Language and Intelligence Summit Beijing, July 23, 2017

Toward Neural Symbolic Processing

Hang Li Noah's Ark Lab Huawei Technologies

Outline

- Overview on Natural Language Processing
- Neural Symbolic Processing
- Intelligent Information and Knowledge Management System
- Related Work
- Our Work
- Summary

Ultimate Goal: Natural Language Understanding

Natural Language Understanding

• Two definitions:

- Representation-based: if system creates proper internal representation, then we say it "understands" language
- Behavior-based: if system properly follows instruction in natural language, then we say it "understands" language, e.g., "bring me a cup of tea"
- We take the latter definition

Five Characteristics of Human Language

- Incompletely Regular (Both Regular and Idiosyncratic)
- Compositional (or Recursive)
- Metaphorical
- Associated with Knowledge
- Interactive

Natural Language Understanding by Computer Is Extremely Difficult

- It is still not clear whether it is possible to realize human language ability on computer
- On modern computer
 - The incomplete regularity and compositionality characteristics imply complex combinatorial computation
 - The metaphor, knowledge, and interaction characteristics imply exhaustive computation
- Big question: can we invent new computer closer to human brain?

Reason of Challenge

- A computer system must be constructed based on math
- Open question: whether it is possible to process natural language *as humans*, using math models
- Natural language processing is believed to be AI complete

Data-driven Approach May Work

- Hybrid is most realistic and effective for natural language processing, and AI
 - machine learning based
 - human-knowledge incorporated
 - human brain inspired
- Big data and deep learning provides new opportunity

AI Loop

Fundamental Problems of Statistical Natural Language Processing

Classification: assigning a label to a string

 $s \rightarrow c$

• Matching: matching two strings

 $s, t \rightarrow \mathbf{R}^+$

Translation: transforming one string to another

 $s \rightarrow t$

- Structured prediction: mapping string to structure given knowledge $s \rightarrow s'$
- Sequential decision process: continuously choosing an action in a state, where the process randomly moves between states

Fundamental Problems of Statistical Natural Language Processing

- Classification
 - Text classification
 - Sentiment analysis
- Matching
 - Search
 - Question answering
 - Dialogue (single turn)
- Translation
 - Machine translation
 - Speech recognition
 - Handwriting recognition
 - Dialogue (single turn)

- Structured Prediction
 - Named entity extraction
 - Part of speech tagging
 - Sentence parsing
 - Semantic parsing
- Sequential Decision Process
 - Dialogue (multi turn, task dependent)

Lower Bound of User Need vs Upper Bound of Technology

Future Trends of Natural Language Processing

Speech recognition and machine translation are taking-off

– There are still issues to be solved, e.g., long tail challenge

- Single turn dialogue and single turn question answering will take-off
 - Task-dependent single turn dialogue will be gradually used
 Single turn question answering will be gradually used
- Multi-turn dialogue needs more research
 - Reinforcement learning can be key technology
 - Data needs to be collected first, and then the AI loop can be run

Outline

- Overview on Natural Language Processing
- Neural Symbolic Processing
- Intelligent Information and Knowledge Management System
- Related Work
- Our Work
- Summary

Combination of Neural Processing and Symbolic Processing

Neural Symbolic Processing

Prof. Yoshua Bengio's Comment

- Injecting symbols into neural works would be difficult, even impossible
- However, externally combining symbolic processing with neural processing should work
- This particularly makes sense for question answering and dialogue

Outline

- Overview on Natural Language Processing
- Neural Symbolic Processing
- Intelligent Information and Knowledge Management System
- Related Work
- Our Work
- Summary

Intelligent Information and Knowledge Management System

Use Phase

Intelligent Information and Knowledge Management System Learning Phase

Characteristics and Current Status

- Continuously accumulates information and knowledge
- Properly performs question answering in natural language,
 - Answers when it knows
 - Says "I don't know", when it does not know
- Ideally, system is automatically constructed without human involvement
- Becomes intelligent assistant of human
 - Note that computer has two powerful capabilities, computing and storage
- Currently, only partially realized, cf., search engine

Neural Symbolic Processing for Information and Knowledge Management

Outline

- Overview on Natural Language Processing
- Neural Symbolic Processing
- Intelligent Information and Knowledge Management System
- Related Work
- Our Work
- Summary

Semantic Parsing

- **Executor:** execute command based on logic form and context y = z
- **Grammar:** set of rules for creating derivations based on input D(x,c) and context
- **Model:** model for ranking derivations with parameters $P_{\theta}(d | x, c)$
- **Parser:** find most likely derivation under learned model d^*
- **Learner:** learn parameters of model θ from data $\{(x_i, c_i, y_i)\}_{i=1}^n$

Liang 2016

Never Ending Language Learning (NELL)

- Task
 - Initial ontology, few examples of each category predicate, the web, occasional interaction from humans
 - Extract more facts from web
 - Learn to read better than before
- System
 - KB with 15 million candidate beliefs
- Technologies

 Coupled semi-supervised learning, automatic discovery of new coupling constraints, automatic extending of ontology, staged curriculum

Mitchell et al. 2015

Memory Networks

- Long term memory + inference
- Model is learned
- Can answer factoid
 questions
- Acc = 40%+

- Example
 - John is in the playground.
 - Bob is in the office.
 - John picked up the football.

Weston et al. 2014

- Bob went to the kitchen.
- Q: where is the football?
- A: playground

Differentiable Neural Computers

- DNC = neural network + external memory (matrix)
- Memory represents complex data structures
- Neural network, learned from data and supervised learning, controls access to memory
- Memory heads use three forms of differentiable attention
- Resembling mammalian
 hippocampus

Graves et al. 2016

Outline

- Overview on Natural Language Processing
- Neural Symbolic Processing
- Intelligent Information and Knowledge Management System
- Related Work
- Our Work
- Summary

Researchers

Zhengdong Lu

Xin Jiang

Lifeng Shang

Question Answering from Knowledge Graph

Q: How tall is Yao Ming? A: He is 2.29m tall and is visible from space. (Yao Ming, height, 2.29m)

Q: Which country was Beethoven from?A: He was born in what is now Germany.(Ludwig van Beethoven, place of birth, Germany)

Learning System

Knowledge Graph

(Yao-Ming, spouse, Ye-Li) (Yao-Ming, born, Shanghai) (Yao-Ming, height, 2.29m)

(Ludwig van Beethoven, place of birth, Germany)

Q: How tall is Liu Xiang?

Question Answering System Answer is generated

A: He is 1.89m tall

Encoder creates question representation, decoder generates answer

Matches and retrieves most relevant answer representation Triples in symbolic representations (indexed) & neural representation

Question Answering from Relational Database

Q: How many people participated in the game in Beijing? A: 4,200 SQL: select #_participants, where city=beijing

Q: When was the latest game hosted?
A: 2012
SQL: argmax(city, year)

Learning System

Relational Database

year	city	#_days	#_med als
2000	Sydney	20	2,000
2004	Athens	35	1,500
2008	Beijing	30	2,500
2012	London	40	2,300

Q: Which city hosted the longest Olympic game before the game in Beijing?

Question Answering System

A: Athens

Encoder creates question representation, decoder simply returns answer Matches question representation to table representations to find answer Feature and values are in symbolic representations and neural representation

Summary

- Intelligent Information and Management System
 - Can automatically acquire information and knowledge
 - Can accurately answer questions from humans
- Should be most important topic for research in AI
- Neural Symbolic Processing should be most promising approach
- Recent research is making progress
- Many open questions and challenges

References

- 李航,迎接自然语言处理新时代,计算机学会通讯,2017年第2期
- 李航,简论人工智能,计算机学会通讯,2016年第3期
- 李航,对于AI我们应该期待什么,计算机学会通讯,2016月第11期
- 李航,技术的上界与需求的下界,新浪博客,2014年
- Jun Yin, Xin Jiang, Zhengdong Lu, Lifeng Shang, Hang Li, Xiaoming Li. Neural Generative Question Answering. Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI'16), 2972-2978, 2016.
- Pengcheng Yin, Zhengdong Lu, Hang Li, Ben Kao. Neural Enquirer: Learning to Query Tables with Natural Language. Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI'16), 2308-2314, 2016.
- Lili Mou, Zhengdong Lu, Hang Li, Zhi Jin. Coupling distributed and symbolic execution for natural language queries. To appear in ICML, 2017.

Thank You!