基于深度学习的机器翻译
摘要:机器翻译研究如何利用计算机实现自然语言之间的自动翻译,是人工智能和自然语言处理领域的重要研究方向之一。基于深度学习的机器翻译方法主张利用神经网络直接实现自然语言之间的自动翻译,通过注意力机制有效处理长距离依赖,目前已取代传统的统计机器翻译成为学术界和工业界新的主流方法。报告将首先介绍基于深度学习的机器翻译的基本思想和主要方法,然后对清华大学自然语言处理组在该方向的研究进展进行介绍,最后对基于深度学习的机器翻译的未来发展方向进行展望。
简历:刘洋,清华大学计算机科学与技术系副教授,博士生导师,国家优秀青年基金获得者。研究方向是自然语言处理,在自然语言处理和人工智能领域重要国际刊物Computational Linguistics和国际会议ACL、IJCAI、AAAI、EMNLP和COLING上发表50余篇论文,获ACL 2017 Outstanding Paper奖和COLING/ACL 2006优秀亚洲自然语言处理论文奖。承担10余项国家自然科学基金、国家863计划、国家科技支撑计划和国际合作项目,2015年获国家自然科学基金优秀青年项目资助。获得2015年国家科技进步二等奖、2014年中国电子学会科学技术奖科技进步类一等奖、2009年北京市科学技术奖二等奖和2014年中国中文信息学会钱伟长中文信息处理科学技术奖汉王青年创新奖一等奖等多项科技奖励。担任中国中文信息学会青年工作委员会主任兼计算语言学专业委员会秘书长、ACM TALLIP Associate Editor、国际计算语言学学会SIGHAN Information Officer、ACL 2015组织委员会共同主席、ACL 2014讲习班共同主席、ACL 2017与EMNLP 2016程序委员会机器翻译领域共同主席。