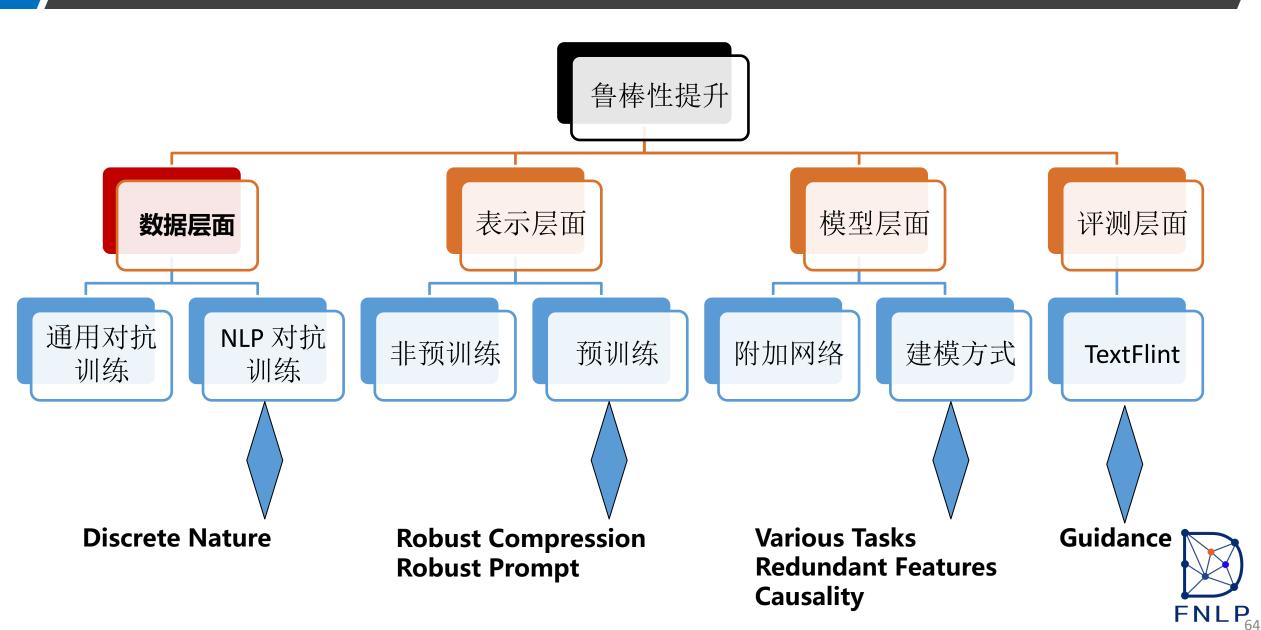
	Method	Prec.	Rec.	F1
Clean	BiLSTM+ATT	67.7	63.2	65.4
	BiLSTM		61.7	
Noisy Data	BiLSTM+ATT	32.8	43.8	37.5
	BiLSTM	37.8	45.5	41.3
	SENT (biLSTM)	66.0	52.9	58.7

Table 4: Model performance on clean and noisy-TACRED. When trained on noisy data, the performance of base models degrade dramatically while SENT achieves comparable results with the models trained on clean data.

323 Samples including 200 incorrect samples

Noise Reduction	Prec.	Rec.	F1
$CNN+RL_2$	40.58	96.31	57.10
ARNOR	76.37	68.13	72.02
SENT (biLSTM)	80.00	88.46	84.02
SENT (biLSTM+BERT)	84.33	85.67	84.99

Table 3: The noise-filtering effect evaluated on a noiseannotated test set of NYT-10. Conclusion



Thanks for your attention!

