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Abstract. Web queries are time sensitive which implies that user’s in-
tent for information changes over time. How to recognize temporal in-
tents behind user queries is crucial towards improving the performance
of search engines. However, to the best of our knowledge, this problem
has not been studied in existing work. In this paper, we propose a time-
based query classification approach to understand user’s temporal intent
automatically. We first analyzed the shared features of queries’ tempo-
ral intent distributions. Then, we present a query taxonomy which group
queries according to their temporal intents. Finally, for a new given query,
we propose a machine learning method to decide its class in terms of its
search frequency over time recorded in Web query logs. Experiments
demonstrate that our approach can understand users’ temporal intents
effectively.
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1 Introduction

World Wide Web is a dynamic information space in which the number and
content of pages continuously change over time. And, many queries could only
be answered accurately under a specific temporal pattern. That is, queries are
dynamic. When a user submits a query to a search engine, Query’s Temporal
Intent is the time of the target information which satisfies the user’s needs. The
temporal intent may include one/several time points or periods of time. And, it
is dynamic and varies with time. A direct application of query’s temporal intent
is to provide search result pages for users more accurately by limiting these
pages’ publishing time belonging to the intent. In addition, search results can be
grouped according to the multiple temporal intents. This can ensure the diversity
of the search results. For example, a user specifying a query ‘presidents cup’ may
need information related to one of many possible subtopics: the Presidents Cup in
golf, chess, tennis, football etc., and they are belong to different temporal periods.
Obviously, detecting all these subtopics by semantics is difficult. However, it
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is relatively easy to identify the query’s temporal intents. Then, they can be
utilized to improve or diversify the search results. Therefore, it is necessary to
study a query temporal intent detection algorithm which can be used to discover
a query’s temporal intent automatically. However, due to queries submitted by
users are usually short and ambiguous, as well as temporal intent is dynamics
and its statistical properties of the target variable change over time in unforeseen
ways, this problem is non-trivial.

In this paper, we propose a time-based query classification approach to try to
detect user query’s temporal intent automatically. We first analyze the shared
features of queries’ temporal intents distributions, such as full-time intent, most
recent time intent, or burst time intent. And, these features can help to obtain
some time-related latent semantics under queries. Based on this intuitional ob-
servation, we present a query taxonomy which group queries according to their
temporal intents. Then, we observed that query’s temporal intent can be de-
tected from its search frequency distributions over time. Thus, for a new given
query, we propose an algorithm to decide its class in terms of its search frequency
curve recorded in Web query logs. The class of a query implicitly represents the
user’s temporal intent of her information need which can help to understand the
query better. We have collected a large amount of queries from TREC (Text
REtrievl Conference) and manually annotated their categories. Experimental
results indicate that our time-based query classification algorithm can group
queries effectively.

The rest of this paper is organized as follows. We introduce related work in
Section 2. In Section 3, we present a query taxonomy which group queries ac-
cording to their temporal intents. Section 4 gives our method of temporal intent
based query classification. In section 5 we discuss the corresponding experiments.
We make some conclusions and our future work in Section 6.

2 Related Work

There is a large amount of previous work on exploring temporal characteristics
of Web queries. Zhou et al. [1] defined temporal intent variability as popularity
changes between the subtopics of a single topic (query) over time. For a given
query, they first calculated the probability of interest of each subtopic over its all
subtopics. Then they used the mean of the standard deviation of each subtopic
as the temporal intent variability of the query. Shokouhi [2] investigated seasonal
query type which represent seasonal events repeat every year and initiate sev-
eral temporal information needs. He focused on detecting seasonal queries using
time-series analysis. He first decomposed a query’s sequence into three compo-
nents: level, trend and season. Then, if the decomposed season component and
raw sequence have similar distributions, he classified the query as seasonal. [3]
presented an approach for understanding the time-varying search query relation-
ships which express commonality in user intent among multiple search queries
at a given time. The time-varying query interactions reflect the changing user
needs over some time period.
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Zhang et al. took the temporal features of queries into consideration in query
substitution for ad search [4]. They extracted temporal features from query fre-
quency curves and proposed a novel temporal similarity measurement by inte-
grating these new features with the query frequency distribution. Jones and Diaz
in [5] pointed out that temporal properties of queries can be used to diagnose the
quality of the retrieval. They presented three temporal classes of queries: atem-
poral query, temporally unambiguous query and temporally ambiguous query.
Metzler et al. [6] investigated implicitly year qualified queries which is a query
that does not actually contain a year, but yet the user may have implicitly for-
mulated the query with a specific year in mind. Asuar et al. [7] studied temporal
signatures of three different types of queries - Navigational, Adult and News
queries, and proposed a method to classify a query into these three types by
computing trends in query-clicks over time.

Chien and Immorlica utilized temporal correlation to identify sets of similar
queries, suggesting that queries with similar frequency patterns are likely to be
related [8]. They defined a formal metric for temporal similarity between queries
and used it to mine sets of related queries from a search log. Nunes et al. [9]
investigated the use of temporal expressions in Web queries. They found that
temporal expressions are scarcely used in the queries. They also found that these
expressions are more frequently used in certain topics such as Autos, Sports,
News and Holidays. Dakka et al. in [10] proposed a framework for handling
time-sensitive queries and automatically identify the important time intervals
that are likely to be of interest for a query. Then, they built scoring techniques
integrating the temporal aspect into the overall ranking mechanism.

Kira et al. [11] proposed a method to compute word relatedness using temporal
semantics analysis. For a given word, they first represented it as a weighted
vector of concepts extracted from concept repository such as Wikipedia or Flickr
image tags and denoted by a time series. Then, they got two words semantic
relatedness by computing the similarity of all possible concept pairs. Giuseppe
et al. in [12] examined the correlation between relevance and time. Then, they
proposed an approach exploiting the detection of publication time peaks for the
query expansion in the Blog search domain. Kira et al. explored how to use time
series technique to model and predict user behavior over time including trends,
periodicities and surprises[13]. Jaewon and Jure explored temporal dynamics of
online content[14]. They treated mentions or interactions with a particular piece
of contents as a time series. Then, they proposed a k-means like algorithm which
uses a special distance measure to cluster time series by their shape.

Although there is a growth in research investigating temporal characteristics
of queries recently, to the best of our knowledge until now few work has been
done to understand user query’s temporal intent. The most similar work is that
Anagha et al. analyzed the distribution of query popularity along four dimen-
sions: the number of spikes, the shape of the spikes, the periodicity of the queries,
and the overall trend in popularity [15]. However, most of them either focused
on only one query type, or did not did not propose an approach to understand
a query’s temporal dynamics automatically.
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3 Temporal Intent Based Query Taxonomy

Understanding queries temporal intent is fundamental to understanding the re-
trieval experience. In order to obtain some latent semantics from the distribution
of queries’ temporal intents, we first observe that queries’ temporal intents in-
clude full-time intent, most recent time intent, burst time intent or periodic
intent. Then, we discover that a query’s temporal intent can be reflected by its
search frequencies over time which can be seen as a time series. Finally, we group
queries to the corresponding temporal intent classes according to their temporal
characteristics reflected by their time series, as shown in Figure 1.

Bellow we present definitions of these query classes and corresponding search
time series shapes in terms of their temporal intents.

Query

Query without Time
Intent (QoT)

Query with Time
Intent(QwT)

Query with Multi Time
Intervals Intent (MQ)

Query with One Time
Interval Intent (OQ)

Fig. 1. Temporal Intent based Query Taxonomy

Query without Time Intent QoT denotes queries whose target information
does not belong to any specific time. That is, there is no temporal constraint
for their results. On the other hand, the temporal intent of QoT is full
time. QoT denotes users’ common, frequent and constant information needs.
Consequently, their search frequency curves share a stable trend, for instance
“Java JDK” as shown in Figure 2(a) derived from Google Trends [16].

Query with Time Intent QwT denotes queries which contain implicit time
intents.

Query with One Time Interval Intent OQ are these queries whose target
information belongs to one specific time period. These queries are often trig-
gered by one time unexpected event. As a result, their search curves all
contain a single spike which occurs when there is a sudden increase followed
by a corresponding decrease in query frequency. For example, Octopus Paul
and Haiti Earthquake are OQ, as depicted in Figure 6(d) and 2(c) respec-
tively.

Query with Multi Time Intervals Intent MQ are these queries whose tar-
get information belongs to multi time periods. These queries are often trig-
gered by an event which repeated multi-times.
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Query with Aperiodic Time Intervals Intent AMQ describes MQ whose
multi time intervals are aperiodic. These queries are often triggered by an un-
expected event or user requests, issued aperiodically. Search curves of AMQ
share a common shape with multi aperiodic peaks. For example, “Earth-
quake” is a AMQ, as illustrated in Figure 2(d).

Query with Periodic Time Intervals Intent PMQ denotes MQ whose
multi time intervals are periodic. These queries are often triggered by an
expected event which follows identical or almost identical patterns during
corresponding months of successive years. Search curves of PMQ share a
common shape with multi periodic peaks. For example, “Christmas Present”
gets hot in an annual cycle since it is time for people to select card for their
friends in every Christmas, as shown in Figure 2(e). And, “World Cup” has
the longer period of four years, as shown in Figure 2(f).

(a) Java JDK (b) Octopus Paul

(c) Haiti Earthquake (d) Earthquake

(e) Christmas Present (f) World Cup

Fig. 2. Query Examples from Google Trends

4 Temporal Intent Based Query Classification

As mentioned above, we can see that the search frequency curves of these queries
with the same temporal intent exhibit a common shape. And, queries with differ-
ent temporal intents have different shapes. Therefore, we can understand queries’
temporal intents by classifying queries into corresponding groups shown in Fig-
ure 1 according to their search frequency curve shapes.
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Thus, the remaining problem is that for a new query, we propose a machine
leaning algorithm to justify its category. To achieve this goal, the primary task
is to compare the query data located at different positions of the time axis from
Web query logs in order to detect pattern of the query. We use the conventional
time series to represent temporal query data [17]. Let ft denotes the frequency of
query q issued by all users during the tth time interval, that ‘month’ is used here.
t = 1...N in which N is the number of time intervals. The frequency function F
of a query q over N time intervals is a random ft sequence, denoted as:

F = ft (t=1...N) = {f1, f2, ..., fN} (1)

Preprocessing. F can be decomposed into three components [17], as shown in:

F = mt + st + Yt (2)

Where mt is a slowly changing function known as a trend component, st is a
function with known period referred to as a seasonal component, and Yt is a
random, burst and irregular component. We first need to separate QoT and
QwT, so we estimate and extract the st and Yt. In other words, we remove mt

from F . Here we use Polynomial Fitting to get mt [17],

mt =

k∑
i=0

wix
i (3)

In which k is set to 4 in this paper according the experiments. We choose the
parameter wi by minimizing the following target function:

L(W ) =
N∑
t=1

(ft −mt)
2 +

λ

2
||W ||2 (4)

Where W = (w0, w1, w2, w3, w4). After removing mt, we get F q = st + Yt. An
example is shown in Figure 3.

Features. We use 11 features for the machine learning model in this paper.
Feature1-2 QoT is stable while QwT is burst, so in order to distinguish QwT

from QoT, Mean and Standard Deviation of F q are two obvious features.
Feature3 However, it is difficult to separate OQ and MQ because all their

Standard Deviations are larger. Hence we define a new feature as follows:

SR =
fM −Max({f1, f2, ..., fN} − {fM−m, ..., fM−1, fM , fM+1, ..., fM+m})

N∑
t=1

ft

(5)
In which, fM = Max({f1, f2, ..., fN}) is the frequency of the highest spike.
{f1, f2, ..., fN} - {fM−m, ..., fM−1, fM , fM+1, ..., fM+m} denotes remove these
points {fM−m, ..., fM+m} from the set {f1, f2, ..., fN}. m is a predefined parame-
ter and 2m represents the duration of a spike. We determinem by analyzing these
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Fig. 3. Examples of Removing Trend Component

maximum spikes of all QwT in the query dataset [18]. First we define a threshold
ratio r. If i and j satisfy all {fM−i, ..., fM−1, fM , fM+1, ..., fM+j} > r ∗ fM , then
2m = i+ j. The analyzing result is shown in Figure 4. We can see that if 2m=4,
it can cover at least 74.6% queries regardless of the value of r. Thus, without
loss of generality, in this paper we set m = 2.
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Fig. 4. Analyzing of Spike Duration

Feature4 Another feature is defined as:

MR =
Max({f1, f2, ..., fN})

N∑
t=1

ft

(6)

Which represents the proportion of the maximum frequency and the sum of all
frequencies.
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Feature5-8 We adopt a distance measure that is invariant to scaling and trans-
lation of the time series [14]. Given two query curves F1 and F2, the distance
Distance(F1, F2) is defined as follows:

Distance(F1, F2) = min
α,q

||F1− αF2(q)||
||x|| (7)

where F2(q) is the result of shifting time series F2 by q time units, and || · || is
the l2 norm. This measure finds the optimal alignment (translation q) and the
scaling coefficient α for matching the shapes of the two time series. With q fixed,
||x−αy(q)||

||x|| is a convex function of α, and therefore we can find the optimal α by

setting the gradient to zero: α =
xT y(q)

||y(q)||2 . It is difficult to find the optimal q. In

practice, we traverses all possible values of q to find out the minimum distance.
For a given query curve F , we compute its similarity to all cures of the other

query categories in the training set. We use the mean similarity of the same
query class as one feature. Then, we get four features, represented as DQoT ,
DOQ, DAMQ and DPMQ, corresponding to the query groups QoT, OQ, AMQ
and PMQ respectively.

Fig. 5. Approximate cutoff of Training Data

Feature9-11 First we define the 9th feature cutoff as:

cutoff(X) : Rn− > R (8)

Where Rn is the feature space. We need to learn cutoff from the training data.
However, there are no annotated cutoff on ptraining data. So we have to get an
approximate value of cutoff with Function 9 as shown in Figure 5.

cutoff =

⎧⎨
⎩

value of the median line of “yellow(first)” area if query = QoT
value of the median line of “blue(second)” area if query = OT
value of the median line of “pink(third)” area if query = MT

(9)
Then, we use the former 8 features Feature 1-8 as the input of SVR (Support

Vector Regression) [19] to get the cutoff of the testing data. In SVR, we use
gaussian kernel function with model parameter C = 22.
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The cutoff is used to detect spikes, and we define the number of these spikes
as the 10th Feature. A spike is defined as some continuous points whose values
are larger than cutoff.

In order to identify PMQ well, we define a new feature PD. According to
Feature10, if there exist multi spikes, we use yi to represent the time interval
between two neighboring spikes as shown in Figure 3(b). We get a sequence
{y1, y2, ..., yw}. Then, PD is computed as the Standard Deviation of the se-
quence. Else if there is no or one spike, we set PD with extreme values.

5 Experiments

Corpora. For the lack of standard corpora for evaluating temporal intent based
query classification algorithm, we have to construct data sets. We first extracted
5,000 queries from Web Track of TREC [18] and submit every query to Google
Trends [16] and download its query frequency file. The numbers on the file re-
flect how many searches have been done for the particular query, relative to the
total number of searches done on Google over time. We have to use the file as
the corresponding query’s frequency data to demonstrate our query classifica-
tion algorithm because it is very difficult to get real and large-scale query logs
from commercial search engines. Finally, we manually annotated categories of
these queries in terms of their frequency curves and temporal intent based query
taxonomy definitions described in Figure 1.

Evaluation Measures. We use Precision and Recall in evaluation of the tem-
poral intent based query classification results. If the query category classified
by the algorithm agrees with the manually annotated category, we view it as a
correct classification. Precision is the fraction of classified query categories that
are correct. Recall is the fraction of correct query categories that are classified.
F1-score is calculated using following function: F1 = 2 ∗ (P ∗R)/(P +R).

Classifier and Parameter. With respect to the machine learning model, Sup-
port Vector Machine (SVM) [19] is used in this paper. The input are the eleven
features and the output are the four categories. We used the C-Support Vector
Classification in LIBSVM with the gaussian kernel function and set C = 22.

Table 1. Classification Performance Comparison for Different Query Categories

Query Class QoT OQ AMQ PMQ average

P 0.952 0.928 0.846 0.914 0.910

R 0.973 0.915 0.831 0.924 0.911

F1 0.962 0.922 0.838 0.919 0.910

Results and Discussion. Table 1 shows the results. Because none of the pre-
vious approaches has provided an efficient method to group queries based on
temporal intents, to the best of our knowledge, we have to only analyze our own
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approach. Obviously, our approach achieves high performance for all four query
classes. We can see that the classification performance of AMQ is the worst.
This is because queries tends to fluctuate caused by many factors and AMQ has
more than one spike. If the fluctuation of the spike is not large enough, it is
difficult to detect it. As a result, the query will be mistakenly classified as QoT.
It is obvious the performance for QoT is the best among these four query classes
for the reason that the Mean and Standard Deviations of all QoT’s frequency
curves are very low and our algorithm can identify it effectively. To our surprise,
the performance of PMQ is also very high. This may because the feature SR and
MR can distinguish it from the other query classes well.
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Fig. 6. Feature Effect Analysis. Query Classes Distribution in Pair of Features Space

Feature Effect Analysis. We further analyze some typical features’ effects by
compute the query class distribution on feature space, as shown in Figure 6. It
is obvious that the feature Mean and Stand-Deviation can distinguish QoT from
QwT effectively as illustrated in Figure 6(a). The main reason for this is that
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QoT’s curves Means and especially Stand-Deviations are low. From the Figure
6(b), we can see that the feature combination of MR and SR can classify OQ and
MQ well. MR is used to evaluate the proportion of the second spike frequency
and the sum of all frequencies. As described in the figure, SRs of all MQ are
high. As illustrated in Figure 6(c) and 6(d), the distance between queries of the
same classes are small. This can be used to distinguish queries well.

6 Conclusion

In this paper, we study the problem of how to understand the implicit temporal
intents of user queries. We propose a query classification method to solve this
problem. We first analyze the temporal intents of Web queries. Then, we propose
a query taxonomy based on queries’ frequency over time. Finally, we introduce
a machine learning method based on four features to classify queries into four
categories. Experimental results demonstrate that our approach is effective.

In future work, we will explore more features for temporal intent based query
classification. We also plan to explore the application of temporal intent. Espe-
cially, we will study how the temporal intent can be used to construct a page
ranking model to improve information retrieval performance.
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